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Abstract This study was designed to establish and analyze
color Doppler and magnetic resonance fusion images of the
heart, an approach for simultaneous testing of cardiac
pathological alterations, performance, and hemodynamics.
Ten volunteers were tested in this study. The echocardio-
graphic images were produced by Philips IE33 system and
the magnetic resonance images were generated from Philips
3.0-T system. The fusion application was implemented on
MATLAB platform utilizing image processing technology.
The fusion image was generated from the following steps:
(1) color Doppler blood flow segmentation, (2) image
registration of color Doppler and magnetic resonance
imaging, and (3) image fusion of different image types.
The fusion images of color Doppler blood flow and
magnetic resonance images were implemented by MATLAB
programming in our laboratory. Images and videos were
displayed and saved as AVI and JPG. The present study shows
that the method we have developed can be used to fuse color
flow Doppler and magnetic resonance images of the heart. We
believe that the method has the potential to: fill in information
missing from the ultrasound or MRI alone, show structures
outside the field of view of the ultrasound through MR

imaging, and obtain complementary information through the
fusion of the two imaging methods (structure from MRI and
function from ultrasound).
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Introduction

Echocardiography is one of the most commonly used
modalities for testing structural and functional alterations
in the heart in all of the diagnostic tools in the field of
cardiology [1, 2]. Color Doppler blood flow imaging is the
primary method for the detection of hemodynamic changes
within the heart in clinical practice [3]. However, compared
with magnetic resonance imaging (MRI), echocardiography
has its limitation for testing structure because of the poor
resolution of ultrasound and disadvantage of the field of
view (FOV) [4]. Conversely, magnetic resonance imaging is
still limited in measuring real-time hemodynamic activities
and alterations. The fusion image of color Doppler and
magnetic resonance images provides a means to overcome
these limitations by displaying both anatomic and hemody-
namic information in the moving heart simultaneously. With
the aid of computer-based technologies, it becomes possible to
fuse images from various methods, including ultrasound and
magnetic resonance imaging [5]. Porter et al. [6] reported a
method for fusing three-dimensional ultrasound with mag-
netic resonance image in the liver. Rajpoot et al. [7]
presented an automatic two-stage registration and fusion
method to integrate multiple single views of real-time three-
dimensional echocardiographic images. Rasche et al. [8]
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demonstrated the feasibility of fusing volumetric ultrasound
images with three-dimensional X-ray imaging data for
visualization of cardiac morphology, function, and coronary
venous drainage. However, little attention has been paid to
the fusion of dynamic Doppler information and magnetic
resonance images of the heart because of difficulties in
image registration for both technologies. The present article
would introduce a method for fusing color Doppler images
of echocardiography with magnetic resonance images using
a MATLAB-based imaging program.

In this report, we will demonstrate that the proposed
method permits the fusion of color Doppler blood flow in
ultrasound and magnetic resonance images.

Methods

Ten volunteers with stable heart rate were involved in this
study. Before the experiment, written informed consent was
obtained; this study was performed with the approval of the
ethical committee of Shanghai East Hospital. All magnetic
resonance images were acquired using a Philips MRI 3.0-T
system. Two-dimensional images of the heart were selected
in the standard apical view. Magnetic resonance images
were recorded in DICOM files with image matrix (256×256)
and pixel spacing (1.25×1.25 mm).

Echocardiographic recordings of the same case were
recorded after magnetic resonance scanning. All echocar-
diographic data were collected from a Philips IE33
ultrasound system equipped with S5-1 (1.0–3.0 MHz)
transducer. Two-dimensional images of color Doppler blood
flow in the heart were obtained in the standard apical view.
The color Doppler recordings were obtained at a frame rate
of 8 Hz. The DICOM files of echocardiography were
exported from IE33 instrument (image matrix, 800×600;
pixel spacing, 0.3×0.3 mm).

Fusion Algorithms

The process of image fusion was conducted based on a
MATLAB program. After importing the DICOM files and
setting internal fiducial markers and related parameters, the
application fused the Doppler and magnetic resonance
images semi-automatically.

