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0e nonstationary time series is generated in various natural and man-made systems, of which the prediction is vital for advanced
control and management. 0e neural networks have been explored in the time series prediction, but the problem remains in
modeling the data’s nonstationary and nonlinear features. Referring to the time series feature and network property, a novel
network is designed with dynamic optimization of themodel structure. Firstly, the echo state network (ESN) is introduced into the
broad learning system (BLS). 0e broad echo state network (BESN) can increase the training efficiency with the incremental
learning algorithm by removing the error backpropagation. Secondly, an optimization algorithm is proposed to reduce the
redundant information in the training process of BESN units. 0e number of neurons in BESN with a fixed step size is pruned
according to the contribution degree. Finally, the improved network is applied in the different datasets. 0e tests in the time series
of natural and man-made systems prove that the proposed network performs better on the nonstationary time series prediction
than the typical methods, including the ESN, BLS, and recurrent neural network.

1. Introduction

Time series data is observed and measured over time in
human society and the natural environment. 0e analysis
and prediction of the time series data have drawn attention
because it is vital for managing and controlling various man-
made and natural systems. For example, the prediction of
sales data is applied to optimize inventory and reduce social
costs [1]. 0e stock data prediction can foresee the capital
flows trend [2]. 0e precipitation [3], water bloom [4], and
typhoon intensity are also predicted for natural environment
protection and disaster prevention [5]. 0e trend forecast of
air pollutants provides strong support for the decision-
making of relevant departments in the future [6–8]. 0e
nonstationary and nonlinear trend has been the obvious
feature of time series data in various application contexts. It
is impossible to extract and represent data trends intuitively

because the change rule of the time series is stochastic and
complex. It has been a research issue how to extract the data
features and predict the future trend of the time series.

For the mainstream of time series prediction, there are
statistical methods [9–11] and machine learning methods
[12–16]. Machine learning includes external neural net-
works, deep learning networks, and broad learning system
(BLS). Statistical prediction methods mainly include the
autoregressive (AR) model, moving average (MA) model,
autoregressive moving average (AR-MA) model, and dif-
ferential autoregressive moving average (ARIMA) model
integration, etc. 0ey transform nonstationary time series
into stationary time series utilizing variance or integration.
0ey face application difficulty when dealing with nonsta-
tionary and nonlinear time series in existing systems because
the value of the loss function is hard to reduce with the
solution of stationary data transformation. Machine learning
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has been widely used with a novel modeling solution, which
focuses on the data feature with a black-box model. It uses
nonlinear algorithms to reduce the loss function with a
network structure [17]. It can also utilize the computing
ability of the hardware to improve model accuracy, mini-
mize loss function value, and improve network fitting ability.
0e typical machine learning methods include support
vector machines, decision trees, recursive neural networks,
convolutional neural networks, BLS, etc. For the represen-
tative and hotspot methods, deep learning networks require
large-scale computing resources, although they improve
prediction performance. BLS reduces the consumption of
computer resources under the same prediction accuracy
[12]. Meanwhile, the echo state network (ESN) [18] has been
proven effective in time series modeling with a simple
training algorithm. 0erefore, it is explored to utilize the
advantages of the different machine learning methods, in-
cluding their structure and learning algorithm.

In the literature research and previous studies, it is found
that the performance improvement relies on the network
structure expansion and computing resources occupation. A
solution should be explored with an appropriate network
scale and a fast learning algorithm.0e ESN does not need to
update backpropagation parameters because only the in-
ternal weighting matrix should be updated. In contrast, the
input and reservoir pool weight matrixes need not be
updated. 0e learning mechanism of ESN is highly efficient.
0e BLS builds a horizontal network instead of the vertical
network of deep learning. 0e parameter passing can be
obviously improved without the progression of multiple
layers. 0erefore, referring to the advantages of ESN and
BLS, a novel network of broad echo state networks (BESN) is
designed in this paper to predict nonstationary time series.
0e BESN has been mentioned in [19], in which the raw data
are imported into multiple parallel running reservoir pools
with the unsupervised learning algorithm of the restricted
Boltzmann machine. It mainly arranges the echo reservoirs
parallelly, and there are no concepts of mapping and en-
hancement layers of BLS. In this paper, BESN is a combi-
nation of ESN and BLS.0e enhancement layer of the BLS is
remolded with ESNs in this paper. Meanwhile, the redun-
dant nodes may exist in ESN, and a pruning optimization
algorithm is introduced. 0en, the broad pruning echo state
network (BPESN) is finally established in this paper.

