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Abstract: We present a combination of independent techniques in order to characterize crosslinked
elastomers. We combine well-established macroscopic methods, such as rheological and mechanical
experiments and equilibrium swelling measurements, a more advanced technique such as proton
multiple-quantum NMR, and a new method to measure stress-induced segmental orientation by
in situ tensile X-ray scattering. All of these techniques give access to the response of the elastomer
network in relation to the crosslinking of the systems. Based on entropic elasticity theory, all these
quantities are related to segmental orientation effects through the so-called stress-optical law. By
means of the combination of these techniques, we investigate a set of unfilled sulfur-vulcanized
styrene butadiene rubber elastomers with different levels of crosslinking. We validate that the results
of all methods correlate very well. The relevance of this approach is that it can be applied in any
elastomer materials, including materials representative of various industrial application, without
prerequisite as regards, e.g., optical transparency or simplified formulation. Moreover, the approach
may be used to study reinforcement effects in filled elastomers with nanoparticles.

Keywords: crosslinked elastomers; crosslink density; stress-optical law

1. Introduction

In this paper, we present a combined experimental approach that allows characterizing
the relationship between the response to various types of constraint and the structure of
the crosslinking network in elastomer materials. Elastomers are very important polymeric
materials as they exhibit unique mechanical properties. For practical applications, they
generally need to be reinforced by adding solid particles or aggregates (fillers) of sub-
micrometric sizes. The most commonly used reinforcing nanoparticles are carbon black
or either fumed or precipitated silica [1–7], which brings qualitatively new mechanical
behavior and drastically improves the properties of the obtained materials in terms of
elastic modulus and energy at break [8]. Indeed, the modulus in the linear regime may
be enhanced by more than two orders of magnitude, as illustrated in the seminal paper
by Payne [9]. The reinforcement ratio commonly reaches 50 and strongly depends on
temperature [8,10]. Reinforcement is a complex phenomenon and eventually involves
several distinct mechanisms related with the structure and dynamics at the molecular
level [8,11–14]. Local strain amplification in the elastomer matrix due to the filler volume
effect, filler–filler networking, filler–rubber interactions, and long-range modification of
the molecular dynamics within the elastomer matrix have been identified as the most
important ones [15–17]. The relative quantitative importance of these various factors in
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various elastomer materials is frequently debated still. For these reasons, it is essential to
be able to discriminate and quantify each of these factors.

Reinforcement of elastomers by nanoparticles has been often addressed and charac-
terized in terms of the overall mechanical response of the material only [18,19]. Then the
behavior of the reinforced material can be compared to that of the unreinforced one, based
on the hypothesis that the molecular structure of the unreinforced elastomer reflects that
of the matrix in the reinforced material in an exact way. Another approach consists of
characterizing the behavior of the elastomer matrix within a reinforced material in situ,
in a selective way. In such an approach, techniques or combinations of techniques that
may enable characterizing the behavior of the elastomer matrix in both pure (unfilled) and
filled materials must be used. The overall response of the reinforced material may then be
compared or paralleled with the local response of the elastomer matrix, and this compari-
son may allow discriminating reinforcement mechanisms and contributions originating
from the response of the matrix (strain amplification, local strain, or stress concentration),
and those originating from the filler network [20,21].

In this paper, we present a combination of various experimental techniques which
gives precise insight on the molecular characterization of elastomers. The approach was
already introduced in natural rubber (NR) elastomer materials [22]. Here, we extend it to a
series of SBR materials to assess the generality of the approach. The aim of this article is to
introduce our approach, which combines multiple-quantum (MQ) proton NMR, measure-
ments of the torque during crosslinking, equilibrium swelling experiments, mechanical
experiments, and amorphous phase anisotropy measurements under strain by wide an-
gle X-ray diffraction. While some among these techniques have been used routinely for
decades, such as rheometry, swelling, and mechanical measurements, or more recently,
e.g., MQ-NMR, orientation measurements by X-ray diffraction is much more recent [22,23].
Besides, combining all these techniques to obtain quantitative structure–property rela-
tionships in elastomers is quite innovative. All these techniques give access to segmental
orientation effects and/or chain elastic response, measured in different ways. Therefore,
all techniques give results which can be related essentially to one main parameter, which
is the average crosslink density (or, equivalently, the average length of network chains).
Here, we describe in detail the various experimental techniques and show how their re-
sults are correlated to each other. Indeed, one purpose of this paper is to demonstrate
the concordance of all these measurements. Specifically, we report and discuss the corre-
lation between amorphous phase anisotropy measurements by X-ray scattering and the
results of other techniques. Studying pure elastomer matrices is a prerequisite to study
reinforced materials, because it is the way in which the correlations between the various
measured quantities will be affected in reinforced materials which shall give some hints
on reinforcement mechanisms. As mentioned above, one ultimate interest of the approach
lies in reinforced materials. It has been shown that transposing such a combination of
measurements to reinforced materials indeed gives some new pieces of information on
reinforcement mechanisms, by comparing to pure (non-reinforced) materials with similar
elastomer matrices [24,25].

In unfilled elastomers, the detailed mechanical behavior is essentially related to the
complex topology of the crosslink network and the conformation of chains within this
network. Besides mechanical measurements, many different experimental approaches have
been used in order to study elastomer networks. These include techniques to measure
segmental orientation, such as optical birefringence [26,27], fluorescence polarization [28],
infrared dichroism [29], and 2H NMR [30–36]. Small angle scattering techniques have been
used as well [37–42].

Time-domain NMR techniques such as proton MQ experiments, which can be applied
on low resolution, low-field spectrometers, have been developed to characterize elastomer
networks [43,44]. These measurements are based on the quantitative determination of
partially averaged residual dipolar couplings between protons, under the effect of the
induced local order due to the orientation dependence of the chain segments constrained
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by crosslinks and entanglements. These residual dipolar couplings are the responsibility of
a build-up signal dominated by spin-pair double-quantum (DQ) coherences. MQ-NMR is
one of the most quantitative and reliable methods for the measurement of residual dipolar
couplings, and thus to characterize elastomer networks. In MQ-NMR, the temperature-
independent effects of the network structure can be quantitatively separated from the
temperature-dependent segmental dynamics, just by proper signal normalization. More-
over, by a suitable data analysis, it is possible to access the whole distribution of residual
dipolar couplings and, from them, calculate the average crosslink density of networks and
its distribution (heterogeneities) in relation to the physico-chemical characteristics of the
elastomer network [45,46]. Note also that time-domain proton NMR performed on samples
stretched in situ was performed [47].