The fusion application process was carried out by the
following steps: (1) color Doppler blood flow segmenta-
tion, (2) registration of Doppler and magnetic resonance
images, and (3) fusion of different image types (Fig. 1).

Doppler Segmentation

The method of color Doppler segmentation was established
based on pixel characterization because of the frameless

color Doppler blood flow. The segmentation method
operates on the basis of the RGB color format. For
segmenting the Doppler color range in an RGB image, it
is necessary to establish a set of color samples from the
standard Doppler color scale which is representative of a
range of colors of interest. The mean color of the Doppler
image was estimated from color samples. The goal of
segmentation was to identify RGB pixels with colors that
fall in the specified range. In order to perform this
comparison, the Euclidean distance was chosen as mea-
surement for segmentation [9]. The average color was
denoted by the RGB column vector “m”. “z” indicates an
arbitrary point in a RGB space. “z” is similar to “m” if the
distance between them was less than a specified threshold
“T”. The Euclidean distance between “z” and “m” was
given below:

Dðz;mÞ ¼ z� mk k
¼ ½ðz� mÞT ðz� mÞ�1=2

¼ ½ðzR � mRÞ2 þ ðzG � mGÞ2 þ ðzB � mBÞ2�1=2

ð1Þ
where the subscripts R, G, and B denote the RGB
components of vectors “m” and “z.” The locus of points
such that “D < T” is a solid sphere of radius “T.” By
definition, points contained within, or on the surface of, the
sphere satisfy the specified color criterion, whereas points
outside the sphere do not. By coding these two sets of
points in the image using black and white colors, a binary
and segmented image was produced.

The Doppler color region was divided into two parts: red
region and blue region. The green region was excluded
because it is unavailable in the Philips IE33 system. We
calculated the mean of the each region as the center of color
segmentation, setting a threshold and filtering the pixels of
echocardiographic images. However, regions of blood flow
with velocities beyond the defined range were not seg-
mented because the intensity of high-velocity color pixels
exceeded the radius “T.” For the segmentation of high-
velocity blood flow regions, we established a pixel module
to scan the segmented image. The high-velocity flow pixels
were recovered through the pixel module scanning, utilizing
the feature that the blood overflow was always inside the
blood flow.

Registration of Echocardiography and Magnetic Resonance
Images

The registration of echocardiography and magnetic reso-
nance heart image is different from the registration for other
types of images. Because of motion during the cardiac
cycle, three-dimensional registration is required for image
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fusion. It is necessary to consider space registration and
time registration.

For space registration, two-dimensional magnetic reso-
nance images were selected in the standard apical view.
Echocardiographic recordings of the same case were
recorded with reference to the two-dimensional magnetic
resonance image.

Geometric transformation was used to merge echocar-
diography and magnetic resonance images for visualiza-
tion and quantitative comparison. The affine transform
was selected as image registration, which was one of the
most commonly used forms of spatial transformations.

The affine transform can be written in matrix form as
below [9]:

x y 1½ � ¼ w z 1½ � T ¼ w z 1½ �
t11 t12 0
t21 t22 0
t31 t32 1

2
4

3
5 ð2Þ

This transformation can scale, rotate, or translate a set of
points, depending on the values chosen for the elements of “T.”

The matrix and pixel spacing of echocardiography and
magnetic resonance images were different (echocardiogra-
phy: matrix 600×800, pixel spacing 0.3×0.3 mm; magnetic

Fig. 1 Fusion application
process
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resonance image: matrix 256×256, pixel spacing 1.25×
1.25 mm). So the first step of space registration was size
adjustment. The affine matrix can be written as:

sx 0 0
0 sy 0
0 0 1

2
4

3
5 x ¼ sxw

y ¼ syz
ð3Þ

“Sx” and “Sy” were defined according to the ratio of
Doppler and magnetic resonance image, which were both
4.17 in this study.

