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Abstract 
A dysregulated host immune response significantly contributes to 
morbidity and mortality in tuberculous meningitis (TBM). Effective 
host directed therapies (HDTs) are critical to improve survival and 
clinical outcomes. Currently only one HDT, dexamethasone, is proven 
to improve mortality. However, there is no evidence dexamethasone 
reduces morbidity, how it reduces mortality is uncertain, and it has no 
proven benefit in HIV co-infected individuals. Further research on 
these aspects of its use, as well as alternative HDTs such as aspirin, 
thalidomide and other immunomodulatory drugs is needed. Based on 
new knowledge from pathogenesis studies, repurposed therapeutics 
which act upon small molecule drug targets may also have a role in 
TBM. Here we review existing literature investigating HDTs in TBM, 
and propose new rationale for the use of novel and repurposed drugs. 
We also discuss host variable responses and evidence to support a 
personalised approach to HDTs in TBM.
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Introduction
Clinical outcomes in tuberculous meningitis (TBM) depend 
upon both killing Mycobacterium tuberculosis (M.tb) and  
managing host inflammatory response. Antimicrobial drug ther-
apy for TBM has been adapted from that used for pulmonary 
tuberculosis (TB); four drugs are given initially, with subse-
quent tapering to two or three drugs (in drug-susceptible TBM,  
dependent on local guidelines) for continuation of therapy up to 
one year. Yet the host immune response may be dysregulated, 
and contributes to the poor outcomes associated with TBM. 
Host directed therapies (HDT) seek to control this host response  
and reduce death and neurological injury. 

The discovery and assessment of new therapeutics in TBM has 
been a neglected area; this includes the development of bespoke 
antitubercular drug regimens which account for differing  
ability of drugs to penetrate the central nervous system, and 
the design of HDTs which counter dysregulated immune 
responses to M.tb within the central nervous system. In fact,  

corticosteroids are the only widely used host directed therapy 
in TBM with any proven benefit in both adults1 and children2.  
In adults, in particular, questions around their clinical use 
remain including whether they have a role in improving  
outcomes in HIV-associated TBM and the mechanisms by 
which they improve survival. Clinical trials to assess the efficacy  
of other HDTs including aspirin and thalidomide have been 
conducted, however there is not yet conclusive evidence to 
suggest when, with whom and at what dose they may be  
effective. New knowledge from studies uncovering mechanisms 
of inflammation and brain injury may also allow for a directed 
approach to modulating the host response. Similarly studies 
aiming to contribute knowledge of factors at play which influ-
ence variability in the host may lead us away from a ‘one size  
fits all’ therapeutic approach.

We review the evidence on currently used HDTs in TBM and 
suggest potential therapeutics based on pathogenesis stud-
ies and drawing from knowledge and experience in other  
forms of tuberculosis and neuroinflammatory conditions. We 
will review work which has contributed to our understanding 
of variation in host response and discuss how this knowledge  
might be harnessed to design a personalised approach to  
the use of HDT in TBM.

Existing Host Directed Therapies for Tuberculous 
Meningitis
Dexamethasone
Adjunctive corticosteroids reduce mortality from TBM, at least 
in the short term1,3,4. The mechanism through which corticos-
teroids confer clinical benefit is unclear, although reduction  
in intracerebral inflammation seems most likely. Glucocorti-
coids bind to and activate the glucocorticoid receptor of macro-
phages and other cells, interfering with inflammatory mediator  
transcription and expression5. Additional indirect genomic effects 
of inhibition of pro-inflammatory transcription factors such 
as activator protein-1, and non-genomic mechanisms further  
mediate glucocorticoid anti-inflammatory effects6–9.

Murine studies suggest M.tb induces activation of the micro-
glial NLRP3 inflammasome, a multimolecular immune complex 
of receptors and sensors that mediates innate immune responses 
and induces inflammation via pro-inflammatory caspases 
and cytokines; a process inhibited by dexamethasone10,11.  
In TBM, pro-inflammatory cerebrospinal fluid (CSF) cytokine 
concentrations are acutely elevated, although therapeutically 
reducing these concentrations may not be clinically beneficial. In 
a study of 16 individuals with TBM in India, concentrations of 
tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, 
IL-10 were elevated in TBM vs. controls (10 non-neurological  
patients undergoing spinal anaesthesia due to obstructive uropa-
thy), and declined during TB treatment, yet cytokine concen-
trations were not related to disease severity, brain magnetic 
resonance imaging (MRI) abnormalities or clinical outcome12.  
In a paediatric study (n=30), CSF TNF-α, IL-1β, and inter-
feron (IFN)-gamma concentrations were elevated in acute TBM, 
but again did not correlate with disease severity, nor were they 
influenced by corticosteroid administration13. However in a  
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large study of clinical and intracerebral inflammatory  
phenotype and 9-month survival in adults with TBM from Viet-
nam, multiple pro-inflammatory and anti-inflammatory CSF 
cytokines were significantly reduced in HIV uninfected indi-
viduals who died vs. in HIV uninfected who survived14. This 
effect (lower pro-inflammatory cytokines in individuals who  
died) was not seen in HIV co-infection. 

In 545 Vietnamese individuals >14 years recruited to a rand-
omized placebo-controlled trial of dexamethasone for TBM, 
dexamethasone was associated with a reduced risk of death  
(relative risk 0.69, p=0.01)1. In a representative subset of this 
study, dexamethasone did not significantly alter tested CSF 
cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-10, IL-12) over  
time vs. placebo15. CSF concentrations of IL-6, IL-8, and  
IL-10 fell slowly after commencement of anti-TB chemo-
therapy, and TNF-α fell rapidly, all irrespective of dexam-
ethasone treatment. In a subgroup of HIV uninfected adults  
(n=37), dexamethasone significantly reduced CSF matrix met-
alloproteinase-9 (MMP-9) in follow up samples taken after 
a median 5 days of treatment16. CSF cytokine concentration  
measurement is frequently used as a proxy for measurement for 
intracerebral inflammation. Further work is required to deter-
mine whether the protective effect of dexamethasone correlates  
with a measurable reduction in intracerebral inflammation.

International guidelines recommend adjunctive corticosteroids 
for TBM management17. Corticosteroid use in TBM is com-
monplace, dexamethasone is commonly used as it is affordable  
and widely available although the optimal corticosteroid prepa-
ration, dose, and route of administration are unknown18. Issues 
with prolonged intravenous therapy, access to intravenous  
therapy, and pill burden for oral therapy, all require consid-
eration when designing clinical trials of new corticosteroid 
regimens. Whether beneficial therapeutic effects extend to  
HIV co-infected individuals is uncertain. In a HIV-positive 
subgroup (n=98) from a randomized trial of adjunctive corti-
costeroids for TBM in Vietnamese adults, dexamethasone was  
associated with a non-significant trend towards improved  
survival1. Subsequently, a study of adults with HIV-asso-
ciated TBM showed global increase in pro-inflammatory 
cytokine concentrations, running counter to theory that immu-
nosuppressed HIV co-infected individuals have lower intrac-
erebral inflammation14. A multicentre randomized controlled 
trial of adjunctive corticosteroids for HIV co-infected adults 
with TBM is currently underway in Vietnam and Indonesia  
(NCT03092817)19.