Equilibrium swelling experiments in a good solvent have also been widely used to
characterize elastomer network structures in rubber science and technology. The classical
Flory–Rehner equation [48–50], based on the elastic response of polymer chains to the
osmotic stress of the solvent, directly relates the rubber volume fraction at swelling equi-
librium to the average molecular weight between crosslinks. Thus, the average molecular
weight between crosslinks can be determined in a simple way, even though experiments
must be conducted and analyzed very precisely [51]. Different expressions are available, ac-
cording to whether the swelling is assumed to be described by an affine or phantom network
model. Note that these determinations are quite sensitive to the precise value of the Flory–
Huggins interaction parameter χ [52,53] which describes elastomer–solvent interactions.

X-ray diffraction has been used for decades to characterize strain-induced crystalliza-
tion (SIC) in NR [54–67]. SIC is generally considered to be responsible for the high mechan-
ical and ultimate performances of NR. In addition to characterizing the onset, equilibrium
value, and kinetics of SIC, it has been shown recently that quantitative measurements of
the amorphous phase orientation can be obtained by analysis of X-ray diffraction patterns
obtained in samples stretched in situ [68]. Indeed, under uniaxial stretching, an anisotropy
is observed in the amorphous scattering, which can be related to the average orientation of
network chain segments in the amorphous phase.

Recently, this combination of techniques has been applied to a set of natural rubber
(NR) elastomers with different levels of crosslinking [22]. Here, we demonstrate that the
same combination of techniques may be applied in another type of elastomer matrix,
namely well-defined, sulfur vulcanized styrene butadiene rubber (SBR) with various
crosslink densities, which, in contrast to NR, does not crystallize under strain due to
the non-regular conformation of its chain backbone. In addition to the previous set of
combined characterization methods, we show here that the rheological response measured
in real time during the curing process also correlates quantitatively to the crosslink density
and therefore can be used to characterize these materials.

The paper is organized as follows. In Section 2, we give some general, basic back-
ground on the analysis of the results of the various techniques which are used, based on
basic rubber elasticity theory. In Section 3, we describe in detail the samples, the experimen-
tal techniques which have been used, and the way in which results have been analyzed.
Results are shown and discussed in Section 4.

2. Basis of the Approach

The approach relies on the so-called stress-optical law (Equation (1)), which relates the
stress to molecular orientation at the scale of chain segments [69]:

σij =
3kBT

b3

〈
uiuj −

δij

3

〉
, (1)

where T is the temperature, kB = 1.38× 10−23 J K−1 the Boltzmann constant, σij are the
components of the true stress tensor, ui is the ith component of the unit vector parallel to a
polymer chain segment, and b3 is the volume of a statistical segment. δij is the Kronecker
symbol (δij = 1 if i = j, = 0 otherwise). This relationship is the core of the entropic elasticity
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theory. In fact, its importance generality goes well beyond the particular case of crosslinked
elastomer networks and is at the basis of the whole viscoelastic behavior of polymers.
Besides, on a general basis, it should be valid even in the non-linear regime [69].

Brackets in Equation (1) denote statistical averaging over the ensemble of chain seg-
ments in the system. It is important to realize that entropic elasticity is based on strong
hypotheses on the local dynamics. Two distinct time scales should be clearly separated in
the system [70]. A permanent or slowly relaxing network of topological constraints should
exist in the system to insure elastic response, while small scale segmental reorientations in
between constraints should be fast enough to insure full time averaging on experimental
time scale. The related elastic modulus, corresponding to a stored elastic energy of order
kBT per chain, that is, over a volume of a few nm3, is then of order a fraction of to a few
megapascals. Entropic elasticity is thus fundamentally distinct from solid-state elastic-
ity, in which the mechanical response is driven by intermolecular forces and the elastic
modulus is in the range of one to a few gigapascals.

For the particular case of uniaxial extension, Equation (1) resumes to Equation (2):

σ =
3kBT

b3 〈P2(cos θ)〉, (2)

where σ is the true tensile stress and 〈P2(cos θ)〉 =
〈
(3 cos2 θ − 1)/2

〉
, with θ the angle

between a chain segment and the tensile direction. In the same way as in Equation (1),
brackets denote an ensemble average over the ensemble of chain segments in the elastomer.

Based on standard polymer chain statistics in the Gaussian regime, the local segmental
orientation parameter 〈P2(cos θ)〉 may be related to the elongation ratio λ = L/L0 as in
Equation (3):

〈P2(cos θ)〉 = b3νρrψ
(

λ2 − λ−1
)

, (3)

where ν is the crosslink density (in kg−1), ρr the rubber density (in kg·m−3), λ = l/l0 (l0
(resp. l) is the initial (resp. elongated) length of the sample) is the elongation ratio, and ψ is
a factor which depends on the way in which crosslink positions move and fluctuate under
the applied strain. Under the hypothesis of affine deformation ψ = 1, while for a phantom
network model, ψ = ( f − 2)/ f , where f is the network functionality [71], taken here to be
typically f = 4, which leads to ψ = 1/2.

It is clear that changes in the way in which crosslinks or, more generally, topological
constraints, are accounted for may affect the segmental orientation and may potentially
invalidate Equation (3) [72]. Whether the stress-optical law in elastomers remains strictly
valid or not is a non-fully settled issue yet, as far as we know. For instance, both the
classical constrained junction model and the diffuse-constraint theory predict that the strict
proportionality is not maintained [73,74]. On the other hand, it is still valid in the slip-link
model [75]. Recent measurements show deviations which do not seem to be fully accounted
for by existing models [76].

