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A B S T R A C T   

From the start of the coronavirus disease 2019 (COVID-19) pandemic, researchers have looked to electronic 
health record (EHR) data as a way to study possible risk factors and outcomes. To ensure the validity and ac
curacy of research using these data, investigators need to be confident that the phenotypes they construct are 
reliable and accurate, reflecting the healthcare settings from which they are ascertained. We developed a COVID- 
19 registry at a single academic medical center and used data from March 1 to June 5, 2020 to assess differences 
in population-level characteristics in pandemic and non-pandemic years respectively. Median EHR length, pre
viously shown to impact phenotype performance in type 2 diabetes, was significantly shorter in the SARS-CoV-2 
positive group relative to a 2019 influenza tested group (median 3.1 years vs 8.7; Wilcoxon rank sum P = 1.3e- 
52). Using three phenotyping methods of increasing complexity (billing codes alone and domain-specific algo
rithms provided by an EHR vendor and clinical experts), common medical comorbidities were abstracted from 
COVID-19 EHRs, defined by the presence of a positive laboratory test (positive predictive value 100%, recall 
93%). After combining performance data across phenotyping methods, we observed significantly lower false 
negative rates for those records billed for a comprehensive care visit (p = 4e-11) and those with complete de
mographics data recorded (p = 7e-5). In an early COVID-19 cohort, we found that phenotyping performance of 
nine common comorbidities was influenced by median EHR length, consistent with previous studies, as well as 
by data density, which can be measured using portable metrics including CPT codes. Here we present those 
challenges and potential solutions to creating deeply phenotyped, acute COVID-19 cohorts.   

1. Introduction 

The emergence of coronavirus disease 2019 (COVID-19) has raised 
urgent questions about the susceptibility of vulnerable populations, 
effectiveness of public health interventions, and efficacy of new pro
phylaxis and treatment strategies. The rapid emergence of this disease 
has mobilized a large number of researchers to study the impact of the 
pandemic through observational cohort studies and randomized clinical 
trials.[1–3] Many are leveraging electronic health records (EHRs) to 
rapidly identify patients diagnosed with COVID-19 and to track the 
clinical course and outcomes with routinely collected data.[4,5] 

Conducting EHR-based research requires clear definitions of cohorts 
and the ability to accurately and reliably identify relevant comorbid
ities. Both laboratory results and billing codes can be used to identify 
patients affected by COVID-19, but the relative performance of these 
variables has not been studied. For identifying comorbidities and out
comes, researchers may use existing or previously published algorithms 
developed to extract research-grade phenotypes from the EHR.[6,7] 
However, it is unknown how these approaches perform in the context of 
a rapidly shifting pandemic, during which patterns of patient engage
ment with the healthcare system as well as healthcare delivery itself may 
be seriously altered.[8,9] Furthermore, researchers need frameworks 
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that guide them in assessing performance in both static and rapidly 
evolving situations. 

In this analysis, we explore the challenges of phenotyping during the 
COVID-19 pandemic. First, we examine different approaches to identi
fying populations diagnosed with COVID-19. Next, we examine the 
characteristics of a SARS-CoV-2 tested cohort and a non-pandemic 
cohort of patients tested for influenza in 2019, with a focus on differ
ences in available data prior to testing. Finally, we measure the per
formance of established phenotyping methods to find comorbidities 
present prior to SARS-CoV-2 testing in order to study the interaction 
between data availability and algorithm performance. Through this 
work, we have identified key variables that may help researchers better 
characterize cohorts in a rapidly emerging and shifting situation. 

2. Background and significance 

The first case of the novel coronavirus that causes COVID-19 was 
reported in the United States on January 20, 2020.[10] Six weeks later, 
on March 5th, the first reported case in the state of Tennessee was 
diagnosed through polymerase chain reaction (PCR) testing completed 
by Vanderbilt University Medical Center (VUMC). VUMC continues to 
test a large number of patients and thus has accumulated a significant 
amount of data on both testing and clinical processes in COVID-19. As 
part of an institutional effort to make COVID-19 related data broadly 
available to researchers, a de-identified registry of patients tested for 
SARS-CoV-2 was created and populated with structured data from our 
linked institutional EHR, Epic Systems. Phenotyping efforts were initi
ated to identify pre-existing co-morbidities and exposures, characterize 
disease progression and severity of COVID-19, and monitor long-term 
outcomes. 