Corticosteroids are frequently used to treat common  
neuro-complications of TBM; paradoxical reactions, and the 
immune reconstitution inflammatory syndrome (IRIS). Para-
doxical neuro-inflammatory reactions, which occur despite 
appropriate anti-TB chemotherapy, may reflect host response 
to dead and dying bacteria20. TBM-IRIS is a common and often 
severe complication of starting anti-retroviral therapy (ART) in  
TBM, and is associated with high CSF neutrophil counts and 
a positive M. tuberculosis culture at presentation21. Interest-
ingly, a CSF inflammatory process, specifically high neutrophils  

and high TNF-α in combination with low IFN-gamma,  
predicted later TBM-IRIS in a study of 34 individual with 
TBM in South Africa21. Inflammasome activation appears to 
be involved in the development of TBM-IRIS, with matrix  
metalloproteinase (MMP)-9 a possible mediator of brain tissue  
damage11. Whilst corticosteroids during the first 4 weeks 
after initiation of ART reduced TB-associated IRIS in HIV 
co-infected individuals in a trial in South Africa, individuals 
with TBM were excluded22. There are no randomized trials of  
corticosteroid therapy for TBM-IRIS, nor for paradoxical neu-
rological reactions in HIV uninfected individuals. Table 1  
summarises the current evidence for dexamethasone use in  
TBM, as well as for other host-directed therapies.

In childhood TBM, benefit from corticosteroids has been  
demonstrated in a number of studies2,23–25. Unlike in adults, improve-
ment in disability, albeit moderate, is described3. Dosage and  
duration however is debated and in randomized trials dosage 
has varied between 1mg/kg and 4mg/kg daily, for 3-4 weeks. 
One trial compared three dosage regimens; 2 mg/kg/day over 
4 weeks vs 4 mg/k/day over 1 week and 2 mg/k/day for the  
next 3 weeks vs 4 mg/kg/day over 4 weeks26. In each group 
the initial 4 weeks was following by 4 weeks of tapering. 
There was no difference in mortality between groups, however  
prolonged periods of higher dose prednisolone were associated  
with new onset optic neuropathy and hydrocephalus26. These 
findings highlight the delicate balance between moderating 
host immunity, and avoiding the occurrence of adverse events.  
Further studies are needed to identify ideal dosage regimen, as 
well as explore host variability in response to corticosteroids in  
childhood TBM.

Promising Host Directed Therapies for Tuberculous 
Meningitis
Aspirin
Cerebral infarction occurs in 25–71% of TBM cases27,28, and 
stroke was associated with a two-fold increase in mortality in 
a recent meta-analysis29. The inflammatory state occurring in  
TBM contributes to the pathogenesis of stroke. A prospective  
study of 146 TBM patients demonstrated an acute phase 
inflammatory response with significantly elevated cytokines 
(e.g. IL-2, IL-4, IL-6, IL-1β, IFN-γ, TNF- α) in blood and  
CSF30. A hypercoagulable state was reflected by elevated  
protein C, factor VII, plasminogen activator inhibitor-1 and anti-
cardiolipin antibodies, as well as decreased protein S in a case  
series of 16 children. Bleeding times were also markedly 
shorter and platelet counts remained markedly raised in this  
subgroup31. Hypercoagulability has been shown to occur in 
adults with pulmonary tuberculosis, and may also contribute to 
pathogenesis of stroke in TBM. Local intra- and extra-vascular  
factors contributes to TBM pathogenesis, most significantly 
in the form of cerebral vasculitis secondary to inflamma-
tory infiltrates; initially believed to be directly due to tubercle  
bacilli implantation, now known to correlate with the inflam-
matory exudate in the basal cisterns and subarachnoid  
space32,33. The significance of intravascular thrombosis is still 
unclear. While thrombosis might be common in the context 
of vasculitis, autopsies on TBM patients failed to demonstrate  
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Table 1. Summary of clinical studies investigating the efficacy of dexamethasone, aspirin and thalidomide in TBM.

Reference
Intervention 
(drug, dose, 

duration)
Study design Population Primary 

outcome Key findings

Mai27
Aspirin 81 mg vs. 1000 
mg vs. placebo for 60 
days

RCT: double-
blind, 

Placebo 
controlled

Adults 
Non-HIV, 
Vietnam 
n = 120

Mortality 
or Stroke

No difference in 2-month mortality. 
Subgroup analysis showed reduction in infarcts 
and death with aspirin 81 mg (15%) and 1000 
mg (11%) compared to placebo (34%); p = 0.06

Misra34 Aspirin 150mg vs. 
placebo

RCT: Placebo 
controlled

Adults 
n=118

Mortality 
or Stroke

Decreased 3-month mortality (21.7%) vs 
placebo (43.4%); Odds Ratio = 3.17, 95%CI 
1.21 - 8.31. Aspirin resulted in absolute risk 
reduction of stroke in 19.1% and significant 
reduction in mortality compared to placebo 
(21.7% vs 43.4%, p=0.02)

Misra35 Aspirin 150mg Retrospective 
cohort n=135 Mortality

Non-statistical reduction in deaths (25%) at 3 
months compared to standard TB treatment 
(17%).

Schoeman36 Aspirin 75mg or 
100mg/kg RCT Children 

n=146
No improved neurological or cognitive 
outcomes or survival with aspirin

Schoeman37 Thalidomide 6mg/kg, 
12mg/kg, or 24mg/kg

Dose escalating 
Pilot study

Children 
n=15

Safety and 
tolerability Reduce CSF TNF-α in children with stage 2 TBM

Schoeman38 Thalidomide 24mg/kg 
for 1month

RCT: Double 
blinded

Children 
n=47

Discontinued prematurely due to side effects 
and deaths in thalidomide arm

Thwaites1 Dexamethasone
RCT: Double-
blind Placebo 

controlled

Adult 
n=545 

HIV and 
non-HIV

Mortality Reduced risk of death through 9 months 
(relative risk 0.69, p=0.01) with dexamethasone

Simmons15 Dexamethasone
RCT: Double-
blind Placebo 

controlled
Adult 
N=87

Dexamethasone did not significantly alter 
tested CSF cytokines (TNF-α, IL-1β, IL-6, IL-8, 
IL-10, IL-12) over time vs. placebo

RCT = randomised clinical trial; IL = interleukin; TNF = tumor necrosis factor.

frequent arterial thrombosis32. Significant platelet dysfunction  
has also been demonstrated in TBM, manifesting as increased 
mean platelet volumes, platelet distribution width and plate-
let-large cell ratio39. These parameters are significantly associ-
ated with infarcts and suggests the use of antiplatelet agents  
in TBM39. Local intra- and extra-vascular factors contribute  
to TBM pathogenesis in the form of vasculitis due to bacilli 
infiltration. In an effort to reduce mortality and long-term  
neurological disability in TBM, aspirin is increasingly being 
studied due to its anti-inflammatory and inhibitory effects on  
platelet and thrombus production. In murine models, low 
dose aspirin (3 mg/kg) showed a systemic decrease in serum  
cytokines (e.g. TNF-α, IL-6, IL-1β) and late stage T cell 
responses in M.tb infection. Aspirin also enhances T helper 
cell 1 responses for eliminating bacilli from lungs40. Aspirin  
contributes to the resolution of inflammation by generating  
15-epi-lipoxims, resolvins and protectins, recognized for their 
anti-inflammatory as well as pro-resolving characteristics41 It 
is also well described how the drug inhibits pro-inflammatory  
prostanoid production via acetylation of COX42.