2.1. Mechanical Experiments

By combining the above Equations (2) and (3), the linear regime of rubber elasticity in
uniaxial stretching is characterized by the following Equation (4), between the true stress σ
and the elongation ratio λ [71,77–79]:

σ = kBTνρrψ
(

λ2 − λ−1
)

. (4)

The crosslink density ν is related to the average chain molecular weight Mc between
consecutive crosslinks by ν = 1/2Mc (assuming tetra-functional crosslinks). The factor
G = kBTνρrψ is the shear modulus. As already mentioned, Equation (4) is based on the
assumption that the system has fast local dynamics and is subject to a given set of perma-
nent constraints, namely chemical crosslinks and other topological constraints generically
denoted as trapped entanglements. Thus, the effective crosslink density ν should be under-
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stood here as including both chemical crosslinks and trapped entanglements which have a
permanent elastic effect over the time scale of the measurement.

More detailed models have been derived to account for various complex aspects of
network topology and of the effect of deformation on local constraints exerted on chains,
but the main physical ingredients remain similarly based on entropic elasticity [73,80–88].
Moreover, the linear relationships described by Equations (2) and (3) may be valid up to
relatively large extension degrees. It follows that Equation (4) should also be valid up to
large extension. However, this is often not strictly observed in practice and the behavior is
rather described by the classical Mooney–Rivlin Equation (5) [89,90]:

σ =

(
C1 +

C2

λ

)(
λ2 − λ−1

)
, (5)

which has been interpreted as due to the release of a fraction of the entanglements under the
effect of the strain and/or the complex interplay between the strain and the local constraints
exerted on network chains [73].

Nevertheless, it follows from Equations (3) and (4) that, in a given type of elastomer
material, the primary material parameter which drives the mechanical response in the
small/medium strain amplitude is the average crosslink density. Ultimate properties, such
as resistance to tear and energy at break, depend on the crosslink density as well, but in
a more complex yet poorly understood way. Ultimate properties also depend crucially
on more involved details of the network topology, such as the presence of defects and the
homogeneity of the network in terms of crosslink density.

In what follows, we shall review our multi-scale approach combining measurements
of various quantities related to the material response at various scales, all measurements
involving the crosslink density as the main material parameter. On one hand, we shall use
various methods to estimate/measure the crosslink density. On the other hand, we shall
investigate the response of the material to uniaxial stretching experiments in which both
the mechanical response and the orientation are measured in real time.

2.2. Measurement of the Crosslink Density by Time-Domain Proton NMR

Measurements of the crosslink density by time-domain proton NMR spectroscopy
heavily relies on the dynamical assumptions detailed above. The measured quantity is the
residual tensorial interaction Dres which originates from incomplete motional averaging
of chain segments fluctuating rapidly between topological constraints, such as crosslinks
or chain entanglements. Local reorientation motions are anisotropic due to topological
constraints, even though the system is overall isotropic in the relaxed state. The measured
quantity is then the nonzero time average within a given network strand of the second
order Legendre polynomial P2(cos θ), in which θ is the time-dependent angle between the
local chain direction (segmental orientation) and a reference direction.

The overall measured quantity is then the average over all network chains, denoted Sb,
of this local time average of the polymer backbone orientation, related to the average num-
ber of statistical segments N or, equivalently, the molecular mass Mc, between constraints
and to the statistical segment length b. This leads to Equation (6):

Sb ∝
3
5

R2

b2N2 ∝
1
N

∝
1

Mc
∝ ν, (6)

in which R2 ≈ b2N is the average squared end-to-end distance of a network strand.
Since the proton dipolar coupling, which is the NMR observable, depends on molecular
orientation, the nonzero dynamic orientation of the polymer backbone Sb is detected in
NMR because it gives a nonzero residual dipolar coupling Dres. Sb is calculated from the
experimental average residual dipolar coupling constant Dres, by comparison with its static
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counterpart, Dstatic as expressed in Equation (7) (k is a correction factor <1 accounting for
the spin arrangement and motions within a statistical segment) [44]:

Sb = k
Dres

Dstatic
(7)

According to Equations (6) and (7), Dres is inversely proportional to the average
molecular weight of network chains between crosslinks Mc or, equivalently, proportional
to the crosslink density ν. Entanglements also contribute to the NMR signal. Assuming
a constant entanglement density and simple additivity of entanglement and crosslink
densities, we may write Dres ∝ 1/Mc + 1/Me, with Me the entanglement molecular weight.
Note, however, that this assumption is certainly oversimplified. In vulcanized samples,
the density of trapped entanglements may itself depend on the crosslink density. In fact,
it has been suggested theoretically that, at lower crosslink densities, the linear variation
of Dres toward a finite ordinate value proportional to 1/Me may change to a square-root
behavior ∼1/

√
Mc Me in the very high temperature limit [91]. This argument is based

on the orientational averaging behavior of network chains within the tube arising from
entanglement constraints. The resulting decay of Dres towards zero is, however, generally
not found in experiments as the timescale of large-scale chain motions within the tube is
generally much longer than the NMR experimental timescale at relevant temperatures,
thus preserving the effective linear decay towards 1/Me.

2.3. Measurement of the Crosslink Density by Equilibrium Swelling Experiments

Equilibrium swelling experiments allow determining the average molecular weight
between crosslinks Mc (in g·mol−1) (or, equivalently, the crosslink density νsw = 1/2Mc)
by means of the thermodynamic description based on the Flory–Rehner theory [48–50]of
swollen networks. For a network immersed in a solvent, the network density at swelling
equilibrium is based on the balance between the elastic term of extended network chains
and the free energy of mixing. The mixing term is related to the interactions between
the polymer and the swelling solvent and is commonly computed by the Flory–Huggins
solution theory [52,53]. On the other hand, the elastic term depends on the model used
to describe the network [71,79,92]. Two different models of network deformation are
mainly used to describe the behavior of crosslinked rubbers: (i) the affine deforma-
tion model, which states that the deformation applied to crosslink positions is the same
as the macroscopic deformation imposed to the overall network, and (ii) the phantom
model, which assumes that the positions of the crosslinks are not fixed and can fluctuate.
For the affine deformation model, the classical Flory–Rehner theory, which relates the
rubber volume fraction φr at swelling equilibrium (or, equivalently, the degree of swelling
Q = V/V0 = 1/φr) to Mc, is expressed as in Equation (8):

ln(1− φr) + φr + χφ2
r = − ρr

Mc
Vs

(
φ1/3

r − 2φr

f

)
, (8)

where ρr is the rubber density, Vs the solvent molar volume, χ the Flory–Huggins polymer–
solvent interaction parameter, f the crosslink functionality. On the other hand, for the
phantom model, the formula reads as in Equation (9):

ln(1− φr) + φr + χφ2
r = − ρr

Mc
Vs

(
1− 2

f

)
φ1/3

r . (9)

