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This study was conducted to investigate ultrastructural alterations and biochemical responses in
the hepatopancreas of the freshwater snail Bellamya aeruginosa after exposure to two treatments:
toxic cyanobacterium (Microcystis aeruginosa) and toxic cyanobacterial cells mixed with a non-
toxic green alga (Scendesmus quadricauda) for a period of 15 days of intoxication, followed by
a 15-day detoxification period. The toxic algal suspension induced a very pronounced increase
of the activities of acid phosphatases, alkaline phosphatases and glutathione S-transferases
(ACP, ALP and GST) in the liver at the later stage of intoxication. During the depuration,
enzymatic activity tended to return to the levels close to those in the control. The activity of GST
displayed the most pronounced response among different algal suspensions. Severe cytoplasmic
vacuolization, condensation and deformation of nucleus, dilation and myeloid-like in mitochondria,
disruption of rough endoplasmic reticulum, proliferation of lysosome, telolysosomes and apoptotic
body were observed in the tissues. All cellular organelles began recovery after the snails were
transferred to the S. quadricauda. The occurrence of a large amount of activated lysosomes and
heterolysosomes and augment in activity of detoxification enzyme GST might be an adaptive
mechanism to eliminate or lessen cell damage caused by hepatotoxicity to B. aeruginosa.
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1. INTRODUCTION

Eutrophication resulting from excessive anthropogenic activities is often accompanied with the occurrence
of potential toxin producing cyanobacteria in freshwater ecosystems all over the world [1]. It is well
known that some species of cyanobacteria, primarily Microcystis, can produce cyanotoxins, especially
the hepatotoxic microcystins (MCs), which are one of the most dangerous toxin groups [2]. These toxins
may cause poisoning or death of wild animals [3] and even pose a potential risk for human health via the
consumption of contaminated aquatic products [4].

Gastropods are important primary consumers that inhabit shallow littoral areas of temperate lakes
and ponds. Toxicological studies on gastropods have mainly focused on the accumulation, distribution,
and depuration of MCs [5-10]. Little work has been done on the biochemical level in the freshwater
snail although the effects of toxic cyanobacteria on the activity of enzymes have been demonstrated in
mussels [11, 12]. Exploration of the impact of cyanobacterial toxins on life traits and histopathology has
been limited so far [13, 14]. Furthermore, previous studies have mainly been on freshwater pulmonates,
which are different from prosobranchs in their feeding habits, respiration mode, and life history strategies
[15]. The freshwater snail Bellamya aeruginosa (Gastropods: Prosobranchia) is widely distributed in
aquatic ecosystems in China. They are predominant herbivores that inhabit shallow littoral areas [16].
B. aeruginosa is a primary food resource for black carp (Mylopharyngodon piceus) and is also used for
human consumption. Recent studies have shown that snail may have a potential for biological management
of cyanobacterial bloom [17].

Previous studies suggested that the formation of MC glutathione conjugate mediated by glutathione
S-transferases (GST) is the first step in the detoxification of MCs in a wide range of aquatic organisms
[18]. The family of GST enzymes is responsible for the phase II biotransformation processes, binding
electrophilic substances and oxidized compounds to glutathione (GSH) [19]. This enzyme complex has
been shown to react in a quantitative way with cyanobacterial toxins [18]. Several researchers have
investigated the relationship between GST and MCs in aquatic organisms [11, 12, 20-23]. The activity
of acid phosphatase (ACP) is a marker enzyme for lysosomal membranes and alkaline phosphatase (ALP)
as an apical membrane enzyme changed in response to MCs with pathological lesions in hepatic tissues of
tilapia [24, 25].

The purposes of the present study are to examine, through a laboratory experiment, the temporal
changes of MC concentration and activities of the enzymes GST, ACP, and ALP, in the hepatopancreas
of B. aeruginosa after exposure to toxic cyanobacteria. We also examine the effects these changes have
on the ultrastructure of the hepatopancreas. Further, we are assessing the toxic effects of MCs on snails
with suggestions on the possible mechanisms of the resistant and detoxification capacities in freshwater
prosobranch snails.