The second step of space registration is the rotation of a
magnetic resonance image in order to match the direction of
a selected Doppler blood flow image. The following affine
matrix was used for this purpose:

cos q sin q 0
� sin q cos q 0

0 0 1

2
4

3
5 x ¼ w cos q � z sin q

y ¼ w sin q þ z cos q
ð4Þ

“θ” was defined manually with a MATLAB program using
an image processing function. The application reorganizes
the pixel matrix according to the angle “θ.”

The last step was image transfer with reference to the
fiducial markers based on cardiac and vascular structures.
We set the root of mitral valve and the root of aortic valve
as internal fiducial markers to align the two types of
images. The application was able to transfer the two images
automatically according to the distance calculated from the
fiducial markers.

For time registration, electrocardiogram was utilized to
calculate the frequency of different images. The peak of the
R wave was set as the origin of time registration (note that
magnetic resonance heart images were also recorded at the
peak of the R wave). For the purpose of controlling time
accuracy, the frequency of echocardiography and magnetic
resonance image was utilized to ensure the presentation of
different images synchronously.

Image Registration Accuracy

Time registration accuracy between echocardiography and
magnetic resonance heart image has certain intrinsic limitation
because Doppler sample volume range is associated with
image frequency.When enlarging the Doppler sample volume

Fig. 2 Coordinates of different
landmarks

Fig. 3 a Fusion image with
blood flow patterns by color
Doppler and cardiac structure by
magnetic resonance image.
b Fusion image of cardiac
structure produced by
echocardiography and
magnetic resonance image
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range, the image frequency would be reduced, and vice versa.
The time registration error (TRE) was defined as below:

TRE ¼ j ð60=HRÞ
Necho

� Fecho � ð60=HRÞ
NMR

� FMRj ð5Þ

where HR is the heart rate recorded in DICOM files, Necho

and NMR were total frames in their DICOM files, and Fecho

and FMR were frame numbers selected for registration.
On space registration with fiducial markers, the accuracy

was defined as the root mean square error (RMSE) between
a set of corresponding point landmarks. In order to
determine the quality of a fusion set, we set six
corresponding point landmarks between echocardiography
and magnetic resonance heart image, which were the
anterior part of interventricular septum (IVS), the bulge
part of IVS, the end of IVS, the end of aortic valve ring, the
root of the anterior mitral valve, and the root of the
posterior mitral valve. The points were identified by five
clinical experts. The RMSE was computed when the
distance of six different landmarks were obtained. The
RMSE was defined as below:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1 ðx1;i � x2;iÞ2
n

s
ð6Þ

where X1,i and X2,i were the coordinates of different
landmarks which were displayed in Fig. 2.

Fusion of Different Image Types

A color Doppler blood flow image can be represented
with a three-dimensional matrix based on the features of
RGB images, while a magnetic resonance image can be
represented with a two-dimensional matrix based on the
features of gray level images. To combine a RGB image

with a gray level image, the two-dimensional matrix
should be extended to the three-dimensional matrix. We
extended the gray image into a three-dimensional matrix
and adjusted the type of pixel following the RGB matrix
format and the RGB pixel character, and replace the MRI
pixels with Doppler pixels. Every fused image can be
saved in the Audio Video Interleaved (AVI) format.
Dynamic fused video could provide a more intuitive
method for the observation of heart anatomy and
monitoring cardiac function.

Results

In this investigation, we fused color Doppler blood flow
images of the left ventricle into magnetic resonance heart
images using the mitral annular root and the root of aortic
valve as the internal fiducial markers. Figure 3 and Table 1

Table 1 TRE and corresponding distance of six point landmarks over eight frames of one volunteer

Fusion
set

TRE
(ms)

Anterior part
of IVS (mm)

Bulge part
of IVS (mm)

End of
IVS (mm)

End of aortic
valve ring
(mm)

Root of anterior
mitral valve
(mm)

Root of posterior
mitral valve
(mm)

Mean of different
landmarks
(mm)