It is generally considered that the real behavior of swollen elastomer networks is
better described by the phantom expression. The details of the method and the differences
between the models were discussed in detail by Valentín et al. in [51].
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2.4. X-ray Scattering

In a stretched elastomer network, it has been observed that the amorphous scatter-
ing halo, which comes from liquid-like monomer–monomer or chain–chain short range
interferences, becomes anisotropic under elongation, with more intensity in directions
perpendicular to the stretching direction [56,93]. Analyzing the azimuth dependence of the
scattered intensity enables extracting an anisotropy parameter 〈P2〉X , where the X suffix in-
dicates that the quantity reflects the anisotropy of the X scattering pattern. The amorphous
scattering predominantly comes from inter-chain atom–atom correlation at the monomer
scale, and it is difficult to relate it quantitatively to the average segmental orientation param-
eter 〈P2〉 [67,94]. However, based on symmetry consideration, it may be stated that 〈P2〉X is
proportional to the orientation parameter 〈P2〉 introduced in Equations (2) and (3) (with a
negative proportionality factor as the scattering is enhanced in the direction perpendicular
to the tensile direction).

From standard elasticity theory, according to Equation (3), 〈P2〉X can be written as in
Equation (10)

〈P2〉X =
Kψ

5N

(
λ2 − λ−1

)
, (10)

where K is a (negative) factor related to the local structure of the amorphous phase. An esti-
mated value was given by Mitchell in an early publication [56], but it is presently considered
as unknown in view of the uncertainties involved. Thus, the average orientation induced
upon stretching, as introduced in Equations (2) and (3), can thus be measured by X-ray
scattering to within a proportionality factor. However, this factor is a priori independent of
strain and crosslink density so that reliable relative comparisons may be performed.

Note again that the average orientational order parameter 〈P2〉, as involved in
Equations (2) and (3), or, equivalently, 〈P2〉X in Equation (10) measured by wide angle
X-ray scattering, should be clearly distinguished from the average dynamic order parameter
Sb as measured by NMR. Even though both quantities are of course related to each other
and vary in the same way as a function of the crosslink density, they are not of the same
nature. While 〈P2〉 is an ensemble average which expresses the response of the material to
an applied strain and is zero in the relaxed state, Sb reflects a local time average over fast
motions inside a network strand. Sb is related to the local structure of the network and is
measured in the relaxed state. At high temperature (so that local reorientational motions
are fast), both quantities are functions of the crosslink density through arguments based on
chain statistics in rubber elasticity theory.

3. Materials and Methods
3.1. Samples

The investigated elastomers are Styrene butadiene rubber materials (SBR, oil ex-
tended grade SBR4526-2HM from LANXESS, vinyl content 45%, styrene content 26%)
crosslinked to various degrees by adjusting the amounts of crosslinking agents. Samples
were mixed and sulfur vulcanized following standard procedures. Curing agents (sulfur (S),
from Rhein Chemie) and accelerators ((N-cyclohexyl-2-benzothiazole sulfenamide, or CBS,
and Diphenyl Guanidine, or DPG, with a constant mass ratio CBS/DPG = 1.33, both from
Rhein Chemie) were added on an open roll mill at low temperature (T = 50 ◦C, friction 1.1)
to avoid premature crosslinking. Samples were formulated with 4 different sulfur amounts
(from 0.4 to 2.2 phr) and for each sulfur amount, 3 different accelerator/sulfur ratios were
chosen, as reported in Table 1. A pure SBR matrix with no curing agents was also measured
as a reference. Besides ingredients reported in Table 1, the formulations contain 137.5 g of
oil-extended SBR, 2.5 g of ZnO (Rhein Chemie), 2 g of stearic acid (pristerene 4963 from
Croda), and 1.9 g of N-(1,3-dimethylbutyl)-N’-phenyl-p-phenylenediamine (6PPD, vulka-
nox 4020/LG from LANXESS). The glass transition temperature given by the maximum of
the loss modulus E′′ measured in DMA at 1 Hz is about −20 ◦C.
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Table 1. List of the SBR samples. CBS and DPG are accelerators. All amounts are expressed in g and
are relative to 137.5 g of oil-extended SBR.

Samples Sulfur (g) CBS (g) DPG (g) Ratio Acc/S Ratio CBS/S

S0 0 0 0 0
S1 0.4 0.4 0.3 1.75 1
S2 1.1 1.1 0.83 1.75 1

S2b 1.1 1.1 0.83 1.75 1
S3 1.6 1.6 1.2 1.75 1
S4 2.2 2.2 1.65 1.75 1
S5 0.4 0.73 0.55 3.18 1.82
S6 1.1 2 1.5 3.18 1.82
S7 1.6 2.91 2.18 3.18 1.82
S8 2.2 4 3 3.18 1.82
S9 0.4 1 0.75 4.38 2.5

S10 1.1 2.8 2.06 4.38 2.5
S11 1.6 4 3 4.38 2.5
S12 2.2 5.5 4.13 4.38 2.5

Rheological measurements during curing were performed with a Monsanto R100
Oscillating Disc Rheometer at 160 ◦C. The torque values measured during curing for all
samples in the series are shown in Figure 1. The torque difference ∆Γ = Γmax − Γmin
is recorded, where Γmin ≈ 8.4 dN·m is the torque measured in the rheometer prior to
crosslinking and Γmax is the maximum torque at the optimum of crosslinking. While Γmin
is related to the viscosity of the uncrosslinked polymer, ∆Γ should give the shear modulus
of the crosslinked material, which is proportional to the crosslink density: G ∝ ν ∝ 1/2Mc.

Figure 1. The rheological torque measured during curing for the series of crosslinked samples.