2. MATERIALS AND METHODS
2.1. Biological Materials

The strains of M. aeruginosa (FACHB-905, concentration of MCs: 29.47 £ 0.43 pLg-L*I) was provided
by the Institute of Hydrobiology, Chinese Academy of Science. M. aeruginosa was maintained in BG-
11 medium under constant temperature (25 &= 1°C) and photoperiod (12-h light: 12-h dark cycle) at an
irradiance of 36 uEm™2s~!. The green alga Scenedesmus quadricauda was provided by the Aquatic
Ecology Laboratory of Ningbo University. S. quadricauda maintained in NMB3# medium [26] under
constant room temperature (20 £ 1°C) and natural irradiance.

B. aeruginosa individuals with an average shell length of 25 &= 1 mm were acquired from an
unpolluted pond at the Ningbo University and washcleaned. The snails were acclimatized at a constant
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temperature (25 + 1°C) and photoperiod (12-h light: 12-h dark cycle) in dechlorinated tap water and fed
with S. quadricauda for 7 days prior to the experiment.

2.2. Experimental Setup

Prior to the experiment, the snails were starved for 2 days and placed in a temperature-controlled incubator
for 24 h in order to acclimate to the experimental conditions. During the experiment, snails were fed with
S. quadricauda, M. aeruginosa, or both at an algal density of 10° cellsmL~!. The snails were divided
into three groups: (1) snails exposed to S. quadricauda (control group), (2) snails exposed to the toxic M.
aeruginosa (cyanobacterial group), and (3) snails exposed to 50% M. aeruginosa and 50% S. quadricauda
(mixed group). Each group consisted of three replicates in nine glass containers with a dimension of 30 cm x
20cm x 20 cm. 80 snails were placed into each glass container stocked with 10 L of algal suspension. All
glass containers were placed in an incubator with a constant temperature (25 £ 1°C) and photoperiod (12-h
light: 12-h dark cycle) at an irradiance of 36 uEm~2s~!. The algal suspension was restocked once a day,
and the used algal suspension was removed. After 15 days of the intoxication, the cyanobacterial and the
mixed groups were fed solely with S. quadricauda for 15 days during the depuration period.

2.3. Determination of MC Concentration in Snail Organs and Phytoplankton

At designated exposure time, some snails were sacrificed to collect biological tissues for Enzyme Liked
Immunosorbent Assay (ELISA) analyses and ultrastructural studies. Hepatopancreases from each snail were
removed and recorded for weight. Tissues were homogenized in 100% methanol using a blender (IKA T8,
IKA Labortechnik, Stauffen, Germany). The methanol extract was mixed with equal volumes of hexane. The
upper layer was discarded, and the obtained methanolic fraction was eluted in C-18 cartridge (Supelco Inc.,
Bellefonte, USA) and then washed and eluted with 10 mL of 20% methanol and 10 mL of 100% methanol.
The methanolic fraction was dried and redissolved in 1.0mL of the deionized water. This suspension
was filtered in nylon filter (0.45 um) and stored at —20°C for subsequent MCs analyses. All samples
were analyzed by the immunoassay method using ELISA (ENVIROLOGIX INC.). 1.0 mL from each of
the three groups’ algal suspensions was sampled, frozen, and thawed three times, and then centrifuged
(Sorvall Biofuge Primo R Centrifuge, Thermo Electron Corp., USA) at 10000 rpm. The supernatant was
also analyzed for MCs using the ELISA also procedure. MCs concentrations were expressed as MC-LR
equivalents.

2.4. Transmission Electron Microscopy

For the electron microscopic studies, fresh specimens of hepatopancreas were washed in a phosphate buffer
solution (pH = 7.2) and then fixed by immersing them immediately in glutaraldehyde (2.5%) fixative at
4°C for 4 h and in osmium tetroxide (1%) for 1 h. Samples were washed in the phosphate buffer solution
(0.1 mol L) for 4 times and dehydrated through a graded series of ethanol. Specimens were embedded
in Epon812-araldite mixture in labeled beam capsules. Semithin sections (90 nm) from the staining with
uranyl acetate and lead citrate was obtained using an ultramicrotome (PowerTomeXL, RMC, Tucson, USA).
Specimens were examined under a transmission electron microscopy (H-7650, Hitachi, Tokyo, Japan).