To date, three randomized controlled trials have investigated 
the role of aspirin in adult and paediatric TBM. In 118 adult  
TBM patients in India, aspirin resulted in absolute risk reduc-
tion of stroke in 19.1% and significant reduction in mortal-
ity compared to placebo (10 of 118 (21.7%) versus 23 of  
118 (43.4%), p=0.02)34. A randomised controlled trial of TBM 
involving children in South Africa (n=146) could not estab-
lish improved neurological/cognitive outcomes or survival 
with ASA at doses of 75 mg (low dose) or 100 mg/kg/day  
(high dose)36. However, the developmental outcome of chil-
dren on high dose ASA was similar to the placebo and low 
dose ASA groups, despite being younger of age and having  
higher baseline severity. This finding warrants further inves-
tigation of high-dose ASA in childhood TBM. A study of  
120 Vietnamese adults with TBM demonstrated a reduction in 
death and new infarcts with the addition of 81 mg/day aspi-
rin (8 of 36 or 22.2%) and 1000 mg/day aspirin (6 of 38 or 
15.8%), versus placebo (11 of 38 or 28.9%)27. Aspirin was  
associated with dose-dependent inhibition of thromboxane 
A2 and upregulation of pro-resolving protectins in the CSF.  
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Another retrospective study by Misra et al. in India failed 
to validate clinical benefit, showing an insignificant reduc-
tion in deaths with the addition of 150 mg aspirin as compared 
to standard anti-TB therapy35. However, 25% (11 of 135) of  
patients randomized to the aspirin arm had a complete recov-
ery at 3 months versus 17.1% (7 of 135) in the standard  
treatment arm. In the three adult trials, corticosteroids were 
administered alone or in conjunction with aspirin with no  
adverse event signal found. None of these trials observed an 
increase in adverse events, but safety concerns with increas-
ing doses of aspirin persist. Whilst these studies of adjunc-
tive aspirin described varying results regarding morbidity  
and mortality, they paved the way for further large randomised 
controlled trials. The above described trials utilized a daily 
aspirin regimen duration or primary outcome measured at  
two to three months. A recent study utilized MRI to quan-
tify baseline and follow up brain lesions in TB meningitis and 
found that 60% (n=48) of participants had the presence of acute 
infacts at enrolment, with only one new infact at follow up 2  
months later43. This correlates to the acute phase in which most 
complications of TB meningitis occur and the window where 
meningeal inflammation and vasculitis needs to be treated. 
Phase 2 (NCT03927313) and 3 (NCT04145258) trials are cur-
rently underway to validate aspirin as a host-directed therapy. 
Given the insufficient evidence base, aspirin is not routinely  
used in most individuals with TBM.

Thalidomide
Thalidomide has a wide range of biological effects, due to 
its ability to interfere with the immune system, and depend-
ing on the cell type or pathway of activation. The inhibition  
of TNF-α, which is produced primarily by macrophages and 
monocytes, accounts for most of the immunological effects 
of the drug. TNF-α performs a delicate balancing act during  

host response to mycobacterium tuberculosis infection, whereby 
on the one hand it is mandatory for keeping infection under 
control, but on the other hand, if produced at too high levels it 
induces a hyperinflammatory state resulting in severe tissue dam-
age. The potential of thalidomide to activate T-cells, resulting  
in elevated production of IL2, IFN and TNF-α, may potentially 
interfere with its anti-inflammatory properties44. In addition, 
thalidomide does not inhibit TNF-α produced by stimulated T-
cells. The therapeutic effect of thalidomide therefore appears 
to be dose dependant since differing TNF-α concentrations  
will result in opposing physiological consequences. 

Thalidomide has been shown to reduce CSF TNF-α experi-
mentally in rabbits45 as well as in children with UK Medical 
Research Council (MRC) grade 2 TBM in a dose-escalating  
pilot study37. However, a double-blind, randomized trial of 
high dose thalidomide treatment (24mg/kg/day for 1 month) in  
children with grade 2 and 3 TBM was discontinued due to side 
effects (skin rash, hepatitis, neutropenia or thrombocytopenia)  
and deaths in the thalidomide arm38.

The anti-inflammatory benefits of thalidomide (e.g. improved 
resolution of basal enhancement and tuberculomas) noted 
in both the pilot and randomized trials have led to more tar-
geted studies, albeit at a much reduced dosage (≤5 mg/kg/day).  
Additionally, adjunctive thalidomide has been shown to be 
particularly effective in observational studies involving tuber-
culous brain abscesses46,47 and blindness-related to opto-
chiasmatic arachnoiditis48,49. Adverse drug effects have been  
less of an issue in these situations. The life-threatening 
nature of these TBM sequelae as well as the anatomical loca-
tion of the lesions, which precluded surgery, disqualified 
them from being included in trials. Nonetheless, the clinical  
improvements noted have been substantial. (Figure 1).

Figure 1. CT axial, MRI T2 axial, CT sagittal and MRI T1 post-gadolinium sagittal images at 3–4 month intervals of a 16-month-
old HIV-infected female with stage III TBM. The initial CT axial and sagittal scans (A, F) showed a large right sided middle cerebral artery 
infarction, hydrocephalus as well as multiple small rim-enhancing foci in the prepontine cisterns. After 3 months of anti-TB and 2 months 
of anti-retroviral therapy, they presented with a depressed level of consciousness. MRI T2 axial (B) and MRI T1 post-gadolinium sagittal  
(G) demonstrated multiple TB abscesses in the interpeduncular, prepontine and chiasmic cisterns (paradoxical HIV related TB IRIS) as well 
as right cerebral hemisphere spongiotic changes (old infaction). Thalidomide was initiated following a poor response to 1 week of high dose 
corticosteroids. This resulted in rapid improvement in the level of consciousness, gradual decrease in the size of the TB abscesses and loss 
of T2 signal (i.e. inflammation), which is a marker of cure as it represents gradual calcification. (C–E & H–J).

Page 6 of 22

Wellcome Open Research 2021, 5:292 Last updated: 26 JAN 2022



When used, the duration of adjunctive thalidomide therapy 
should be guided by subsequent clinical and radiological 
responses. In TBM clinical improvement of mass lesions gen-
erally precedes radiological improvement due to a reduction in  
peri-lesional inflammation. Serial MRI T2-weighted stud-
ies have shown that evolution of the lesions from early stage  
“T2 bright” abscesses with oedema to “T2 black” represents 
a marker of cure47. Regression is associated with fibrosis,  
mineralization (calcification) and eventually disappearance,  
usually with no residual structural abnormalities. T2-black gran-
ulomas may however persist for years in asymptomatic chil-
dren. In most cases, cure is achieved after less than 3 months  
of adjunctive thalidomide therapy. 