Equilibrium swelling in a good solvent is a classical method to determine the average
molecular weight between crosslinks Mc (or, equivalently, the crosslink density ν = 1/2Mc).
The Flory–Rehner Equation (9) is generally used to relate the rubber volume fraction at
swelling equilibrium ϕr (or, equivalently, the degree of swelling Q = V/V0 = 1/ϕr) to
Mc, using the Phantom network hypothesis. Considering the crosslink density ν = 2/Mc
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(for tetrafunctional crosslinks, that is f = 4) and considering that a fraction of effec-
tive crosslinks (density ν0, corresponding to trapped entanglements) which are not ac-
tive in swelling experiments are detected by NMR, Equation (9) can be rewritten as in
Equation (11):

1
2Mc

= ν = ν0 −
1

ρrVs

1
ϕr1/3

(
ln(1− ϕr) + ϕr + χϕr

2
)

. (11)

Equilibrium swelling experiments were performed at room temperature by immersion
in xylene. Three pieces of each sample (discs of 8 mm diameter and 2 mm thickness) were
weighted initially, then swollen up to equilibrium during 72 h. The solvent was renewed
once after 24 h. Samples were weighted immediately after removing from the solvent and
then dried under vacuum at 40 ◦C for 24 h before being weighted again.

The following parameter values were used: Vs = 106.2 cm3mol−1, ρr = 1.087 g.cm−3

(this value was verified with a pycnometer), and χ ≈ 0.2 can be roughly estimated from
the Hildebrand’s solubility parameters by the group contribution method [95] as, to our
knowledge, there is no reported data for this parameter. The ϕ dependence of χ was
not taken into account. This estimated value is lower than for the SBR–toluene pair,
which is χ = 0.413, which indicates that xylene is a better solvent for SBR than toluene.
Measurement results for the swelling degree Q are reported in Table 2.

Table 2. NMR residual dipolar coupling Dres (as determined from Equation (13)), equilibrium
swelling ratio Q (ratio of swollen gel over polymer volumes expressed in %), and torque difference
∆Γ from rheometry measurements in the set of samples. The indicated inverse molecular mass values
1/Mc values are from swelling measurements, using parameter values indicated in the text.

Samples Dres Q ∆Γ 1/Mc
(kHz) (%) (dN·m) (mol/g)

S0 0.340 - - -
S1 0.422 896 9.8 0.000110
S2 0.564 426 24 0.000526

S2b 0.585 391 25.7 0.000526
S3 0.680 364 30.4 0.000756
S4 0.793 319 35 0.00104
S5 0.454 711 12 0.000175
S6 0.638 376 27.5 0.000701
S7 0.737 331 34.3 0.000947
S8 0.867 286 38.5 0.00136
S9 0.461 609 14.4 0.000241
S10 0.665 353 31 0.000813
S11 0.758 311 35.4 0.00110
S12 0.859 276 39.8 0.00148

3.2. Time-Domain Proton DQ NMR

Proton MQ-NMR experiments were carried out at 343 K (that is, well above Tg) on a
Bruker minispec mq20 spectrometer operating at 0.5 Tesla with 90◦ pulses of order 2 µs
and a dead time of 15 µs. Well established procedures were used to obtain and analyze
the normalized proton double quantum (DQ) signals in order to obtain the distribution of
crosslink densities in all studied samples [44].

Two distinct signals are measured simultaneously as a function of the double quantum
evolution time τ, the double quantum signal IDQ(τ), and the so-called reference signal
IRe f (τ). The total signal Itot(τ) = IRe f (τ) + IDQ(tau) contains only relaxation terms as-
sociated to the local segmental dynamics. However, it contains also the contributions of
so-called defects, that is, the sol (uncrosslinked, including the oil contribution) fraction
and dangling chains. This contribution Ide f is characterized by long relaxation times rel-
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ative to the network contribution. The defect contribution Ide f has to be subtracted and
then the normalized DQ signal INDQ is computed by point-by-point normalization as in
Equation (12)

INDQ(τ) =
IDQ(τ)

Itot(τ)− Ide f (τ)
. (12)

In this way, in the fast motion regime, the signal INDQ(τ) contains only the contribu-
tion of residual interactions, related to the network structure. The general shape of this
signal is a function which increases from zero at τ = 0 up to a plateau at 0.5 at long times.
Representative examples of obtained normalized DQ curves are shown in Figure 2.

For NR matrices, normalized DQ curves may be fitted with a Gaussian function
and a calibration factor has been evaluated by numerical simulations to relate the NMR
measured quantity Dres to the actual molecular mass between junctions [43]. In SBR
matrices, the shape of the normalized DQ curves is different and can hardly be fitted with a
Gaussian function, essentially because the DQ signal combines the responses from protons
located at very different sites in the chain, which then should have quite different values of
the residual dipolar coupling. The normalized DQ curves were fitted up to INDQ ≈ 0.48
with an empirical function of the form of Equation (13)

INDQ(τ) =
1
2

[
1− exp

(
−(2πDresτ)P0

)]
. (13)

Representative examples of such fits are shown in Figure 2.

Figure 2. Representative normalized DQ curves obtained in samples S1 and S8. Symbols are
experimental data, curves are fits with Equation (13).

3.3. Stress–Strain Curves and In Situ Wide Angle X Scattering

Average chain segment orientation under tensile strain was measured at 298 K with
a homemade uniaxial stretching device mounted on a rotating anode X-ray generator,
described in detail elsewhere [22,68]. Traction is symmetric in such a way that nearly the
same zone in the sample is measured throughout the tensile test. The elongation ratio
λ = l/l0 at X-ray beam spot is measured simultaneously both with an optical camera
and using the variation of sample thickness measured through the variation of X-ray ab-
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sorption. The tensile force F is measured with a calibrated load cell. The true stress is
defined as Fλ/s0, s0 = 6 mm2 being the initial section of the samples. Two-dimensional
scattering patterns were recorded in samples stretched in situ as a function of λ and the
anisotropic intensity in the amorphous halo (with more (resp. less) intensity in direction
perpendicular (resp. parallel) to the stretching direction) was fitted as a function of the
azimuthal angle ϕ with the expression A + B cos2 ϕ (where A is corrected for air scatter-
ing). The anisotropy of the scattered intensity may then be characterized by a parameter
〈P2〉X = 2B/(15A + 10B), which, as quoted above, is proportional to the orientation order
parameter 〈P2(cos θ)〉 [22,68]. Representative intensity curves are shown in Figure 3.

Figure 3. Representative integrated X intensity curves measured in sample S4 as a function of the
azimuth angle ϕ, at various elongation ratios λ. Here, ϕ = 0 is perpendicular to the tensile direction.
Symbols are measurements, curves are the corresponding fits with the expression A + B cos2 ϕ,
from which the orientation parameter 〈P2〉X is deduced. Data have been arbitrarily shifted vertically
for better readability.