Creation of a COVID-19 registry was intended to accelerate COVID- 
19 informatics research by utilizing robust systems, such as the 
Research Derivative (RD) in place at VUMC to analyze near real-time 
EHR data. The RD is a database of clinical information curated from 
the EHR and made available for research.[11] Output may include 
structured data points, such as billing codes and encounter dates, semi- 
structured data such as laboratory tests and results, or unstructured data 
such as physician progress reports. Researchers have the option of 
coupling EHR data with DNA biorepositories such as BioVU, an opt-out 
biobank that currently has close to 250,000 DNA samples.[12]. These 
tools have been successful in producing replicable identification of ge
netic variants that modulate risk for human disease.[13,14] 

2.1. Known performance and risks of ePhenotyping 

Phenotyping has used successfully to identify genetic variants of 
significance and to provide targeted clinical decision support.[15,16] 
Billing codes are often used to identify patient cohorts, but risk losing 
the clinical processes or sets of contextual events from which they were 
ascertained. Adding classes of data (e.g., medications, labs) to billing 
codes can improve phenotyping performance but may overfit for local, 
institution-specific algorithms.[17] Algorithm development in a single 
EHR system also relies on data cleaning for incomplete or highly com
plex data. As others have acknowledged, local phenotyping execution 
necessitates anticipating data quality issues,[18] defined value sets,[19] 
and an explicit study of bias.[20] 

3. Materials and methods 

3.1. COVID-19 data sources - healthcare systems processes 

Beginning in March, EHR data for patients tested for COVID-19 were 
collected in a data repository updated daily using the Observational 
Medical Outcomes Partnership (OMOP) structure. The OMOP database 
included many of the data points contained in the operational EHR, but 
some COVID-19 specific data elements were missing. Paper intake forms 

were created for clinicians to collect COVID-19 related symptoms, 
duration of illness and patient-reported vaccination history among other 
data (Appendix Fig. A1) to assist in the triage of growing numbers of 
patients needing SARS-CoV-2 testing at designated “COVID-19” outpa
tient clinics. These forms were later scanned into the medical record, 
with structured data abstracted using optical character recognition and 
manual processes for use in future EHR-based research. Because of a 
shifting knowledge-base, dynamic changes to clinical decision support 
alerts, patient flags, and order sets occurred as the pandemic evolved 
and clinicians expressed needs for changing tools and support. 

3.2. Creation of a COVID-19 data registry 

All patients with PCR testing for SARS-CoV-2 after March 1 were 
included in the COVID-19 registry. Following a positive test, patient 
labs, comorbidities, and disease progression were integrated using 
standardized International Classification of Disease, Tenth revision, 
Clinical Modification codes (ICD-10), Current Procedural Terminology 
(CPT) codes, and phecodes, groups of ICD-9 and ICD-10 codes developed 
for the purpose of phenome-wide association studies.[21] Members of 
the data team monitored and normalized incoming labs (e.g., duplicate 
lab names, conflicting units), and developed a chronology of incoming 
raw data streams with respect to the SARS-CoV-2 PCR test, or “time 
zero,” in the RD (Fig. 1). Data cleaning was recorded in a data 
dictionary. 

3.3. COVID-19 case definition 

Fig. 2 depicts the data workflow following registry creation. In late 
February, the Centers for Disease Control released official coding 
guidelines for patients testing positive for COVID-19, effective April 1. 
[22] Previously, coders were prompted to use a set of nonspecific billing 
codes (e.g., J22, “Unspecified acute lower respiratory infection”) to bill 
for COVID-19 cases. In our registry, only 10% of SARS-CoV-2 PCR 
positive patients before the month of April had billing codes according 
to these recommendations, likely due to uncertainty around classifying 
“possible,” “suspected,” or “probable” cases. Consequently, we chose to 
interrogate the relevance of three COVID-19 case definitions at our 
institution: presence of one or more U07.1 ICD-10 billing codes, labo
ratory testing, or both. COVID-19 case definition algorithms queried 
from OMOP on May 15, 2020 were validated against a manual chart 
review of a portion of these cases (n = 140) performed by a clinician 
reviewer blinded to the algorithm’s billing or lab status. Differences in 
billing practices at inpatient versus outpatient centers and for those tests 
performed at outside facilities were not accounted for on this initial 
review. To assess timeliness of billing code availability in the RD, a 
second unblinded review recorded time between test date and billing 
date in our system. In the case of multiple COVID-19 PCR tests with the 
same result, SARS-CoV-2 test date was recorded as the date of the first 
positive or last negative test. 