2.5. Biochemical Analyses

At designated exposure time, some snail was sacrificed to collect biological tissues. The liver samples were
perfused with ice-cold NaCl (0.9%), and then homogenized in nine-fold volumes of ice-cold NaCl (0.9%).
Sample was carried out in an ice bath and performed in an ultrasonic cell disintegrator for 1 min (JY96-1I,
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TABLE 1: MCs concentration in hepatopancreas of snails (B. aeruginosa) exposed to different treatments
during the experiment. Results are expressed as mean + SD.

Time (day) Concentration of MC (ugg~! DW) F P
Cyanobacteria Mixed group
1.53+£0.36 0.67+0.19 13.332 0.022
. 5 2.624+0.35 3.06+1.55 0.223 0.661
Intoxication

10 5.914+0.85 5.78£0.07 0.066 0.810

15 4.244+0.76 6.01£0.77 7.899 0.048

16 3.17£0.61 5.254+0.33 27.055 0.007

. . 20 1.05+0.06 1.434+0.17 12.795 0.023
Detoxification

25 0.48+0.10 0.40+0.01 1.938 0.236

30 0.56+0.13 0.38+0.12 2.897 0.164

Xinzhi Biotechnology and Science Inc., Ningbo, China). After centrifugation in a centrifuge at 3000 rpm for
20 min at 4°C, the resulting supernatant was separated for biochemical assay. The supernatant was assayed
for ALP, ACP, and GST activities using colorimetric assay kits (Nanjing Jiancheng Bioengineering Institute,
Nanjing, China), following the manufacturer specifications.

2.6. Statistical Analysis

We used multivariate analysis of principal response curve (PRC) [27] to test temporal changes in the
activities of enzymes caused by exposure to different algal suspensions as compared with those in the control
(exposed to S. quadricauda) and also to quantify the contribution of each enzyme to separate the treatments
from the control. For each sampling time, differences between treatments and control were analyzed via
one-way analyses of variance (ANOVA) followed by a post hoc multiple comparisons test (Dunnett’s test).
The MC accumulation in liver after MCs exposure was assessed by ANOVA. Results are presented as the
mean + SD. Differences were considered significant at level P < 0.05. Analysis was undertaken using
SPSS 13.0 for Windows.

3. RESULTS
3.1. Changes of MCs Concentrations in Hepatopancreas

The changes in MCs concentrations in hepatopancreas over the 15-day intoxication period and 15-day
detoxification period were shown in Table 1. MCs concentration in the algal suspensions were 18.67 &
2.80 ugL! in the mixed group, 37.93 & 13.85ug L~ in the cyanobacterial group (¢-test, P < 0.05), and
undetectable in the control group. MC in the hepatopancreas was detected in both experimental groups
after 24 h of feeding. Unlike the cyanobacterial group, the highest concentration of MC in the mixed group
was observed at the final day of the intoxication experiment (day 15). One-way ANOVA showed that the
concentration of MC differed significantly between the cyanobacterial group and the mixed group at day 1
and 15 (Table 1). There were also significant differences in MC content between the cyanobacterial group
and the mixed group in the early stage of detoxification (day 16 and 20) (Table 1).
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TABLE 2: The activities of enzymes ACP, ALP, and GST levels in the hepatopancreas of snails (B.
aeruginosa) during the experiment. Results are expressed as mean + SD. Treatments with the same

superscript letter are not significantly different (Dunnett’s test, P > 0.05).

The activities of enzymes (U-gprot—!)