It is the authors experience that adjunctive thalidomide war-
rants consideration in the following TBM-related conditions:  
corticosteroid-unresponsive optochiasmatic arachnoiditis result-
ing in visual impairment and/or optic disc pallor; enlarging 
TB abscess despite corticosteroid therapy (TB-IRIS); large TB 
abscess/tuberculomas in critical brain regions (i.e. brainstem)  
that is not amenable to surgical drainage and not respond-
ing to corticosteroids; large dural-based TB abscess resulting  
in epilepsia partialis.

TNF-α has been shown to exert deleterious effects on capil-
laries already sensitized by exposure to mycobacterial prod-
ucts. The endarteritis, coupled with raised intracranial pressure 
because of edema and obstructive hydrocephalus, often leads 
to cerebral ischaemia/infarction. The value of low-dose adjunc-
tive thalidomide in modifying the progressive endarteritis is  
yet to be explored. 

Immunomodulatory therapies
Modulation of cytokines known to contribute to pathol-
ogy is a potential strategy to support host defenses or control  
deleterious inflammation in TBM. In TBM a number of  
pro-inflammatory cytokines are thought to play a role in  
pathogenesis, including IL-2, IL-6, IL-1β, IFN-γ and TNF- α33.  
However, like in other neuroinflammatory conditions where 
cytokines such as IFN-γ have opposing roles50, inhibition of 
these cytokines may not necessarily lead to improved out-
comes and therefore caution must be exercised in exploring the 
potential drugs which inhibit these pro-inflammatory cytokines  
as candidate HDTs.

There are accumulating data on the role of the anti-TNF-α  
monoclonal antibodies infliximab and adalimumab and the  
soluble TNF-α receptor etanercept in TBM treatment. Although 
these agents are described as options for treating refrac-
tory paradoxical reactions involving the CNS51–54, they may  
also be responsible for latent TB reactivation and dissemi-
nation to the CNS in those where the drug is used to treat 
autoimmune conditions55. Anakinra is a human interleukin-1  
receptor antagonist that blocks the biological activity of  
natural IL-1 and may also have a role in TBM. Anakinra  
demonstrated efficacy in one case of life-threatening pro-
tracted paradoxical inflammation in CNS TB where high dose  

corticosteroids failed56. Other immunomodulatory agents of inter-
est include canakinumab and tocilizumab, human monoclonal  
antibodies inhibiting IL-1 and IL-6 respectively. In TBM, vas-
culitis occurs due to the proximity of the progressive exu-
dative meningitis to the basal subarachnoid cistern and the  
circle of Willis. Cyclophosphamide, an alkylating cytotoxic 
drug is an effective drug in the treatment of primary cerebral 
vasculitis. Two case reports have described clinical improve-
ment with the use of cyclophosphamide in TBM associated  
cerebral vasculitis57,58; however, its role as an effective treat-
ment in this context needs further investigation particularly 
due to concerns over its potential adverse activity as a potent 
immunosuppressive drug. Table 2 summarises cases within the  
published literature where these agents have been used in 
the context of TBM; however, pre-clinical and clinical stud-
ies to systematically investigate the therapeutic effectiveness 
is required before they can be used more widely as adjunctive  
therapies in TBM.

Potential Pathways for Future Host Directed 
Therapies for Tuberculous Meningitis
Although host directed therapies are in use, they are limited 
in either efficacy or availability. Therefore the quest for more 
effective therapeutics remains ongoing. Here we discuss poten-
tial therapies which target pathways highlighted in recent 
pathogenesis studies, or draw on insights from other forms of 
TB or inflammatory conditions with shared mechanisms of  
pathogenesis (Figure 2).

Statin Therapy Pathways
HMG-CoA reductase inhibitors (‘statins’) are ubiquitously 
used in prevention and treatment of cardiovascular disease, but 
are also known to have immunomodulatory, anti‐inflammatory  
and anti‐oxidative properties. Several in vitro studies have dem-
onstrated that statins enhance anti-inflammatory and inhibit  
pro-inflammatory functions in microglial cells and inhibit  
mechanisms involved in neurodegeneration59–62. Anti-inflammatory  
properties may be due to modulation of isoprenylation63 with  
downstream effects on inhibitory and stimulatory transcription  
pathways, or via allosteric inhibition of leucocyte function  
antigen (LFA)-1 integrin64 which is involved in the transmi-
gration of activated T cells through the blood brain barrier.  
Neuroprotective effects may be due to modulation of excito-
toxicity, vascular function, angiogenesis, and/or reduced oxida-
tive damage through nitric oxide stimulas65,66. Importantly, some  
studies have shown increased neuronal death with higher  
concentrations of statins67–69.

The potential of statins to effect CNS inflammation and neuro-
degeneration in other conditions are of interest given the shared 
mechanistic pathways in TBM. For example, animal models 
of multiple sclerosis (MS) show that statins skew immune 
responses towards an anti-inflammatory T-helper cell 2 
response, inhibiting pro-inflammatory cytokines IL-2, IL-12 
and IFN-γ70. Patients with secondary progressive MS ben-
efited from statin therapy71 with a phase 3 trial underway 
(NCT03387670). In a mouse model of traumatic brain injury, 
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Table 2. Biologics and other immunomodulatory therapies in TBM; summary of published case reports.

Reference Drug Dose Mechanism Clinical outcome

Blackmore51 Infliximab
10mg/kg, three 
doses at monthly 
intervals

Anti-TNF
Given after 4 months due to ongoing clinical 
deterioration, despite treatment with dexamethasone 
and cyclophosphamide; resulted in clinical 
improvement. 

Jorge52 Infliximab
10mg/kg, three 
doses at monthly 
intervals

Anti-TNF

Young adult with juvenile idiopathic arthritis, treated 
with infliximab developed disseminated TB. With 
stopping of infliximab, neurological deterioration  
occurred with isolation of M.tb in CSF, with no 
improvement with corticosteroids. Infliximab 
re-initiation led to neurological improvement. 

Molten53 Infliximab

Case 1: 10mg/kg, 
three doses at 
monthly intervals 
Case 2: 5mg/kg, 
three doses at 6 
week intervals

Anti-TNF
Two cases describing paradoxical worsening 
after initiation of TBM treatment, unresponsive to 
dexamethasone. In both cases, clinical improvement 
occurred following administration of infliximab. 

Abo54 Infliximab 5mg/kg, three doses 
at weeks 1, 3 and 7 Anti-TNF

Paradoxical worsening (optochiasmatic arachnoiditis, 
leading to loss of vision) on starting TB treatment in 
a 7 year old with TBM, despite dexamethasone. 
Clinical improvement occurred following infliximab 
administration. 

Keeley56 Anakinra 100 mg 
subcutaneously daily

Interleukin-1 
receptor 
antagonist

Two cases of steroid dependant neurotuberculosis 
(paradoxical worsening when steroids stopping). In 
both cases, patients responded to anakinra therapy. 