4. Results
4.1. Crosslink Densities Measured by NMR

Results for the measured NMR quantity Dres (proportional to the crosslink density)
are shown in Figure 4. The nonzero Dres value measured for zero sulfur corresponds to
the contribution of entanglements. Then, for each value of the Acc/S ratio, Dres shows
a linear variation with the sulfur amount, which indicates that the same sulfur bridges
(same average number of sulfur atoms per crosslink) are formed [96]. This is expected
since the ratio Acc/S has to be changed in a quite large range to strongly affect the average
number of sulfur per crosslink [96]. Nevertheless, the slope tends to increase as the ratio
Acc/S increases, which is in qualitative agreement with previously published studies [96].
The values of the fitting parameter P0 (which is interpreted as being related to the homo-
geneity of the crosslink density) show no significant variation in the whole series of unfilled
samples, as shown in Figure 5. Equivalently, when plotted as a function of the rescaled
time τDQ/Dres, all DQ curves fall on a single master curve. This indicates that all samples
have the same degree of crosslinking homogeneity.
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Figure 4. Crosslink density as a function of the sulfur amount in the series of SBR samples.
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Figure 5. Parameter P0, related to the homogeneity of the crosslink density, as a function of the sulfur
amount in the series of SBR samples.

4.2. Equilibrium Swelling

Figure 6 shows the equilibrium swelling ratio Q = 100/ϕr (in vol% of the swollen
volume over the volume of the elastomer network) as a function of the parameter Dres deter-
mined by NMR. Considering that Dres is proportional to the crosslink density
Dres ∝ ν ∝ 1/Mc, the full set of swelling data was fitted with an equation similar to
the Flory–Rehner equation (11). An offset D(0)

res related to the contribution of entanglements
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and corresponding to the nonzero ordinate in the curves in Figure 4 was considered, leading
to Equation (14):

Dres = D(0)
res −

P1

ϕr1/3

(
ln(1− ϕr) + ϕr + χϕr

2
)

. (14)

The obtained values of the fitting parameters are D(0)
res = 0.36, χ = 0.18, and P1 = 5.98.

This fit enables estimating the proportionality factor between Dres and Mc in a quantitative
way, as given by Equation (15):

Dres − D(0)
res ≈

345
Mc

, (15)

with Dres in Hz and Mc in kg/mol. Moreover, shown in Figure 6 is the scaling law
Q ∝ D−4/5

res adjusted to the experimental points in the limit of high crosslink densities.
This follows from the scaling consideration that, at swelling equilibrium, the swollen gel

consists in a packing of volumes R3
F ≈

(
b2N3/5

)3
occupied by one network strand of

length N segments, RF being the average dimension of the strand swollen in good solvent,
with 3/5 the Flory exponent [92]. Within such a picture, the swelling ratio then scales as
Q ≈ R3

F/(b3N) ∝ N4/5 ∝ D−4/5
res .

Figure 6. The equilibrium swelling ratio Q (in vol%) as a function of the NMR parameter Dres,
for the series of samples with different amounts of sulfur and different sulfur/accelerator ratios.
The plain curve is a fit of the full set of data with the Flory–Rehner equation (Equation (11)), taking
the assumption of phantom network, as described in the text.

Another equivalent way to emphasize the good correlation between swelling and NMR
measurements, and visualize the proportionality factor between Dres and 1/Mc, is to plot
the NMR parameter Dres as a function of the quantity −ϕr

−1/3(ln(1− ϕr) + ϕr + χϕr
2)

(with ϕ = 100/Q). This is shown in Figure 7. Figure 7 contains the same kind of informa-
tion as Figure 6. It also allows to visualize clearly the fraction of "effective" crosslinks which
contribute to the NMR response and do not in equilibrium swelling measurements, associ-
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ated to the ordinate D(0)
res . These "effective" crosslinks may be either trapped entanglements,

which are released upon swelling, or topological constraints, active on the time scale of the
NMR measurements (of the order 104 Hz) but relaxed on the much longer swelling times.

Figure 7. The NMR parameter Dres as a function of the quantity −ϕr
−1/3(ln(1− ϕr) + ϕr + χϕr

2),
with ϕ = 100/Q. According to the Flory–Rehner model, Equation (11), and taking the assumption of
phantom network, the relationship should be linear, which is well verified. The line is the obtained

best linear fit. The ordinate at origin D(0)
res ≈ 0.35 corresponds to the contribution of entanglements.

4.3. Rheological Response during Curing

Let us examine now the correlation with torque measurements during curing. The torque
increase ∆Γ during curing is plotted as a function of the NMR parameter Dres in Figure 8.
Assuming that both quantities would vary linearly with the crosslink density ν ∝ 1/Mc,
the relationship between ∆Γ and Dres should be linear. Even though both quantities
clearly are strongly correlated in the sense that they nicely collapse on a master curve,
the relationship is not linear. The torque difference increases slower than linear with Dres.
The dashed curve in Figure 8 is only a guide for the eye. We do not have a clear explanation
for this deviation with respect to linear variation.

The torque increase ∆Γ is plotted as a function of the swelling ratio Q in Figure 9.
Again, the curve can be fitted with Equation (11), as shown in the figure.
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Figure 8. The torque increase ∆Γ during curing as a function of the NMR parameter Dres, for the
series of samples with different amounts of sulfur and different sulfur/accelerator ratios. The dashed
curve is a guide for the eye.