Time (day) Enzyme F P
Control group Mixed group Cyanobacteria

1 124.0+19.2 109.6+14.2 118.1£3.4 0.805 0.49
5 202.4+29.5% 528.9+59.7° 276.3+£28.4% 50.335 <0.001
10 151.94+12.0% 331.84+39.9° 210.4£27.7¢ 30.327 0.001
15 ACP 154.7+40.52 383.1+87.7° 616.4+51.7° 39.989 <0.001
20 276.7+29.6* 322.246.7% 458.4+126.0P 4.791 0.57
25 352.34+42.7 274.2+40.2 424.6+£124.4 2.692 0.146
30 258.9+46.4 192.8£29.0 230.71+41.5 2.099 0.204
1 320.9+33.1 446.6 +86.8 41434+ 141.5 1.339 0.331
5 496.7+£83.8 552.3+£108.9 400.6 £28.5 2.691 0.147
10 145.7+37.7 176.3£30.9 173.2+15.9 0.971 0.431
15 ALP 124.94+30.32 464.4+55.8° 167.3 +40.8* 54.096 <0.001
20 333.34+21.6* 177.9421.2° 135.6+£31.6° 50.951 <0.001
25 184.5£24.0 135.1£51.4 105.3£22.8 3.857 0.084
30 142.1£52.2 86.31+19.2 115.6£12.8 2.156 0.197
1 67.6+15.8 58.8+4.1 69.8+£7.5 0.942 0.441
5 70.94+10.3% 99.0+ 14.8° 64.9+5.8° 8.348 0.018
10 35.4+£0.9° 135.4+32.0° 30.7£5.8% 29.683 0.001
15 GST 38.8+4.17 227.5+58.0° 44.14+13.32 29.25 0.001
20 86.4+4.9° 99.2 +8.7% 120.4+23.1° 4.21 0.072
25 73.14+4.0% 97.3422.7% 107.942.7° 5.328 0.047
30 27.0+0.6 28.4+3.3% 39.0342.8° 20.357 0.002

3.2. Activities of Enzymes over Time after the Exposure to Different Algal Suspensions

The principal response curve (PRC) showed that the activities of enzymes changed due to levels of MC,
allowing us to differentiate the experimental treatments from the control treatment over seven sampling
dates. The Monte Carlo permutation test (499 permutations) showed that there was a significant influence
of different treatments throughout the 30-day experimental period (F ratio = 16.18, P = 0.002), explaining
24.1% of total data variability. In this case, the first canonical axis accounts for 63.2% of total variability.

The activities of enzymes were stimulated, a behavior observed in both treatments during the
intoxication period (Figure 1). Dunnett’s test showed that the exposure to toxic cyanobacteria produced
the dynamic of enzymatic activity in treatments that were different from that in the control during the
peak of accumulation of MC in the hepatopancreas (10, 15 days) (Table 2). During the 15-day intoxication,
PRC and Dunnett’s test showed that enzymatic activity tended to return to levels close to those in the
control. However, after 25 days, effects of the exposure to the cyanobacteria were still detectable in the
GST activities in the treatments (Table 2). Treatments that exposed to toxic cyanobacteria (mixed and
cyanobacteria group) showed different levels of ALP and ACP activity from the control in the initial part
of the detoxification period (Table 2). However, at the end of the experiment (25, 30 days), the activities of
ALP and ACP in both treatments did not differ from that in the control treatment.
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FIGURE 1: Principal response curve (PRC) of enzyme activity in the snails under different treatments
(control, mixed group, cyanobacteria group) at seven sampling events (0, 5, 10, 15, 20, 25, and 30 days after
the beginning of the experiment). Bk indicates the weight of biochemical parameters measured: glutathione
S-transferases (GST), acid phosphatase (ACP), and alkaline phosphatase (ALP).

In Figure 1, the weight values (Bk) represent the weight of each enzyme in the PRC, which helps data
interpretation (enzymes with Bk values farther from zero are the ones most affected by changes observed
among treatments over time). Thus, the activity of GST, which showed the highest Bk values in the module,
was that most influenced by different algal suspensions. Meanwhile, ALP, and ACP showed lower values
and are consequently less affected by the MCs.