A. Gonzalez- 
Duarte58 Cyclophosphamide 750mg/m3 every 

3 weeks
Alkylating agent 
of nitrogen 
mustard type.2

Clinical improvement

Celloti57 Cyclophosphamide 750mg/m3 every 
3 weeks

Alkylating agent 
of nitrogen 
mustard type.2

Clinical improvement

Lee72 Adalimumab 40mg SC, total 3 
doses every 2 weeks Anti-TNF Clinical improvement

Lwin73 Adalimumab 40mg SC, every 2 
weeks for 3 months Anti-TNF Clinical improvement of TBM IRIS refractory to steroid  

treatment
TNF = tumor necrosis factor

atorvastatin led to profound attenuation of T cell, neutrophil and  
natural killer cell invasion into the CNS, and reduction in  
production of pro-inflammatory cytokines (IFN-y and IL-6) 
and chemokines (CCL5 and CXCL10)74. In a double-blind ran-
domised trial involving 36 patients with traumatic brain injury,  
rosuvastatin given for 10 days in the acute phase of injury  
significantly reduced TNF-α which correlated with a reduc-
tion in disability scores75. Other conditions where the role of 
statins has been explored include Alzheimer’s disease76, and  
Parkinson’s disease77. Further, statins may be associated with 
reduced risk of tuberculosis78. In a TB murine model, adjunc-
tive simvastatin shortened time to culture clearance by 1 month, 
enhanced bacterial killing, and decreased culture-positive  
relapse and enhance bacterial killing79–81. Clinical trials 
(NCT03456102, NCT04147286) will investigate the efficacy 

of statins in pulmonary tuberculosis. Given their potential use 
as an adjunctive TB therapy, their lipophilic properties allow-
ing good penetration to the CNS, as well as their potential as 
an anti-inflammatory and neuroprotective agent, statins may 
have a role as a HDT in TBM; trials to explore this hypothesis  
are needed.

Glutamate ‘grabbing’ drugs
Excessive glutamate and neuro-excitotoxicity are thought 
to contribute to brain injury and cell death in TBM. In one  
study, RNA sequencing of whole blood and CSF from children 
with TBM demonstrated significant enrichment of transcripts 
associated with neural excitotoxicity predominantly driven 
by glutamate release, NMDA receptor binding and uptake82.  
This mechanism is thought to contribute to brain injury and 
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cell death in other neurological conditions such as stroke, epi-
lepsy, traumatic brain injury, Alzheimer’s and Huntington’s  
disease83,84. Therapeutics which aim to reduce glutamate exci-
totoxicity either by i) modulating the downstream effects 
of glutamate via NMDA receptor binding or ii) reducing  
extracellular glutamate (e.g. glutamate ‘grabbing’) may have a 
role in the treatment of TBM. In acute stroke, a similar approach 
was taken however although animal studies were promising,  
randomised trials in humans assessing efficacy of NMDA  
antagonists largely failed85–87. Therapeutics have been designed 
to reduce glutamate induced excitotoxicity by lowering 
blood glutamate concentration thus leading to a larger natu-
ral glutamate gradient between the brain and blood thereby 
facilitating the efflux of extracellular brain glutamate into the  

blood88. In an animal study riboflavin (vitamin B
2
), selected for 

its ability to interact with Glutamate-Oxaloacetate transami-
nase (GOT) to significantly reduced blood glutamate levels  
compared to placebo (Figure 2A)89. In a randomised trial, ribo-
flavin was correlated with improvement of disability when 
given intravenously in adults with acute stroke89. A number 
of studies have explored the neuroprotective properties of  
riboflavin including in conditions such as migraine and  
Parkinson’s disease90. It is unclear whether drugs such as ribo-
flavin, or others which reduce glutamate neuro-excitotoxicity, 
have a role as an adjunctive therapy to promote neuroprotection 
in TBM; however, given the emerging body of evidence which 
suggest involvement of the glutamate-glutamine pathway, this  
is a potential area of interest for future studies.

Figure 2. Schematic of relevant biochemical pathways which, if targeted with future host directed therapies, may improve 
outcomes in TBM. A: Drugs which reduce glutamate ‘glutamate grabbers’ by increasing breakdown of glutamate (either recombinant 
glutamic-oxaloacetic transaminase (GOT1), or others that mimic its action) may decrease neuro-excitotoxicity associated with brain injury 
in TBM. B: Phosphodiesterase inhibitors reduce breakdown of cAMP to 5’AMP leading to increased neuronal survival, immune modulation, 
and increase in axon plasticity and myelination. C: Interruption of the tryptophan pathway via modulation of Indoleamine 2,3-dioxygenase 
(IDO) activity may have neuroprotective effect, although more data to understand the role of downstream metabolites particularly the 
contribution of kyruneic acid in antagonism of glutamate receptors is needed.
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Tryptophan Pathway Drug Targets
Tryptophan is an essential amino acid which can either be con-
verted to serotonin or oxidized kynurenines via indoleamine  
2,3-dioxygenase (IDO1) (Figure 2C). Further oxidiza-
tion occurs to convert kynurenine to kynurenic acid, which 
has neuroprotective properties. Prior studies have shown that  
M.tb induces marked upregulation of IDO-1 expression in both 
human and murine macrophages in vitro91; and that block-
ade of IDO activity reduces both clinical manifestations of 
TB as well as microbial and pathological correlates of the  
human TB syndrome in macaques92. In an observational cohort 
study of TBM, low CSF tryptophan levels were found in those 
who survived, compared to non-survivors or controls93. It is 
therefore unclear in TBM whether drugs which block IDO-1  
such as indoximod, an immunometabolic adjuvant that is cur-
rent under investigation in cancer therapy94, would cause ben-
efit or harm. It is plausible that improved survival seen in  
those with low CSF tryptophan is due to increased availability 
of kynurenic acid which has neuroprotective action via gluta-
mate receptors and reactive oxygen species. Further investi-
gation into the influence of tryptophan and its downstream 
metabolites on pathogenesis in TBM is required in order to  
establish suitable targets along this pathway for HDTs.

Eicosanoid Modulating Drugs
Eicosanoids are arachidonic acid derived lipid mediators that 
trigger pro-and anti-inflammatory responses and include pros-
taglandins, resolvins, lipoxins, and leukotrienes which serve as 
signalling molecules, modulating inflammation and cell death 
in TB95. A delicate balance in eicosanoid levels is crucial for 
M.tb control and regulating the production of pro-inflammatory  
cytokines96.

Non-steroidal inflammatory drugs (NSAIDs), which exert their 
effects by inhibiting cyclooxygenase (COX) activity may lead 
to reduction of excessive inflammation in TBM. As discussed,  
aspirin, a non-selective COX inhibitor has been investigated 
in three trials in TBM with variable outcomes27,34,36. New gen-
eration NSAIDs with more selective inhibition of COX2 may  
have more favourable safety profiles. Phase 1 trials to assess 
the safety and bactericidal activity of celecoxib and etori-
coxib in healthy volunteers with a view to developing these 
agents as HDTs for drug sensitive TB are currently underway  
(NCT02602509; NCT02503839). Although trials to further 
investigate the role of aspirin in TBM are underway, future 
research should consider the potential contribution of newer more  
selective COX2 inhibitors in TBM.