Figure 9. The torque increase ∆Γ during curing as a function of the equilibrium swelling ratio Q,
for the series of samples with different amounts of sulfur and different sulfur/accelerator ratios.
The curve is a fit with an equation similar to Equation (14).
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4.4. Mechanical Response: Stress–Strain Curves

Next, the responses of the samples to uniaxial loading were investigated. The me-
chanical response is discussed first. The true stress curves are plotted as a function of the
elongation parameter λ2 − λ−1 for the whole set of samples in Figure 10a. The curves can
be perfectly fitted by the classical Mooney–Rivlin Equation (16) [89,90]:

σ =

(
C1 +

C2

λ

)(
λ2 − λ−1

)
. (16)

The fitted Mooney–Rivlin parameters C1 and C2 are reported in Table 3 and plotted as a
function of the sulfur amount in Figure 11a. As it is often observed, the Mooney–Rivlin
coefficients show a defined trend, with the ratio C2/C1 increasing quite largely as the
crosslink density decreases, that is, as the zero strain modulus decreases. This trend is
illustrated by dashed lines in Figure 11a. The modulus at large strain C1 shows a linear trend
as a function of Dres with, however, a nonzero extrapolated value of order Dres ≈ 0.35 kHz
at C1 = 0. This would correspond to the uncrosslinked material and is indeed equal to the
Dres value measured in this sample. Conversely, the zero strain modulus C1 + C2 shows
also a linear trend, with much more scatter, however, and an intercept at Dres ≈ 0. Note
that the same trend was observed in a series of natural rubber samples studied in [22].

Note also that the samples with the higher stress values, corresponding to the higher
crosslink densities, exhibit strain hardening, that is, an upward deviation with respect to
the Mooney–Rivlin shape, at high strain values. The strain value at onset of this non-linear
hyper-elastic behavior tends to decrease as the crosslink density increases. This may suggest
that this behavior is related to the deviation of network strands from Gaussian elasticity
at high chain stretching, which occurs earlier as network strands are shorter. However,
the failures of the various samples generally occur too early and are much too scattered to
extract a significant trend in that regard.

According to rubber elasticity, the zero strain modulus should be proportional to the
crosslinked density ν ∝ 1/Mc and thus to Dres; see, e.g., Equations (4) and (16). As shown
in the inset in Figure 11a, this is effectively observed (within experimental uncertainties).
To further illustrate this property, the stress values were normalized by the NMR parameter
Dres, assumed to be proportional to ν. The resulting normalized stress–strain curves are
shown in Figure 10b. As expected, the curves superpose fairly well at small strain, over a
quite large range of strain, typically up to λ2 − λ−1 ≈ 2, which corresponds to about 60%
strain. However, due to the varying Mooney–Rivlin behavior discussed above, the curves
strongly deviate with respect to each other at higher strain values. These deviations
correspond to the widely varying values of the ratio C1/C2.

Table 3. Mooney–Rivlin parameters C1 and C2 obtained by fitting stress–strain curves in Figure 10
with Equation (16). Effective Mooney–Rivlin parameters D1 and D2 obtained by fitting the average
orientation parameter curves in Figure 13 with Equation (17). See also Figure 11.

Samples C1 C2 D1 D2
(MPa) (MPa)

S1 0.0656 0.414 0.000165 0.00115
S2 0.254 0.319 0.000774 0.000316
S3 0.406 0.305 0.00104 0.00115
S4 0.555 0.224 0.00129 0.00116
S5 0.157 0.313 0.000551 0.000493
S6 0.406 0.218 0.000865 0.00151
S7 0.463 0.171 0.00121 0.00065
S8 0.693 0.0482 0.00171 0.000409
S9 0.172 0.353 0.000552 0.000592

S10 0.414 0.2681 0.000877 0.00102
S11 0.5683 0.135 0.00133 0.000534
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Figure 10. (a) The true stress σ as a function of the elongation parameter λ2 − λ−1 for the series of
crosslinked samples. Symbols are experimental points, curves are Mooney–Rivlin fits, according to
Equation (16). The graph illustrates the upwards deviation affecting some of the curves at high stress.
(b) The normalized stress σ/Dres as a function of the elongation parameter λ2 − λ−1 for the series
of crosslinked samples. As expected, the curves superpose in the low strain regime, up to about
60% strain.
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Figure 11. (a) TheMooney–Rivlin coefficients C1 and C2 fitted on the tensile stress–strain curves
shown in Figure 10 as a function of Dres. Inset: the zero strain modulus C1 + C2 as a function of Dres.
(b) The effective Mooney–Rivlin coefficients D1 and D2 fitted on the 〈P2〉 curves shown in Figure 13a.
Dashed lines are linear fits of corresponding data and should be considered as guides for the eye.

4.5. Response in Terms of Segmental Orientation

The segmental orientation parameters P2 induced upon uniaxial loading were mea-
sured in real time by X diffraction during tensile tests. According to the discussion in
Section 2.4, a quantity proportional to the segmental orientation parameter introduced in
Equations (2) and (3) is measured from the induced anisotropy of the wide angle scattering
pattern. For the sake of simplicity, the measured parameter shall be simply denoted P2
or 〈P2〉 in what follows. In agreement with Equation (10), P2 increases nearly linearly
with the elongation parameter λ2 − λ−1. This variation is nearly perfectly reversible. Two
representative P2 curves obtained during stretching cycles are shown in Figure 12.
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Figure 12. Segmental orientation parameter P2 measured along stress–strain cycles in two representa-
tive samples S3 and S9.

The orientation parameters P2 are plotted in Figure 13a as a function of the elongation
parameter λ2 − λ−1 for the series of samples. For each value of the Acc/S ratio, the slope
increases as the amount of sulfur increases, i.e., as the crosslink density increases, in qual-
itative agreement with the stress-optical law. To check the stress-optical law in a more
quantitative way, the orientation parameter P2 has been normalized by the NMR parameter
Dres, supposed to be proportional to the crosslink density. The normalized 〈P2〉 curves are
plotted in Figure 13b. All curves superpose relatively well, even though the sensitivity of
these measurements is lower than stress measurements.

The < P2 > curves show a similar trend as stress–strain curves as regards the down-
wards inflexion at high strain related to the Mooney–Rivlin behavior, even though this
trend is less pronounced for P2 than for the stress (see, for example, the curve of sample S1).
Accordingly, the curves were fitted by Equation (17), analogous to the Mooney–Rivlin
model [89,90]:

〈P2〉 =
(

D1 +
D2

λ

)(
λ2 − λ−1

)
. (17)

The fitted coefficients D1 and D2 are reported in Table 3 and plotted as a function
of Dres in Figure 11b. The coefficient D1, which corresponds to the effective slope at
large strain, shows a linear trend as a function of Dres, with a nonzero intercept of order
D(0)

res ≈ 0.31 kHz, in reasonable agreement with the value 0.35 kHz determined before in
the various independent measurements. For D2 and the zero strain effective slope D1 + D2,
the data are much too scattered to confidently assess a trend.
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Figure 13. (a) Segmental orientation parameter P2 measured in the series of unfilled samples, as a
function of the elongation parameter λ2 − λ−1. Symbols are experimental points, curves are Mooney–
Rivlin fits, according to Equation (16). The graph illustrates the good fits which are obtained over the
whole elongation range for all curves. (b) The normalized segmental orientation parameter P2/Dres

as a function of the elongation parameter λ2 − λ−1.