3.3. Ultrastructural Observation

Transmission electron microscopy of hepatopancreas from all the control group showed distinct cell
junction (Figure 2(a)), a round nucleus with a prominent central nucleolus (Figure 3(a)), rough ER arranged
in parallel layers (Figure 5(a)) or in association with mitochondria with dense matrices (Figure 4(a)), and
several lipid droplets and glycogen granules (Figure 2(d)). Lysosomes and vacuoles could only rarely
be observed. After 5 days, widening of intercellular spaces was first noticed (Figure 2(b)). Membrane
blebbing occurred with a conspicuous separation of hepatocytes shrunk in the treatment group during the
detoxification (Figure 2(c)). Morphologic alterations in nuclei became most prominent in both experimental
groups. The toxic algae induced a progressive deformation of the nuclear outline (Figure 3). After 5 days,
there was a prominent decrease in the amount of homochromatic with compaction of heterochromatin in
the cyanobacterial group (Figure 3(e)), eventually resulting in the disappearing of nucleolus after 10 days
(Figure 3(f)). However, in the mixed group, nuclei were condensed after 5 days (Figure 3(b)), the nucleolus
could no longer be discerned in some hepatocytes after 15 days (Figure 3(c)). In addition, some binucleate
cells were observed (Figure 3(d)). Nuclei have recovered to the level of control in the mixed group after
15 days of detoxification (Figure 3(g)). Nucleolus could be discerned at the end of the experiment in the
cyanobacterial group (Figure 3(h)) although the shape of hepatocytes was still not round enough. In the
mixed group, mitochondria did not change evidently but temporarily increased within 5-day postexposure
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FIGURE 2: Ultrastructural changes in the hepatopancreas of B. aeruginosa exposed to the suspension
of M. aeruginosa and mixed algae, respectively. (a) Cellular junctions of the control group (yellow arrow),
60000x. (b) The dilation of intercellular space in the cyanobacterial group at 10 days postexposure (yellow
arrow), 60000x. (c) The recovery hepatocyte in the mixed group after 10 days of detoxification (yellow arrow),
60000x. (d) Lipids (yellow star) and glycogen (yellow arrow) of control snail, 50000x. (e) The presence of
lipofuscins in the cyanobacterial group after the detoxification (yellow arrow), 15000x. (f) The presence of
apoptotic body in the cyanobacterial group after the intoxication, 15000x.
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(2

FIGURE 3: Ultrastructural changes in the hepatopancreas of B. aeruginosa exposed to the suspension
of M. aeruginosa and mixed algae, respectively. (a) Nucleus of control snail, 12000x. (b) and (c) The
deformation and fading of nucleus in the mixed group at 5 days and 15 days postexposure, respectively,
30000x and 20000x. (d) The binucleate cell (yellow arrow), 12000x. (e) The condensation of chromatin in
the cyanobacterial group at 5 days postexposure, 20000x. (f) The fading of nucleus in the cyanobacterial
group at 10 days postexposure, 20000x. (g) The recovery of nucleus in the mixed group after 15 days of
detoxification, 22000x. (h) The recovery of nucleus at the end of the experiment in the cyanobacterial group,
16000x.

by rough estimation of the number, and, only at 10 day, the densely stained mitochondria presented dilated
cristae (Figure 4(b)). However, in the cyanobacterial group, the mitochondria proceeded to lose cristae and
matrix (Figure 4(c)), and the induction of myelinated structures within the matrix was found after 15 days of
intoxication (Figure 4(e)). After 15 days of depuration, most mitochondria showed considerable recovery
with only slightly swollen forms present in both treatment groups (Figures 4(d) and 4(f)). In the mixed
group, modification of rough endoplasmic reticulum (rER) was significant since whirling of rER at the
periphery of plasma membrane was present at day 10 (Figure 5(d)), while, at day 15, hepatocytes displayed
fragmentation of the rER (Figure 5(c)), partial or total loss of ribosomes of rER was observed (Figure 5(b)).
However, these were observed after 5 days after exposure in the cyanobacterial group. rER showed
substantial recovery in both experiment groups during the detoxification (Figure 5(e)). The snail treated with
mixed algae showed the proliferation of lysosomes and heterolysosomes after day 5 (Figure 6(a)). However,
in the cyanobacterial group, the cytoplasm was highly vacuolized as well as increasing of heterolysosomes
(Figure 6(b)). During the depuration, hepatocytes displayed proliferation of lysosomes as the time went on
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FIGURE 4: Ultrastructural changes in the hepatopancreas of B. aeruginosa exposed to the suspension of
M. aeruginosa and mixed algae, respectively. (a) Mitochondria and glycogen (yellow arrow) of control snail,
50000x. (b) The swelling and vesiculation of mitochondria in the mixed group at 10 days postexposure,
50000x. (c) The loss of cristae and matrix in mitochondria in the cyanobacterial group at 15 days
postexposure, 50000x. (d) Most mitochondria recovered considerably at the end of the experiment in the
mixed group, 50000x. (e) The occurrence of myelinated structures (yellow arrow) in matrix of mitochondria in
the cyanobacterial group at 15 days postexposure, 32000x. (f) The recovery of mitochondria and myelinated
structures (yellow arrow) at the end of the experiment in the cyanobacterial group, 32000x.