3.4. Defining phenotyping metadata 

Pandemics cause individuals to seek medical care, many not previ
ously known to the healthcare system, and require changes to healthcare 
systems processes to accommodate this influx, thus impacting research 
conducted with the data. Although less granular than the data they 
represent, metadata attempt to stratify for possible influences on data 
fitness, grouping records by data available to all EHRs subject to similar 
healthcare processes. Because validated phenotypes are developed on 
longitudinal cohorts, selecting for median EHR length, we hypothesized 
that new patients with incomplete or absent retrospective records could 
increase false negative rates among algorithms as demonstrated by Wei 
et al. in a longitudinal Mayo clinic cohort.[23,24]. Adjusting for meta
data, studying its effect on phenotyping performance specifically, is a 
local effort to acknowledge those pandemic-associated changes in how 
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data elements are recorded,[25] including scanned paper COVID-19 
patient intake forms unavailable for use in phenotyping algorithms at 
the time of study. To ascertain the extent of the quantity and quality of 
data available for individual patients, we studied four categories of 
metadata (Table 1) available in most EHR systems (e.g., CPT codes), 
excepting data density categorized by center-specific visit identifiers. 

3.5. Evaluation of an early COVID-19 registry 

We selected four cohorts of adult patients (age greater than or equal 
to 18 years) to describe features of our COVID-19 cohort for the study 
period of March 1 to June 5, 2020. (1) SARS-CoV-2 tested: Adults tested 
for SARS-CoV-2 within the 2020 study period; (2) Influenza tested 2019: 
Adults tested for influenza in the equivalent 2019 study period; (3) 
SARS-CoV-2 positive: Adults testing positive for SARS-CoV-2 at least 
once in the 2020 study period; (4) SARS-CoV-2 negative: Adults testing 
negative at least once for SARS-CoV-2 with no positive testing in the 
2020 study period. A portion of SARS-CoV-2 positive individuals also 

had negative SARS-CoV-2 tests but were not included in the SARS-CoV-2 
negative cohort by definition. The test date was defined as either the first 
positive test for SARS-CoV-2 positive patients, or the last test for patients 
who only tested negative. Testing site(s) was not limited to our insti
tution and included those individuals with COVID-19 transferred to our 
facility for higher level of care. We calculated descriptive statistics for all 
four cohorts, including summary statistics for demographics and meta
data. Wilcoxon rank sum test was used to describe differences in median 
EHR length, otherwise Fisher’s exact test was used to study statistical 
difference among metadata categories. Age was calculated at the start of 
the study period. 

3.6. Defining standard phenotypes in the COVID-19 population 

We created a gold standard phenotype set by manual chart review of 
a random sample of inpatient and outpatient charts of patients who 
tested positive for COVID-19, stratified by admission to the intensive 
care unit (n = 82, 61%). Practicing physicians reviewed the charts of 

Fig. 1. Chronology of coronavirus disease 
2019 (COVID-19) registry data types. “Test: 
T0” indicates the timestamp of a positive 
PCR test and defines the acute phase of dis
ease in our registry. As depicted, T0 is critical 
for distinguishing between risk factors (e.g., 
history of DVT/PE in the pre-infection phase 
prior to T0) and sequelae of disease (e.g., 
acute DVT/PE in the acute or recovery 
phase). RD: Research Derivative, a database 
of clinical information curated from the EHR 
at Vanderbilt University Medical Center and 
restructured for research; T0: chronology of 
incoming raw data streams ordered with 
respect to a SARS-CoV-2 PCR test; DOB: Date 
of birth; COPD: Chronic obstructive pulmo
nary disease; Meds: Medications; O2: Oxy
gen; ICU: Intensive Care Unit; PFTs: 
Pulmonary function tests; PTSD: Post trau
matic stress disorder.   

Fig. 2. Data workflow. Registry created from in
dividuals with at least one SARS-CoV-2 positive PCR 
test at any of our 18 care sites across the Mid-South 
between March 1 and June 5, 2020. COVID-19 case 
definition validated on a subset of EHRs dated after 
billing guidelines issued April 1. Random sampling 
of adult inpatient and outpatient EHRs selected for 
phenotyping. Double arrows indicate comparison 
between cohorts. Dotted lines indicate processes 
that contributed to decision making in the methods 
workflow (solid lines). COVID-19: coronavirus dis
ease 2019; PCR: polymerase chain reaction; ICD-10: 
International classification of diseases, Tenth revi
sion, Clinical modification; EHR: electronic health 
record; ICU: intensive care unit; COPD: chronic 
obstructive pulmonary disease; CHF: congestive 
heart failure; DVT/PE: deep venous thrombosis/ 
pulmonary embolism.   
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135 SARS-CoV-2 PCR-tested individuals to identify commonly encoun
tered comorbidities in inpatient and outpatient populations including: 
presence of Type 2 diabetes mellitus (chart diagnosis), chronic kidney 
disease (chart diagnosis and manual review of estimated glomerular 
filtration rate <60 mL/min for >3 months where available), essential 
hypertension (chart diagnosis, including evidence of at least one blood 
pressure lowering medication in history where available and excluding 
diagnosis of elevated blood pressure only without evidence of outpatient 
medication use), congestive heart failure (chart diagnosis with or 
without echocardiogram evidence of diastolic or systolic dysfunction), 
history of atrial fibrillation (chart diagnosis), coronary artery disease 
(chart diagnosis). Pulmonary-specific comorbidities included chronic 
obstructive pulmonary disease (chart diagnosis, emphysema or chronic 
bronchitis unspecified), asthma (requiring at least one asthma medica
tion on historical medication list), history of pulmonary embolism and/ 
or deep venous thrombosis (chart diagnosis). Although additional phe
notypes were identified through manual chart review, we selected co
morbid phenotypes in the COVID-19 population based, in part, on 
existing and emerging phenotyping algorithms developed using the 
common data model. 