Let us finally examine the stress-optical law, that is, the relationship between the stress
and the orientation parameter < P2 >. According to Equation (2), the stress σ should be
proportional to < P2 > with a unique coefficient in a given elastomer matrix and at a given
temperature, namely a coefficient independent of the crosslink density. Figure 14 shows
the true stress σ as a function of < P2 > in the series of samples. The linear relationship
between both quantities is quite well verified over a large range of strain values, typically
up to λ2 − λ−1 ≈ 12, which corresponds to a strain of about 250% or, equivalently, up to a
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stress value of order 4.5 MPa. The slight upward deviations of the curve observed beyond
those values come from the differences in the ratios of the Mooney–Rivlin coefficients
C1/C2 and D1/D2. Within experimental uncertainties, the slopes of all curves are identical,
which demonstrates the scaling expressed in Equation (2).

The proportionality factor, as denoted by K in Equation (10), may be estimated by
considering the value of the common slope of all curves in Figure 13b. The value of the
common slope (< P2 > /Dres)/

(
λ2 − λ−1 ) is of order 2× 10−3, which, once substituted in

Equation (10), gives Equation (18) (taking ψ = 1− 2/ f = 1/2)

< P2 >

λ2 − λ−1
1

Dres
≈ K

10N
Mc

345
≈ KρrVs

10× 345
≈ 2× 10−3, (18)

where Equation (15) was used in the simplified form Dres ≈ 345/Mc with Mc in g/mol and
Dres in Hz (or equivalently, Mc in kg/mol and Dres in kHz) and the number of segments
was identified to the number of monomers (Vs = 106.2 cm3mol−1 is then taken as an
average monomer volume). Equation (18) then gives −K ≈ 0.06 (a minus sign, indicating
that the scattering is reinforced perpendicular to the tensile direction, should in principle
be introduced, as mentioned in Section 2.4.

Figure 14. True stress as a function of the orientation parameter P2.

Another equivalent way of illustrating the basic relationship between σ and 〈P2〉, and
its validity over a large range of strain values, is to plot the ratio 〈P2〉/σ as a function of the
elongation parameter λ, as shown in Figure 15. Note that the absolute values of the ratio
are arbitrary, as the anisotropy parameter 〈P2〉X deduced from X-ray scattering (which is,
in fact, used here) is proportional to the segmental order parameter, with a proportionality
coefficient estimated above but not known in a precise quantitative way. Results in a
reduced set of samples limited to those with higher apparent crosslink densities (higher
Dres values) are shown as the scatter of the curves is larger in other samples. All curves
shown in Figure 15 show similar trends. The ratio 〈P2〉/σ tends to increase (by about
20% at most) as λ increases from 1 (relaxed state) up to about 1.4 (40% strain), and then
to decrease slightly with a very small slope, the relative decrease being about 4% as λ
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increases from about 1.4 up to about 3. This trend, and specifically the increase at lower
strain values, is qualitatively similar to that observed in natural rubber [76]. Note also that
points at low extension (λ close to one) are of course affected by large scattering and error
bars, as these correspond to ratios between two small quantities. Curves obtained from
the Mooney–Rivlin fits of both the stress and orientation data are also shown in Figure 15.
These curves account for the slight decreasing trend mentioned above.

Figure 15. The ratio 〈P2〉/σ as a function of the elongation parameter λ in a set of samples limited
to those with higher apparent crosslink densities (higher Dres values). The stress-optical law would
correspond to a constant ratio. The absolute values of the ratio are arbitrary, as the anisotropy
parameter 〈P2〉 deduced from X-ray scattering is proportional to the segmental order parameter,
with a proportionality factor which is not known quantitatively. Symbols are measurements, curves
correspond to Mooney–Rivlin fits of the stress and orientation data.

5. Conclusions

The observed behavior shows quite slight deviations with respect to the general stress-
orientation linear relationship over a wide range of elongation ratio. These slight deviations
would probably require more precise experimental investigation to be confirmed, system-
atized, and quantified in order for them to be compared with advanced rubber elasticity
models. We would like to emphasize that the proposed approach may be applied in a
wide range of materials. Specifically, orientation measurements by X-ray scattering, as
presented here, are a new way of investigating the stress-optical law in materials which
are not transparent in the visible light. Even though, beyond the present SBR samples, it
has been applied in a limited set of materials yet, namely natural rubber and polychloro-
prene [22,23], the technique may potentially be applied in any elastomer material due to
the intrinsically anisotropic scattering at the scale of the Kuhn segment in network chains.
Industrial materials with complex formulae may be studied. One major benefit of such
orientation measurements is that they give access to local strain at the scale of network
chains. This is a key asset when reinforced materials are considered. In fact, it was shown
that the stress-optical law, Equation (2), is no longer verified in elastomers reinforced by
nanometric silica aggregates [24,25], as the stress in reinforced materials no longer follows
the same variation as the orientation parameter in the elastomer matrix. It was argued
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that such investigations in reinforced materials may enable discriminating reinforcement
mechanisms, issuing from the response of the matrix (strain amplification) and those from
the filler network. However, to obtain such a quantitative comparison, the behavior of the
matrix needs to be quantitatively assessed in detail, which is the topic of the present paper.
Note finally that a key aspect regarding rubber elasticity, the stress-optical law, and the
behavior of reinforced elastomer is the effect of temperature. Based on rubber elasticity
theory, the average chain orientation parameter 〈P2〉 should be independent of temperature
in elastomers, which has been demonstrated long ago [79]. This was shown to be true
even in reinforced materials [25]. By contrast, one specific, emerging behavior in reinforced
materials is indeed the temperature variation of the mechanical response [10,25]. This
temperature variation has been interpreted as indirect proof that reinforcement mecha-
nisms different from mere strain amplification in the matrix occur in materials reinforced
with nanoparticles.
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