(Figure 6(c)). A large amount of telolysosomes was shown in both experimental groups (Figures 6(d) and

6(e)).

4. DISCUSSION

During the intoxication period, MC accumulated in the hepatopancreas rapidly over time, with the highest
concentration of 6.01 g g~ ! DW, indicating strong enrichment of MC in the snail’s hepatopancreas. These
results agree with the findings of the previous laboratory studies on the MC accumulation in freshwater
snails [6, 8, 9]. However, in the present study, the MC level in the mixed group was higher than that
in the cyanobacterial group. A possible explanation for these results is that the MCs that could not be
detoxified were covalently bound to protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) in
the cyanobacterial group, which is considered as the toxic mechanism of MC [28]. After penetration in
the cytoplasm of the cell, MCs can be excreted after conjugation with glutathione [18] or interact with the
catalytic subunit of Ppases such as PP1 and PP2A via a reversible or a covalent binding [28]. Significant
increase in GST activity in the liver of snails in mixed group during intoxication period could result in
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(@) (b)

FIGURE 5: Ultrastructural changes in the hepatopancreas of B. aeruginosa exposed to the suspension
of M. aeruginosa and mixed algae, respectively. (a) rER of control snail, 60000x. (b) The swelling and
degranulation of rER in the mixed group at 15 days postexposure, 40000x. (c) The fragmentation of rER
in the mixed group at 15 days postexposure, 40000x. (d) The whirling of rER (yellow arrow) in the mixed
group at 10 days postexposure, 40000x. (e) The recovery of rER in the cyanobacterial group after 10 days
of detoxification, 50000x.
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FIGURE 6: Ultrastructural changes in the hepatopancreas of B. aeruginosa exposed to the suspension
of M. aeruginosa and mixed algae, respectively. (a) The proliferation of lysosomes (yellow arrow) and
heterolysosomes (green arrow) in the mixed group at 5 days postexposure, 40000x. (b) The vacuoles
(green star), telolysosomes (yellow star), and heterolysosomes (green arrow) in the cyanobacterial group
at 10 days postexposure, 18000x. (c) A large amount of lysosomes (yellow arrow), heterolysosomes (green
arrow), and the vacuoles (green star) in the cyanobacterial group during the depuration, 8000x. (d) and (e)
The telolysosome in the mixed and cyanobacterial group during the depuration, respectively, 25000x.

enhanced biotransformation reactions and higher rates of MCs conjugation [23]. The ELISA method cannot
detect the covalent MCs [10] although they may detect MCs metabolites such as MC-glutathione conjugates
[29]. In addition, a large amount of pseudofaeces rich in mucus, which is energetically expensive to produce
[30], was observed in the cyanobacterial treatment. Hence, the energy of detoxification was no longer
available, and the energy balance can thus be altered by the stressful effect of MCs, as shown by Juhel
et al. [31] for the zebra mussel exposed to toxic M. aeruginosa. It is a likely explanation for why there were
no significant differences between the control and cyanobacterial group in the GST activity.