3.7. Selection of phenotyping algorithms 

Validated phenotyping algorithms were applied to the same 135 
SARS-CoV-2 tested records, including ICD-based phecodes and more 
complex algorithms shared by the EHR vendor Epic-systems. Data ele
ments used in phenotype definitions are shown in Appendix Table A1. 
We used standard phenotyping metrics, including sensitivity, specificity 
and F-score to evaluate the performance of selected standard phenotypes 
in our local COVID-19 population. 

3.8. Validation of standard phenotypes in the COVID-19 population 

Comorbidities identified by each high-throughput phenotyping 
method were corroborated with manual chart review to formulate a gold 
standard set. In cases where manual chart review results disagreed with 
results of selected phenotyping algorithms, the same subject that pre
viously performed chart review returned to the EHR to provide final 
input on the presence or absence of comorbidities and identify sources of 

false positive or false negative results. A major source of false negatives 
was hypothesized to be comorbid phenotypes identified by scanned 
paper COVID-19 patient intake forms, used in the outpatient setting 
only. Specific notation was used for phenotypes recorded from scanned 
paper intake forms on manual review. 

4. Results 

4.1. COVID-19 case definition 

We found significant variation in positive predictive value (PPV) and 
recall of case definitions applied between April 1 and May 15, 2020 
(Table 2). Although the highest recall among algorithms was achieved 
for those records with both an ICD-10 code and laboratory test, we 
desired maximum return of true positive cases. Thus, laboratory testing 
only (PPV 100%) was chosen for identifying COVID-19 cases for chart 
review. Sufficient recall (93%) was achieved through positive laboratory 
testing only. The average days between the earliest confirmed lab result 
and ICD-10 diagnosis in our system was 7 days. Differences in inpatient 
versus outpatient billing practices may have contributed to delays be
tween laboratory and billing results. 

4.2. Characterization of COVID-19 cohort 

Of 28,695 patients with SARS-CoV-2 test results in the VUMC 
COVID-19 registry from March 1 through June 5, 2020, 8% (n = 2,155) 
were SARS-CoV-2 PCR positive. Breakdown of age, gender, and self- 
reported race is provided in Appendix Table A2. High numbers of 
missing testing demographics in the SARS-CoV-2 tested group resulted 
in a limited distribution of self-reported race. Reasons for incomplete 
demographics include the way data was recorded at designated “COVID- 
19” testing sites and absence of these check boxes on paper COVID-19 
patient intake forms. Average age was lower in our early SARS-CoV-2 
tested population than an influenza tested cohort tested in 2019 (40 
years versus 52 years in COVID-19 positive and influenza tested 
respectively; standard deviation[SD] 16 and 19 years). The proportion 
of individuals who identify as female was consistent for both tests 
2019–2020. 

4.3. Comparison of influenza tested and SARS-CoV-2 tested cohorts 

More than half of those with SARS-CoV-2 testing results in our EHR 
had no visits at any of our 18 care sites across the Mid-South prior to 
testing (Table 3). Median EHR length was significantly shorter in the 
SARS-CoV-2 positive group than in the influenza tested group from the 
same time period in the year prior (3.1 years(interquartile range[IQR] 
0–11.1) vs. 8.7 years (IQR 1.6–16.2)). One-third (n = 717) of the COVID- 
19 individuals missing demographic information (age, race, and/or 
gender). In the 2019 influenza tested group, seven individuals (0.4%) 
lacked a complete demographic profile. These influenza-tested in
dividuals were more likely to be “Medical Home” patients, having at 
least one prior primary care visit recorded by center specific visit 
identifiers, or have a comprehensive history recorded in their EHR, as 
suggested by the presence of the corresponding CPT code. 