0is paper is organized as follows. 0e second section
introduces related work of time series analysis and pre-
diction method. 0e third section introduces the main study
of BPESN proposed in this paper. 0e fourth section
presents the experimental environment and experiments.
0e fifth section introduces the experimental results and
analysis. 0e sixth section is the summary of this paper.

2. Related Works

2.1. Analysis of Nonstationary Time Series Data. A nonsta-
tionary time series can be described with the statistical
variates, in which the mean and covariance of the data
changes dynamically over time [20]. 0e nonstationary
trend has been the typical characteristic of the time series

data, especially for existing systems.0e inherent complexity
of actual data can be represented with the nonstationary
indexes [21, 22]. 0e nonstationary degree analysis is the
basis for the time series modeling and prediction.

0ere are many methods to test the stationarity of time
series data, among which the most commonly used are the
correlation test [23] and the Augmented Dickey-Fuller
(ADF) test [24]. 0e correlation test determines whether
there is trailing and truncation through the correlation
function of the time series as the basis for judging whether
the data is stable. 0e ADF test is a more scientific judgment
method based on whether the mean and variance of time
series change over time. Meanwhile, probability values (p),
test statistics (TS), 1% critical value (CV1), 5% critical value
(CV5), and 10% critical value (CV10) will be generated in a
standard test.0e stability of the time series can be judged by
judging p and the relationship between the test statistics and
the critical value.

0e null hypothesis of ADF is that the detection se-
quence has a unit root and is a nonstationary time series.
When p< 0.05, the null hypothesis is rejected, and the time
series is stationary [25]. According to the Akaike infor-
mation criterion (AIC), the test time series is nonstationary
when p≥ 0.05, TS>CV1, TS>CV5, TS>CV10, and the null
hypothesis is not denied.

2.2.TimeSeriesPredictionMethod. Early time seriesmodeling
mainly used statistical methods. Based on the randomness
theory of time series, the AR model [26] and MA model [27]
are proposed. 0e AR model uses the correlation between the
previous data and the later data to establish a regression
equation containing the previous data and the later data. 0e
MA model solves the problem of summing the white noise of
the ARmodel and organically combines theMAmodel and the
AR model to form the ARMA model [28]. 0e ARMA model
energizes the correlation between the current data and the
previous data and at the same time can solve the problem of
randomly changing items. ARIMA is commonly used in
nonstationary time series [10]. ARIMA transforms nonsta-
tionary time series into stationary time series through the
difference between adjacent time points. Machine learning
closely follows the era of big data. It makes full use of computer
configuration and gives birth to many typical neural network
models, such as the Back Propagation (BP) model [29], Long
Short-Term Memory (LSTM) model [30], Gated Recurrent
Unit (GRU) model [31], BLS model, etc. 0e BP model is a
multilayer neural network that propagates the error back and
updates the weight matrix continuously. LSTM and GRU are
specifically born in RNN to solve the problem of short-term
memory. 0ey can also solve the problem of gradient disap-
pearance and gradient explosion in RNN to a certain extent.
Both LSTM and GRU have internal gates, which are used to
regulate information flow. 0e difference between them lies in
the number of gates. Compared with LSTM, GRU consumes
less computing resources when achieving the same accuracy.
BLS is different from deep learning, and the network structure
is not deepened vertically but expanded horizontally and
consumes more computer resources [12].
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Statistical methods can accurately realize themodeling of
stationary time series, but the effect will be poor when the
data is nonstationary and nonlinear with violent fluctua-
tions. Machine learning applies to the nonstationary time
series with the network structure and the computing re-
sources. When time series data is large, the machine learning
model itself will be significantly affected. ESN and BLS can
effectively deal with the problem that large datasets cause
large computer resource consumption.

2.3. Echo State Network. ESN is a recurrent neural network
that consists of three parts: input layer, reservoir pool, and
output layer. It can map the input data to high dimensions in
the reservoir pool with an input weighting matrix [32]. ESN
simplifies the training task of the network, in which only the
weights of the output matrix should be trained without the
traditional backpropagation. 0e topology structure of ESN
is shown in Figure 1[33].