Phosphodiesterase Inhibitors
Phosphodiesterase inhibitors (PDE-i) are small-molecule inhibi-
tors that reduce inflammation by increasing intracellular cyclic 
adenosine monophosphate and cyclic guanine monophosphate97  
(Figure 2B). Phosphodiesterase 4 (PDE-4) inhibitors such 
as roflumilast have shown to be effective in the treatment of 
numerous inflammatory conditions including chronic obstruc-
tive inflammatory disease98. PDE-4 is expressed within the  

cortex and hippocampus and animal models suggest that inhi-
bition of PDE-4 may have a beneficial role in CNS condi-
tions where inflammation plays a role in pathogenesis99–103. In  
animal models of pulmonary TB, inhibition of PDE-3 (cilosta-
zol), PDE-4 (roflumilast) and PDE-5 (sildenafil) have all 
increased bacterial clearance and reduced pro-inflammatory  
cytokines which contributed to a reduction in neutrophil infil-
tration and lung pathology104–107. The role of phosphodieste-
rase inhibitors has not been studied in TBM but the properties 
above make them intriguing candidates for adjunctive therapy  
in TBM.

Antiretroviral Therapy
Although not an HDT per se, the decision as to when antiret-
roviral therapy is started must consider the potential immun-
opathogenic complications as well as the benefit in preventing  
further opportunistic infection. Guidelines vary slightly regard-
ing the timing of initiation of ART relative to initiation  
of anti-TB chemotherapy in those co-infected with TB and 
HIV. The 2010 World Health Organisation (WHO) ART guide-
lines recommend initiating ART within 8 weeks of anti-TB 
chemotherapy in all HIV-TB co-infected patients regardless of  
CD4 count108. The U.S. National Institutes of Health HIV guide-
lines recommend starting ART within 2 weeks of anti-TB 
chemotherapy for HIV-TB co-infected patients with CD4 cell  
counts <50 cells/ µL and within 8 weeks for CD4 counts  
>50 cells/µL109. In TBM there are unique considerations given 
the infection surrounds crucial structures (the brain and spi-
nal cord) with a very limited ability to expand within the skull 
and spinal canal should excess inflammation occur. Inflamma-
tion occurring following the initiation of HIV therapy is known 
as immune reconstitution inflammatory syndrome (IRIS), 
which in the context of TBM is associated is frequent (up to  
40%) and associated with high mortality (30%)110,111.

In a randomised trial of testing immediate HIV therapy initiation 
(at time of initiating TB treatment) vs delayed (after 2 months) 
in TBM, immediate therapy was associated with significantly  
more grade 4 adverse events (n=102) than delayed HIV ther-
apy (n=87; p=.04). This trial informed current consensus that 
ART initiation should be delayed by between 4-8 weeks after 
starting TBM therapy112. This approach hopes to strike a bal-
ance between the beneficial effects of ART (immune recon-
stitution, control of HIV, prevention of other opportunistic  
infections) and the potential harms of TB-IRIS.

Variable Host Responses and a Personalized 
Approach
Host immune response to M.tb in TBM is vital; although 
excessive inflammation leads to neurological damage. Poly-
morphisms in genes involved in immune response or signal-
ing pathways can influence host inflammatory response, or  
susceptibility to TBM113.

A previous study in the zebrafish model showed that the  
leukotriene A4 hydrolase (LTA4H) gene influenced the balance 
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of pro and anti-inflammatory eicosanoids in response to  
M tuberculosis infection114. LTA4H catalyzes the final step in 
pro-inflammatory leukotriene B4 (LTB4) synthesis114, with 
LTB4 effects usually balanced by anti-inflammatory lipoxin  
A4 (LXA4), the two together ensuring an appropriate response 
to M. tuberculosis without excessive tissue damage115. A  
single nucleotide polymorphism (SNP) (rs17525495) in the 
promoter region of the LAT4H gene alters gene expression, 
and LTB4 LXA4 balance; low (CC) and high (TT) inflamma-
tory states result from LTA4H allele homozygosity whereas 
an intermediate (CT) inflammatory state results from allele  
heterozygosity114. Both TT and CC inflammatory states were 
associated with increased death in a retrospective study of 
adults with TBM116. In this retrospective study adjunctive dex-
amethasone was associated with improved survival in the high  
inflammatory TT group, with the effect of dexamethasone 
unclear in the CC and CT groups116. In a subsequent study of 
764 Vietnamese adults, ten CSF cytokines were measured of:  
TNF-α, IFN-γ, IL-1β, IL-2, IL4, IL-5, IL-6, IL-10, IL-12,  
IL-1314. In HIV-uninfected adults with TBM, pro-inflammatory  
IL-1β, IL-2, and IL-6 (but not TNF-α) were significantly  
associated with LTA4H genotype; low concentrations in CC 
genotype, intermediate concentrations in CT genotype, and  
high concentrations in TT genotype14. In HIV co-infected indi-
viduals with TBM, LTA4H genotype did not appear to influ-
ence survival, response to dexamethasone, or CSF cytokine  
profile14. Additionally LTA4H genotype did not influence sur-
vival in a study of HIV-uninfected Indonesian adults with 
TBM, all of whom received corticosteroids117. A LTA4H geno-
type stratified approach to adjunctive corticosteroid therapy 
in TBM is now being assessed in an ongoing randomized  
placebo-controlled LTA4H genotype stratified non-inferiority  
trial of HIV uninfected adults with TBM in Vietnam 
(NCT03100786)118. If benefits of adjunctive corticosteroids as 
a host directed therapy are shown to be limited to one or more 
LTA4H genotypes, this paves the way for personalized cor-
ticosteroid therapy in TBM. Such benefit related to LTA4H  
genotype may lead to innovation and development of afford-
able point of care tests, to enable implementation of LTA4H  
genotype testing into patient management. 

Where variable host responses to M. tuberculosis increase intrac-
erebral inflammation, or genetic polymorphisms lead to overex-
pression of a specific molecule or target, targeted personalized 
therapies may be beneficial. In a study of tryptophan genome  
wide SNP data we identified 11 quantitative trait loci associ-
ated with CSF tryptophan concentrations, and found that these 
quantitative trait loci were predictive of patient survival19. A 
SNP (rs17842268) in CD43, a surface glycoprotein, has been 
associated with more severe presentation, and decreased sur-
vival, in TBM119. Why SNPs in CD43 affect M tuberculosis 
susceptibility is uncertain, but CD43 has a role in regulating  
proinflammatory cytokines119, and theoretically anti-inflam-
matory therapies may be beneficial in such patients., evi-
dence that patients with a dysregulated host immune response 
benefit from more, or different, host directed therapies is  
lacking.

Conclusions and Key Areas for Future Research
Host directed therapies are an evolving area of TBM research. 
We know that the inflammatory response in TBM contrib-
utes to poor outcomes. Further, we know that dexamethasone 
reduces death from TBM. What is unknown is how the drug  
works, who might benefit most from dexamethasone or  
whether other therapies should be given in addition to dexam-
ethasone or in place of it in some scenarios. There may also be 
scenarios where dexamethasone is harmful. Important ques-
tions regarding the exact role of thalidomide and aspirin also  
remain. While in the case of the former, a narrow context in 
which the drug might be useful is becoming clearer, in the  
latter the optimal and safe dose of aspirin considering its 
antiplatelet and anti-inflammatory properties, is uncertain.  
Although the use of immunomodulatory therapies have 
been reported sporadically, often where corticosteroid treat-
ments have failed, no clinical trials have been conducted to  
systematically assess their safety profile and efficacy.