Table 1 
Metadata studied within a COVID-19 cohort.  

Metadata (Data 
type) 

Description Data 
Reference 

Median EHR length 
(Years) 

Difference in years between the first recorded 
test date (either influenza or SARS-CoV-2) 
and first recorded visit, any type. 

Data 
quantity 

Missingness (Count) “Unknown” demographic(s) (i.e., any 
incomplete age, self-reported race, gender) 
data element in the RD. 

Data 
quantity 

Data density 
(Categorical, 
institution- 
specific) 

No Visits Individuals with no visit(s) 
billed prior to the week 
before the first test date. 

Data 
quality 

No Primary 
Care Visit 

Non-primary care visit(s) 
billed before the first test 
date. 

Medical 
Home 

At least one primary care 
visit, identified by local site 
IDs, billed before the first test 
date. 

Data density 
(Binary, not 
institution- 
specific) 

Presence of a CPT code that indicates a 
‘Comprehensive history’ was taken prior to or 
on the day of the first SARS-CoV-2 test 
(Appendix Table A4) 

Data 
quality 

COVID-19: Coronavirus disease 2019; EHR: Electronic health record; RD: RD: 
Research Derivative, a database of clinical information curated from the EHR at 
Vanderbilt University Medical Center and restructured for research; CPT: Cur
rent procedural terminology. 

Table 2 
Comparison of COVID-19 case definitions between April 1 and May 15, 2020.  

Phenotype Definition PPV Recall 

ICD-10 Only 90.6% 46.4% 
Laboratory testing Only 100% 93.0% 
ICD-10 or Laboratory testing 95.4% 100%  
• Reference standard is manual review of 140 charts for patients meeting any of the 

criteria of the more expansive COVID case definition  
• ICD-10: cases assigned billing code U07.1 after April 1st, 2020; Laboratory: ever 

SARS-CoV-2 PCR positive.  
• Data pulled May 15, 2020  
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Phenotyping data quantity was lowest in all four metadata categories 
for SARS-CoV-2 positive individuals (Fig. 2). This group had fewest 
available records for phenotyping prior to testing. Individuals in the 
COVID-19 cohort were also less likely to have a comprehensive CPT 
code billed prior to testing relative to non-pandemic, influenza-tested 
EHRs (OR 0.1, 95% Confidence Interval[CI] 0.09–0.13). Odds of having 
complete demographic variables (age, race, gender) were also lowest in 
this group (OR 0.008, 95% CI 0.02–0.003). 

4.4. Comparison of different phenotyping choices 

Comorbidities extracted from 135 COVID-19 patient charts by three 
phenotyping methods (i.e., ICD-based, EHR Vendor and expert algo
rithm) that differed from manual chart review resulted in 129 comorbid 
phenotypes for additional review, many comorbidities occurring in the 
same EHR. Phenotyping identified 67 false observations (e.g., high 
blood pressure, pulmonary hypertension) and 14 true comorbidities not 
observed on chart review. There was no statistical difference among 
false negative or false positive rates between methods. Scanned forms, 
both transfer records from outside hospitals on inpatient admission and 
the aforementioned COVID-19 intake forms used in the outpatient 
setting, accounted for 11 false negative comorbidities. Results of phe
notyping from nine commonly encountered comorbidities in the adult 
population from 135 records are described in Appendix Table A3. 

Combining phenotyping methods, significantly lower false negative 
rates were observed for those records with phenotyping data available 
from a comprehensive history, identified by the presence of a CPT code, 
and complete demographics reported in the EHR (Fig. 3). SARS-CoV-2 
positive individuals with 1 of 9 comorbid phenotypes were 6 times 
more likely to be missed by phenotyping algorithms if a comprehensive 
care visit CPT (Appendix Table A4) was never recorded in the EHR (p =
4e-11, 95% CI 3.8–11.9). Increasing data density using institution- 
specific clinic site identifiers (e.g., “Medical Home” records with his
tory of visit(s) at a primary care clinic site) resulted in the lowest 
probability of a false negative phenotype (Fig. 3A). Highest rates of false 
negative phenotypes were seen in those records with any missing de
mographic(s) (Fig. 3C). 

Accounting for data density, either by history of a visit to a local 
clinic site or presence of a comprehensive CPT code, and missingness 
resulted in higher F-scores when phenotyping methods were combined. 
Increasing data density resulted in a statistically significant decrease in 
false negatives for the phecodes method only (No history of a primary 
care visit p = .001; No visits p = 3e-4). A stepwise increase was observed 

Table 3 
Metadata results for SARS-CoV-2 tested cohort between March 1 through June 5, 
2020 and influenza tested March 1 through June 5, 2019.    