Frame 1 9.43 1.8974 2.8284 3.1247 2.6532 1.7856 3.4126

Frame 2 18.82 2.9204 3.5120 3.2426 3.5231 2.8284 3.6238

Frame 3 9.5 2.2361 2.1623 2.2361 2.2314 1.9987 2.6874

Frame 4 0.09 1.1862 2.1424 2.5345 2.1569 1.2142 1.6345

Frame 5 9.32 1.585 3.3611 3.1623 3.0329 3.1321 2.9643

Frame 6 18.73 2.7360 2.1145 3.5896 2.9574 3.2256 3.3974

Frame 7 9.59 1.6835 2.3350 3.2584 3.1623 2.7145 2.5587

Frame 8 0.18 0.8251 1.4142 2.0125 2.2458 2.2419 1.4265

MEAN 9.46 1.8929 2.4837 2.8951 2.7454 2.3926 2.7132 2.5205

SD 7.05 0.7194 0.7039 0.5609 0.5035 0.7040 0.8188 0.6684

RMSE 2.0089 2.5695 2.9423 2.7855 2.4816 2.8192 2.6012±0.3358

Fig. 4 Plot showed the mean registration error for each dataset. Error
bars showed one standard deviation calculated over different
observers and anatomical landmarks. Subjects 1–10 were volunteers
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displayed the example of one volunteer. Figure 4 displayed
the registration error of a total of ten volunteers. Figure 3a
showed an image derived by fusing a color Doppler image
into a magnetic resonance image. The image fusion
approach extended the FOVof echocardiography, improved
the image quality compared with that of echocardiography
alone, and provided a more hemodynamic information in
comparison with that of magnetic resonance image.

Figure 3b showed the fusion image of cardiac structure
produced by echocardiography and magnetic resonance
heart image. The cardiac structure by echocardiography
could help ensure the accuracy of image registration and the
position of Doppler blood flow images.

Table 1 showed the TRE and the mean value over eight
frames of one volunteer. The average TRE was 9.46±
7.05 ms in this case. This is because a large Doppler sample
volume range limited the image frequency. However, in
other investigations, the average TRE was below 2.16 ms
when the image frame was controlled above 30 frames in
one cardiac cycle, in which MRI was regularly recorded at
30 frames within one cardiac cycle.

In space registration, the corresponding distance and
RMSE of the identified landmarks between echocardiogra-
phy and magnetic resonance image data as registration
accuracy were shown at Table 1. The average error over
eight frames was 2.60±0.34 mm.

Our average error among ten volunteers was 2.40±
0.26 mm. The means and standard deviations of these
values were shown in Fig. 4. In our analysis, this error did
not significantly influence the quality of fusion images.

Discussion

The fusion of color Doppler and magnetic resonance images
in the present study is a novel method for cardiac diagnosis
which displays the cardiac structure with high resolution and
shows blood flow patterns in the heart simultaneously. In
comparison with echocardiography, a fusion image extended
the field of view with high image quality and filled in missing
information. A fusion image provides cardiac hemodynamic
information by color Doppler and more detail of the cardiac
structure as the magnetic resonance images. The advantage of
the image fusion is that it provides cardiac images with the
complementary information that might not be available by
echocardiography or magnetic resonance images alone.

The limitation of our study was that we assumed the
echocardiography was acquired in the same plane as the
magnetic resonance image. For the purpose of minimum
registration error, magnetic resonance image was scanned
first and the image was shown as a template when
echocardiography was examined. Now, image fusion has
become one of the most frequently applied technologies in

the fields of surgery navigation [10–12], radiation therapy
[13–15], and liver tumor ablation [16–18]. We plan to
purchase a GE released GPS-like technology, which was
claimed to track and mark a patient’s anatomy during an
ultrasound exam, for further research.

Conclusion

This investigation was aimed at the development of a
model to fuse Doppler blood flow and magnetic resonance
images with complementary information on cardiac struc-
ture and hemodynamics. We hope that the fusion of
Doppler and magnetic resonance images would get more
attention for the purpose of more possible application.
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