Drug discovery depends on accurately identifying molecular 
targets which play crucial roles in disease biology, and which 
are amenable to modulation via biologics or small molecule  
drug therapeutics. In diseases with high global incidences 
such diabetes or hypertension, large scale data repositories  
are beginning to provide genetic insights to inform drug  
discovery and therefore change the direction of and speed at 
which novel and repurposed therapeutics become available120.  
In TBM we must work towards establishing similar reposi-
tories through international collaboration. However, the  
relatively low global incidence of the disease, and the chal-
lenging environments in which TBM most commonly occurs  
will make this a lengthy endeavour.

In the near future, we can focus on better understanding of key 
pathogenic processes underpinning inflammation and brain 
injury. For example, further understanding of the role and  
interaction of glutamate and tryptophan in brain injury may 
uncover targets for which existing drugs can be repurposed and 
novel therapeutics developed. The rational design of animal  
models to help inform which of these might deserve clini-
cal trials in TBM is also key; although the rabbit model of  
TBM has been in use since the early 1900s121, further research 
is required to establish whether a more refined or alterna-
tive model could better recapitulate human disease. Genomic  
research to identify variation in host response will allow fur-
ther refinement of therapeutic approaches based on factors 
at the individual patient and population level. While studies  
of LTA4H genotype have led the way in this area of TBM 
research, focus must now widen to include other pathways 
that are likely to vary between hosts. As we move forward with  
host-directed therapies for TBM we must remain cognisant  
of the characteristics of the hosts whose responses we are 
attempting to change. Whether these changes are obvious (e.g.  
HIV infection) or more opaque (e.g. unknown genetic poly-
morphisms) they must be considered with trial design so 
that we can understand as fully as possible, the role of  
these therapies in improving outcomes in TBM.
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Recommendations: Introducing a paragraph about tuberculosis incidence and epidemiology at 
the beginning of the manuscript, followed by sections on the prevalence of TB meningitis, and 
then pathogenesis of TB meningitis, will further enhance the strength of the manuscript. 
 
The reviewer has provided specific comments within the text of the manuscript.
 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
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Are all factual statements correct and adequately supported by citations?
Yes

Is the review written in accessible language?
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Are the conclusions drawn appropriate in the context of the current research literature?
Yes
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section on TBM epidemiology and pathogenesis. 
 
We agree that these are important areas, however since this manuscript forms a collection 
of published papers in a TBM supplement, many of which covered TBM epidemiology and 
pathogenesis in detail, the authors felt that this manuscript should maintain a narrow focus 
on the subject area, and therefore felt chapters on TBM epidemiology/pathogenesis was 
beyond the scope of the article.  
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General comments: 
This review regarding the host directed therapy (HDT) for TBM is globally well written and includes 
adequate references on this topic to date. It could be better balanced. 
In the introduction, the authors could include a short chapter about TBM epidemiology. 
  
Systematic review: 
Title 
I do not agree to consider aspirin, thalidomide and immunomodulatory therapies (anti-TNF and 
anti-Il1 antibodies) as “existing “ HDT in TBM. To date, only one HDT has been proven to reduce 
mortality, namely dexamethasone and the other one are promising approaches but have not been 
assessed in clinical trials yet. So I would consider as Existing HDT the only dexamethasone and 
“Promising” HDT the other ones. 
The title “potential future HDT…” should be replaced by Potential “pathways” for HDT since some 
of the activators/inhibitors cited in this chapter are new components never evaluated in RCTs. 
  
Chapter Dexamethasone: 
The authors should describe what kind of controls were evaluated in a study of 16 individuals in 
India. 
The authors write about cerebral inflammation but it is a proxy to consider CSF cytokines as a 
maker of cerebral inflammation. The authors should comment on this point. 
The issue of dexamethasone dosage (and of rifampicin induction) and of the use of other 
corticosteroids should be detailed in this chapter described since dexa is the only HDT validated in 
the guidelines. 
 
Chapter Aspirin: 
The chapter is well written. 
In addition to the comprehensive antiagregant effect of aspirin, can the author explain how they 
expect an additional antiinflammatory effect to high dose dexamethasone?  The duration of the 
treatment should be discussed. 
 
Chapter Thalidomide: 
Data on thalidomide are very few and mainly observed in children. 
The authors should be cautious regarding their experience with adjunctive thalidomide in TBM 
regarding the lack of date. Thalidomide is an old anti-inflammatory drug used in inflammatory 
diseases and progressively removed from guidelines because of its toxicity. Again, it seems 
difficult to consider thalidomide as a “promising” drug for TBM since new biological agents are far 
more efficient on proinflammatory cytokines. 
The authors should not suggest using thalidomide at a large scale in TBM/TB brain abscess. 
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Chapter Immunomodulatory HDT: 
This chapter is quite short regarding the perspective given by anti-TNF in a severe form of 
TBM/CNS TB. The choice of the type of anti-TNF, as well as the duration of treatment and the risk 
associated to this medication, could be discussed. To my mind, anti-TNF therapies may represent 
one of the best approaches to reduce mortality and morbidity of TBM/TB Abssess in HIV and non 
HIV people and in children. The main issues are the toxicity of these drugs in the environment 
where TBM occurs and the availability of these drugs in poor income countries. These points have 
to be discussed in this review. 
In table 2, the authors should add the following references about adalimumab: 
Adalimumab treatment may replace or enhance the activity of steroids in steroid-refractory 
tuberculous meningitis.  Lee HS, Lee Y, Lee SO, Choi SH, Kim YS, Woo JH, Kim SH. J Infect 
Chemother. 2012 Aug;18(4):555-7 
Adalimumab for Corticosteroid and Infliximab-Resistant Immune Reconstitution Inflammatory 
Syndrome in the Setting of TB/HIV Coinfection.  Lwin N, Boyle M, Davis JS. Open Forum Infect Dis. 
2018 Jan 30;5(2):ofy027 
  
ART: 
It is not really fair to consider ART as HDT… even if it is obvious that ART has a significant impact 
on immunological status. HIV coinfection raises other issues in the management of TBM and I 
would consider separating this chapter from HDT. 
  
Chapter Future pathways…: 
Chapter Statin therapy 
It is not well balanced to have a chapter statin with no data on TBM longer than the chapter on 
biological agents, even if the background is interesting. 
I would summarize the impact of statin on multiple sclerosis,  brain injury, etc since it is quite far 
from TBM to focus on the potential interest of statins on TB and immune response. 
FIGURE 2: Not really helpful in the present form. 
I would perform a central plot with increased neuronal survival, immune modulation, axon 
plasticity myelination that are the goal of treatment; and to describe around the central plot the 
different pathways to reach this target.   
  
Chapter Host response: 
The discussion regarding the LTA4H gene and the response to dexamethasone is an important 
point of pharmacogenetic. The authors should discuss if this strategy is affordable in every 
setting.
 
Is the topic of the review discussed comprehensively in the context of the current 
literature?
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Are all factual statements correct and adequately supported by citations?
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Is the review written in accessible language?
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Are the conclusions drawn appropriate in the context of the current research literature?
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Competing Interests: No competing interests were disclosed.