During the depuration period, the GST activity increased in cyanobacterial group, attaining higher
values than those observed in control. This is because of the fact that the toxic algae were no longer present
in ambient. MC concentrations in the hepatopancreas decreased quickly, indicating that B. aeruginosa
possessed high depuration efficiency. Because the elimination of toxins requires high energy inputs [32],
we speculate that the nontoxic S. quadricauda might have supplied energy to the snails and that could be
used in the protection of the snails from tissue damage. Therefore, the group that also fed with a nontoxic
diet had less pathological damage, which is evident from electron microscopic examinations.
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The hepatopancreas of molluscs is a large digestive gland which is involved in several functions
including the extracellular and intracellular digestion of food, storage of lipids, glycogen, and minerals; it
is also the main site of nutrient absorption and plays a major role in detoxification [33]. The lysosomes of
mollusc hepatopancreas may suffer morphological and functional changes caused by pollutants and may
be valuable as bioindicators of environmental pollution [34]. The lysosomal proliferation observed in the
present study is in accordance with the results obtained from fish were exposed to toxic Microcystis [22,
25], and this lysosome activation could be an adaptative mechanism to eliminate or reduce cell damage
caused by MC. Likewise, a large amount of heterolysosomes and telolysosomes, which are also called
secondary lysosomes and residual bodies, respectively, in both experimental groups, indicated that the cells
secreted actively. Among the various specialised compartments that comprise the endolysosomal system
that the digestive cells of molluscs possess [35], heterolysosomes, which occupy the majority of the mid-
cytoplasmic portion in digestive cells, are reactive for marker hydrolases such as ACP [36]. In our case,
ACP showed a similar response pattern of GST and was induced during the peak of accumulation of MC
in the hepatopancreas (Table 2). ALP is basically a membrane-bound enzyme, and any perturbation in
the membrane properties caused by interaction with MCs could alter the ALP activity. This result is in
agreement with previous studies reporting ALP changes due to the accumulation of MC in the liver of
exposed tilapia [24, 25]. As previously observed in the prawn hepatopancreas, because of exposure to
environmental stressors, MCs increase ACP activity by interacting with lysosomes [37]. This agrees with
the ultrastructural changes obtained in our study and also with previous in vitro investigations carried out
on fish cell lines (RTG-2 and PHLC-1), which found a very potent concentration-dependent stimulation of
the lysosomal function with MC-LR [38]. This may be related to the cytoskeletal modifications and the
induction of oxidative stress that have been pointed out by several authors [39]. Ultrastructural observation
showed that at the beginning of the depuration stage, all organelles were in recovery; lysosomes were
hyperactive and fused with endocytic vesicles to form heterolysosomes. The material in the heterolysosomes
increased, and phagocytosis took place. Braunbeck et al. [40] investigated the effects of microcystin on
fish. He observed lysosome hyperplasia and thought that it was the compensation mechanism to renew the
cellular component under the pressure of microcystin. Li et al. [22] observed the occurrence of a large
amount of activated heterolysosomes, which might be an adaptive mechanism to eliminate or lessen cell
damage caused by MCs through lysosome activation. When heterolysosomes no longer contain any usable
substances, they turn into telolysosomes. In present study, the number of heterolysosome and telolysosome
in depuration progress was greater than that in the accumulation phase. Our findings suggest that during
the depuration process, the snails had a strong capacity for digestion and self-renewal that might be an
adaptation mechanism to toxic depuration.

At the beginning of exposure, all cell organelles could still protect the snails from the environmental
toxins. It is noteworthy that one of the early changes was the increase of amount in mitochondria, but other
cell organelles did not appear to be affected. The increase in mitochondria indicated that B. aeruginosa tried
to save energy in order to process toxins [39]. Mitochondria are one of the production sites for oxygen-free
radicals. When the structure and function are affected, the reduction capacity of superoxide dismutase is
also impaired, leading to the increases in oxygen-free radicals and the occurrence in apoptosis and cell
injury [41]. Ding and Ong [39] reported that the induction of free radical formation and mitochondrial
alterations were two major events found in microcystin-treated cultured rat hepatocytes. The mitochondrial
alterations, that is, loss of mitochondrial membrane potential and mitochondria permeability transition are
recognized as key steps in apoptosis [39]. However, when the ribosomes fell off from the ER, protein
transport immediately ceased. The lysosome vesicles first increased, and then the small vesicles were
integrated into large vesicles. After exposure to MC, vacuoles and myelin-like residual bodies were observed
in the hepatocytes, indicating that the snail was clearing apoptotic bodies, and the process of apoptosis took
place. With the accumulation of toxins, cellular organelles were damaged, resulting in pathological changes
and impaired detoxification ability. The pathological damages in the cyanobacterial group were more severe
than those in the mixed group.
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In this study, first nucleoli were pyknosised, and chromatin was condensed. Some studies have
reported that the genetic material is the target molecule of microcystin [42]. Microcystin could change
the structure and function of the genetic material and therefore is genotoxic [43]. Since microcystin affects
genetic material, great attention should be taken when snails are used for human consumption. Triebskorn
[44] reported that the changes in nucleus did not necessarily cause body death but could result in cell death.
When overloaded, the nuclear envelope disintegrated, and nucleus was broken. The injured hepatocytes
could recover after the diet of the experimental animals was replaced with a nontoxic one, which is
demonstrated in our depuration experiment.
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