SARS-CoV-2 
Positive 

SARS-CoV-2 
Negative 

Influenza 
tested 2019   

(n = 2155) (n = 26,540) (n = 1687) 

Missing demographic data 
elements (any age, race, gender 
reported “Unknown”) 

717 (33%) 4585 (17%) 7 (0.4%) 

Median EHR 
length (median 
years + IQR)  

3.10 
[0.0–11.1] 

6.16 
[0.5–14.5] 

8.65 
[1.6–16.2] 

Data density 
(institution- 
specific) 

No Visits 723 (34%) 5108 (19%) 351 (21%) 
No PC 
Visit 

726 (34%) 9559 (36%) 469 (28%) 

Medical 
Home 

706 (33%) 11,873 
(45%) 

867 (51%) 

Data density (comprehensive 
history CPT code) 

878 (41%) 16,665 
(63%) 

1,447 (86%) 

EHR: Electronic health record; Medical Home: At least one primary care visit 
before the first test date as defined using clinic location identifiers; No PC visit: 
Only non-primary care visit(s) before the first test date; No visits: No billing 
dates prior to the week before the first test date; IQR: Interquartile range; CPT: 
Common procedural terminology. 

Fig. 3. EHR: Electronic health record; COVID+: Patients testing positive for SARS-CoV-2 during the study period; COVID-: Patients testing negative for SARS-CoV-2 
during the study period; Flu 2019: Patients testing positive for influenza during the study period equivalent dates March 1 through June 5, 2019. CPT: Common 
procedural terminology. 
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in false negative rates of patient comorbidities returned from the EHR 
from the phecodes methods along data density categories (14% for EHRs 
in the “Medical Home” group, having at least one primary care visit; 
29% for those with some records but no primary care visits; 60% false 
negatives for those with any prior records at our institution). We hy
pothesize that this pattern was not observed for more complex algo
rithms due to access to additional data types including natural language 
processing or medications data, even for EHRs with few encounters. It is 
also possible that billing practices at acute care testing encounters did 
not preference chronic comorbid phenotypes (e.g., hypertension), thus 
having the largest impact on the phecodes algorithm (i.e., ICD-10 codes 
only). 

Since March, we have seen decreasing numbers of individuals with 
any primary care visits in our medical system (Fig. 4) suggesting that 
individuals who typically receive their medical care elsewhere are 
interacting with VUMC for testing for COVID-19 and treatment specif
ically. Early in the pandemic, testing was reserved for symptomatic in
dividuals in our system. In May, however, screening was started at select 
inpatient sites (e.g., oncology clinics) as testing became more available. 
We hypothesize that the spike in screening tests and corresponding 
decrease in “Medical Home” population may be in part due to the 
reintroduction of elective surgeries in our system, during which time 
VUMC instituted testing before undergoing elective surgery (see Fig. 5). 

5. Discussion 

The emergence of COVID-19 in the U.S. represented a public health 
crisis that required an urgent scientific response to understand the risks 
and outcomes of afflicted patients. While EHRs represent a broadly 
available source of observational data, the ability to extract reproducible 
and meaningful scientific data from them depends on an understanding 
of the flow of information from which the data was recorded. Methods 
exist for extracting research grade phenotypes from EHR data, but these 
approaches have been developed in relatively static circumstances. The 
ability of validated phenotypes to perform in the context of a rapidly 
changing pandemic was unknown. Lessons learned from phenotyping 
COVID-19 (Table 4) will have implications not only for the current 
pandemic, but for any circumstance with such rapidly shifting contexts. 

In an early COVID-19 dataset, we found that phenotyping perfor
mance of nine common comorbidities was subject to data quantity and 
quality, measured using portable metrics such as missingness and CPT 
codes. It is important to consider that circumstances that create an in
crease in patient encounters, such as for SARS-CoV-2 testing, may inflate 

the number of EHRs available for study, but without a corresponding 
contribution of comprehensive data. To the degree that these patients do 
not reflect the existing patient population, using EHR data in observa
tional research without accounting for data density risks mis
characterizing the population being studied. 

5.1. Impact of ‘data fitness’ on phenotyping accuracy 

The primary goal of this paper was to highlight healthcare experi
ences at our institution during the COVID-19 pandemic that have chal
lenged assumptions present in previously validated methods of 
characterizing patient cohorts. As minimizing false positive rates and 
timeliness were important early in data collection, the average delay 
between the earliest confirmed lab date and ICD-10 date in our system 
being 7 days, defining COVID-19 cohorts was best addressed in our 
system by laboratory results only; however, these methods may differ 
among other systems with unique healthcare processes in place. In 
contrast to the multi-site efforts undertaken by The National COVID 
Cohort Collaborative to identify those tested for SARS-CoV-2 (both 
positive and negative) via laboratory codes (or LOINC), we sought to 
validate COVID-19 case definitions specific to our institution’s concur
rent healthcare practices.[32,33] Based on our experience, we suggest 
evaluations of and updates to case definition algorithms occur as often as 
healthcare processes change at your site. 