Reviewer Expertise: HIV Infection ; TBM

I confirm that I have read this submission and believe that I have an appropriate level of 
expertise to confirm that it is of an acceptable scientific standard, however I have 
significant reservations, as outlined above.

Author Response 19 May 2021
Angharad Davis, University College London, Gower Street, London, UK 

Dear reviewer 1, 
 
Many thanks for your thorough review of the manuscript and your suggestions. We have 
addressed each in turn in the responses below. 
 
General comments: 
 
This review regarding the host directed therapy (HDT) for TBM is globally well written and 
includes adequate references on this topic to date. It could be better balanced. 
In the introduction, the authors could include a short chapter about TBM epidemiology. 
 
We agree that this is an important area, however since this manuscript forms a collection of 
published papers in a TBM supplement, many of which covered TBM epidemiology in detail, 
the authors felt that this manuscript should maintain a narrow focus on the subject area, 
and therefore felt a chapter on TBM epidemiology was beyond the scope of the article. 
  
Paragraph sub-headings: 
 
I do not agree to consider aspirin, thalidomide and immunomodulatory therapies (anti-TNF 
and anti-Il1 antibodies) as “existing “ HDT in TBM. To date, only one HDT has been proven to 
reduce mortality, namely dexamethasone and the other one are promising approaches but 
have not been assessed in clinical trials yet. So I would consider as Existing HDT the only 
dexamethasone and “Promising” HDT the other ones. 
The title “potential future HDT…” should be replaced by Potential “pathways” for HDT since 
some of the activators/inhibitors cited in this chapter are new components never evaluated 
in RCTs. 
 
We have changed the sub-headings as suggested. 
  
Chapter Dexamethasone: 
 
The authors should describe what kind of controls were evaluated in a study of 16 
individuals in India. 
 

 
Page 19 of 22

Wellcome Open Research 2021, 5:292 Last updated: 26 JAN 2022



This has been added to this section. 
 
The authors write about cerebral inflammation but it is a proxy to consider CSF cytokines as 
a maker of cerebral inflammation. The authors should comment on this point. 
 
A comment has been added to this section as per suggestion . 
 
The issue of dexamethasone dosage (and of rifampicin induction) and of the use of other 
corticosteroids should be detailed in this chapter described since dexa is the only HDT 
validated in the guidelines. 
 
We agree this issue is important and have commented on this in the text pointing out to 
readers that although “Corticosteroid use in TBM is commonplace, dexamethasone is 
commonly used as it is affordable and widely available although the optimal corticosteroid 
preparation, dose, and route of administration are unknown.” We have added text to 
further clarify this point in a sentence following this. 
 
Chapter Aspirin: 
 
The chapter is well written. In addition to the comprehensive antiagregant effect of aspirin, 
can the author explain how they expect an additional anti-inflammatory effect to high dose 
dexamethasone?  The duration of the treatment should be discussed. 
 
Many thanks. These suggestions have been added to this section. 
 
Chapter Thalidomide: 
 
Data on thalidomide are very few and mainly observed in children. 
The authors should be cautious regarding their experience with adjunctive thalidomide in 
TBM regarding the lack of date. Thalidomide is an old anti-inflammatory drug used in 
inflammatory diseases and progressively removed from guidelines because of its toxicity. 
Again, it seems difficult to consider thalidomide as a “promising” drug for TBM since new 
biological agents are far more efficient on proinflammatory cytokines. 
The authors should not suggest using thalidomide at a large scale in TBM/TB brain abscess. 
 
Many thanks for your comments on this. We feel differently that the use of thalidomide is 
supported by now numerous published studies, the most recent being the largest cohort of 
adult or pediatric patients treated with adjunctive thalidomide for CNS TB–related 
complications. In this study (reference below), published this year in Clinical Infectious 
Diseases, thalidomide appeared to be safe, well tolerated and clinically efficacious. Although 
we appreciate that further RCT generated evidence is required to warrant its use widescale, 
it is the opinion of the authors on the manuscript that this is indeed a ‘promising’ HDT that 
warrants discussion and further explanation. 
 
Ronald van Toorn, Regan S Solomons, James A Seddon, Johan F Schoeman. Thalidomide Use 
for Complicated Central Nervous System Tuberculosis in Children: Insights From an 
Observational Cohort. Clinical Infectious Diseases, Volume 72, Issue 5, 1 March 2021, Pages 
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e136–e145 
 
Chapter Immunomodulatory HDT: 
This chapter is quite short regarding the perspective given by anti-TNF in a severe form of 
TBM/CNS TB. The choice of the type of anti-TNF, as well as the duration of treatment and 
the risk associated to this medication, could be discussed. To my mind, anti-TNF therapies 
may represent one of the best approaches to reduce mortality and morbidity of TBM/TB 
Abssess in HIV and non HIV people and in children. The main issues are the toxicity of these 
drugs in the environment where TBM occurs and the availability of these drugs in poor 
income countries. These points have to be discussed in this review. 
 
In table 2, the authors should add the following references about adalimumab: 
Adalimumab treatment may replace or enhance the activity of steroids in steroid-refractory 
tuberculous meningitis.  Lee HS, Lee Y, Lee SO, Choi SH, Kim YS, Woo JH, Kim SH. J Infect 
Chemother. 2012 Aug;18(4):555-7 
Adalimumab for Corticosteroid and Infliximab-Resistant Immune Reconstitution 
Inflammatory Syndrome in the Setting of TB/HIV Coinfection.  Lwin N, Boyle M, Davis JS. 
Open Forum Infect Dis. 2018 Jan 30;5(2):ofy027 
 
Many thanks for these comments. These references have been added as suggested. 
  
ART: 
 
It is not really fair to consider ART as HDT… even if it is obvious that ART has a significant 
impact on immunological status. HIV coinfection raises other issues in the management of 
TBM and I would consider separating this chapter from HDT. 
 
Many thanks for these comments. As per your suggestion we have separated this section as 
a distinct sub-chapter within the manuscript. 
  
Chapter Future Pathways: 
 
Chapter Statin therapy - It is not well balanced to have a chapter statin with no data on TBM 
longer than the chapter on biological agents, even if the background is interesting. I would 
summarize the impact of statin on multiple sclerosis,  brain injury, etc since it is quite far 
from TBM to focus on the potential interest of statins on TB and immune response. 
 
Thank you for these comments, we have shortened this paragraph as suggested. 
 
FIGURE 2: Not really helpful in the present form. 
I would perform a central plot with increased neuronal survival, immune modulation, axon 
plasticity myelination that are the goal of treatment; and to describe around the central plot 
the different pathways to reach this target.  
 
Many thanks for your thoughts on this. We agreed with these and attempted to modify the 
figure as you suggested. However, on review, given that the effect of manipulation of these 
pathways has not yet been explored in this context we did not want to develop a figure 
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which may be misleading given the early stages of research in this area. We have rather 
simplified the diagram as a reference figure for readers as they read this section, allowing 
them to visualise the pathways being discussed.   
  
Chapter Host response: 
The discussion regarding the LTA4H gene and the response to dexamethasone is an 
important point of pharmacogenetic. The authors should discuss if this strategy is 
affordable in every setting. 
 
Many thanks, we agree this is an important issue; we have added a comment on this to the 
section.  
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