We have identified sources of information bias, specifically miss
ingness and data density, within our own COVID-19 cohort that signif
icantly impacted phenotype performance. New data types (e.g., 
Respiratory Therapy notes, ventilator flow sheets) present new chal
lenges but also new opportunities to increase certainty among reported 
medical histories in the EHR. It is likely that similar biases exist within 
COVID-19 registries at other academic and tertiary care sites. We hope 
that our attempts to address these findings might be instructive in 
developing approaches and frameworks for performing research in new 
healthcare environments. An unexpected finding was that those meta
data identified as having a varying impact on phenotyping performance 
have changed since data collection. 

Researchers interested in using EHR data to study COVID-19 should 
evaluate algorithms for identifying patient cohorts at their institution(s) 
and the impact of metadata, including consideration of how these 
characteristics change over time. Maintained logic and defined cohort 
selection are the means by which thoughtful data management is 
bridged to implementation. An important consideration in our COVID- 
19 registry was that not all EHR visit types provide equal amounts of 

Fig. 4. Probability of false negative results for 9 comorbid phenotypes across 3 phenotyping algorithms (ICD-10 based and ICD-10 plus domain-specific algorithms 
provided by an EHR vendor and clinical experts) among an early COVID-19 population, March 1 through June 5, 2020. Medical Home: At least one primary care visit 
before the first test date as defined using clinic location identifiers; No PC visit: Only non-primary care visit(s) before the first test date; No visits: No billing dates 
prior to the week before the first test date; Comprehensive CPT: patients with comprehensive history CPT code; No CPT: patients without comprehensive history CPT 
code; All demos available: EHRs with complete age, self-reported race, and gender data elements; Missingness (demos): at least one missing demographic variable in 
the EHR. 
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data for phenotyping. Other institutions might replicate data density 
categories (i.e., No visits to “Medical Home”) defined using internal 
clinic location identifiers using natural language processing or addi
tional CPT code types. 

5.2. Best practices for phenotyping 

Phenotyping an emerging infectious disease requires early charac
terization of risks and outcomes without knowledge of a static exposure. 
We continue to partner with our colleagues involved in observational 
cohort studies and randomized clinical trials to guide phenotyping tar
gets. For example, work on COVID-19 cardiovascular outcomes, 
including the incidence of deep venous thromboses, is well underway. 
As before the pandemic, we validate recorded patient information (e.g., 
diagnoses, past medical history) using additional data sources (e.g., 
laboratory results, medication data), especially for those with limited or 
patient reported histories in our system. Assigning probabilities of cer
tainty to phenotypes and data types within COVID-19 registries is a 
potential solution to minimize bias and may be aided by metadata.[28] 
Registry maintenance using data dictionaries tracking data cleaning 
methods is key to preserving defined logic over time. 

5.3. Method considerations for phenotyping for acute events 

Although we used chart review as a gold standard validation of our 
efforts, other methods may attempt data reuse to account for missing
ness. We envision increasing features of metadata that can be used to 
further stratify data, recent exposures including Census Block data and 
socioeconomic variables. OMOP queries have provided new data ele
ments such as ventilator flow sheets, previously not available to re
searchers in the RD. Perl scripts, in development, will anticipate 
outcomes of interest in the COVID-19 population such as changes to lung 

function and post-traumatic stress disorder. 

6. Limitations 

The key limitation of our study is that it reflects the experience of one 
medical center, which, as an academic medical center, may not reflect 
the SARS-CoV-2 tested patient population at other sites. The fact that our 
clinical center draws complex patients in our region may have unduly 
over-populated our patient population with those high complexity pa
tients in whom we saw the highest rate of false positive phenotypes (e.g., 
sickle cell disease, polypharmacy). Furthermore, our study at present 
fails to consider the predictive value of data types (e.g., ICD-10) with 
respect to desired phenotypes. For example, it is possible that more 
sensitive ICD-10 codes (e.g., congestive heart failure) returned fewer 
false positives than those less specific (e.g., hypertension) and we did not 
study this difference. It is important to note that due to limited sample 
size of phenotypes derived from manual review, a comparison between 
phenotypes derived from increasingly complex algorithms is under
powered and that the records used to create a more complex pheno
typing algorithm from billing codes (EHR vendor) do not work off of the 
common data model. Thus, perceived difference among algorithm re
sults in part due to underlying differences in methodology may be 
misleading. As for all EHR-based research, accuracy of phenotypes is 
limited to accuracy of data collection. Among metadata, our local 
assessment of data density (i.e., “Medical Home” per history of a primary 
care note) assumes that primary care notes record complete and accu
rate medical histories, and this may not be the case. For those records 
with only a COVID-19 related visit type and no previous medical history, 
phenotyping research must rely on self-reported data, which may be 
incomplete or inaccurate. 

Future systems might consider ways to exploit missingness to inter
polate time between variables.[27] Major sources of false negative 

Fig. 5. Percent of total individuals tested between 
March 1 and June 5, 2020 grouped by data density 
categorized by center-specific visit identifiers. Since 
March, we have seen fewer individuals with any 
primary care visits in our medical system. Medical 
Home: At least one primary care visit before the first 
test date as defined using clinic location identifiers; 
No PC visit: Only non-primary care visit(s) before 
the first test date; No visits: No billing dates prior to 
the week before the first test date.   
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results included data from scanned COVID-19 intake forms, and limited 
retrospective histories especially for episodic events (e.g., history of 
DVT). Future work will distinguish acute and ‘history of’ events 
computationally. These systems should consider methods of converting 
manual to automated steps, training successful queries in techniques 
such as active learning. Our assessment of this early registry is a limited 

window into a dynamic process. It is likely that COVID-19 cohorts will 
change over time as the virus reaches new populations, perhaps neces
sitating new approaches to combat bias and ascertain missingness. More 
sensitive ascertainment of these cohorts might be identified by a 
maximum likelihood approach (e.g., temperature and positive labora
tory data combinations). Furthermore, targeting records with history of 
any outpatient note in our EHR system may yield higher reported sen
sitivities for local algorithms. 

7. Conclusion 

COVID-19 represents a phenotyping challenge that exposes many of 
the known difficulties of EHR phenotype development. At our institu
tion, testing for SARS-CoV-2 infection has generated an influx of new 
patient encounters, EHRs rich prospectively but incomplete or absent 
retrospectively. Using a COVID-19 cohort validated at our institution, 
we found that phenotyping performance of common comorbidities was 
significantly impacted by data density, that we describe using 
institution-specific identifiers and CPT codes. We pose challenges and 
potential solutions to ascertaining accurate, high throughput COVID-19 
phenotypes in an evolving clinical landscape. Those in EHR-based data 
science have enormous opportunity and responsibility to make contri
butions in COVID-19 research via new or existing data sources. 
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Table 4 
Lessons learned1 from early phenotyping efforts during the coronavirus disease 
2019 (COVID-19) pandemic.  

Domain Challenges to 
Phenotyping 
acute patient 
cohorts 

Description Potential Solutions 

Data Data Availability 
(Completeness) 

Longitudinal 
records may not be 
available for all 
patients. 

Anticipate data quality 
issues with available 
data types including 
electronic health record 
(EHR) metadata. 
Consider sources of 
metadata indirectly 
related to EHR data 
types (e.g., geospatial 
and Census Block data 
or other “community 
vital signs”)[26]) to 
interpolate various 
systems processes not 
captured in the clinical 
record. 

Data Management 
(Timeliness) 

Discordant 
temporality of data 
streams (e.g., from 
operational to 
structured data). 

Evaluate time from 
event to data pull; create 
automated systems to 
accommodate 
differences. 
Exploit missingness to 
interpolate time 
between variables.[27] 

Data Validation 
(Correctness) 

Patient histories 
may rely on data 
from limited visit 
(s) and visit types. 

Evaluate ways data is 
gathered and recorded 
in your healthcare 
system.[25]  

Identify essential 
population and database 
characteristics,[28] 
including the degree to 
which a given variable 
tends to over or 
underestimate a feature 
or change over time. 
Target novel data 
sources and note types 
(e.g., clinical 
communications) to 
validate narrative or 
structured elements. 
[9,29] 

Authoring Defined Cohorts No reliable billing 
code available to 
identify cohorts. 

Validate local testing 
practices (i.e., presence 
of laboratory testing). 
Assign probability of 
known disease;[30] 
evaluate data driven 
selection of cases or 
controls such as a 
maximum likelihood 
approach.[31] 

Defined Logic Data use requires 
knowledge of data 
cleaning processes. 

Build a data dictionary 
documenting 
representation of data 
elements (e.g., Boolean, 
temporal) as well as 
cleaning methods.  

1 elements of the table were adapted with permission from Rasmussen, et al. 
2019.[19] 
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