In Figure 1, the input is defined as u(t) � [u1(t), u2
(t), . . . , uK(t)], the reservoir pool’s state x(t) � [x1(t), x2
(t), . . . , xN(t)], and the network output is y(t) � [y1(t), y2
(t), . . . , yL(t)]. K, N, L represent the number of input
samples, the number of neurons in the reservoir pool, and
the output dimension. To ensure the echo characteristics of
the reservoir pool, the spectral radius should be set from 0 to
1. 0e status update and network output of the reservoir
pool are as follows:

x(t + 1) � (1 − α)x(t) + α · f Win
u(t) + Wx(t)􏼐 􏼑,

y(t + 1) � g Wout
x(t + 1)􏼐 􏼑,

(1)

where x(t + 1) represents the state vector of the reservoir
pool at t + 1, y(t + 1) means the output of the model at t + 1,
α represents the leakage coefficient of the reservoir pool,
ranging from 0 to 1, Wout ∈ RN×N represents the output
weight matrix, f(•), g(•), respectively, represent the acti-
vation function of the reservoir pool and the output layer.

Win, W in ESN are randomly generated and remain
unchanged during training and testing, so the only thing that
needs to be adjusted during the learning process is Wout.
0ere are many solving methods for Wout, including ridge
regression [34], recursive least square method [35], pseudo-
inverse method [36], and singular value decomposition
method. In this paper, ridge regression is selected to solve
Wout. 0e ridge regression is a biased estimation method,
essentially a modified least-squares estimation method.
Ridge regression is abandoned to obtain higher computa-
tional accuracy, unlike the unbiased method. It will be more
suitable for the discomfort problem with a pathological
matrix or pathological solution. 0e reservoir pool in ESN
has a pathological resolution due to sparse connection, so
the ridge regression is selected to solveWout. 0e calculation
of Wout is as follows:

Wout
� YXT XXT

+λΙ􏼐 􏼑
− 1

, (2)

where X ∈ RN×K represents the state matrix of the reservoir
pool and Y ∈ RL×K represents the actual output of the

model, λ is a regularization coefficient, and I is the identity
matrix. It is advisable to set the first element of I into zero to
exclude the bias connection from the regularization [37].

Since ESN was proposed in 2001, it has been widely used
in time prediction. However, the disadvantage of ESN is that
many parameter selections are realized by trial and error
method, and it cannot effectively learn an intelligent choice
of models based on different data. 0erefore, many scholars
optimize the design of its network structure. For example,
Sheng C et al. proposed an improved version adding noise to
the ESN network [38], and Jun xu Liu et al. proposed
quantum-based ESN [39]. Among many parameters of the
ESN model, the selection of reservoir pool size is significant.
In this paper, pruning neurons in a single reservoir pool is
performed by a pruning optimization algorithm. After
several cuts, the reservoir pool will reach the desired state.

2.4. BroadLearning System. BLS is a forward neural network
based on a random vector function connection network [12]
and an efficient machine learning method. 0e network
structure of BLS includes the mapping layer, enhancement
layer, and output layer. Compared with the random vector
function connection network, the mapping layer replaces the
output layer. In BLS, the original data are imported into the
linear mapping and become a nodemapping layer. It realizes
the feature extraction of the original data.0emapping layer
increases the model’s ability to adapt to the nonlinear data.
Finally, the combined matrix of the mapping layer’s output
and the enhancement layer’s output is used as the input of
BLS. 0e ridge regression algorithm obtains the output
weight matrix. 0e output of the mapping layer and the
output of the enhancement layer are as follows:

Zj � ϕ XWej + βej􏼐 􏼑, j � 1, 2, . . . , n,

Hi � δ ZWhi + βhi( 􏼁, i � 1, 2, . . . , m,
(3)

where Wej,Whi represent the weight matrix of the mapping
layer and enhancement layer, βej, βhi, respectively, represent
the bias of mapping layer and enhancement layer,
Wej,Whi, βej, βhi which are randomly generated, n, m,

Win W

x (t)u (t)

Wout

y (t)

Figure 1: 0e structure of ESN (Figure 1 is reproduced from Liu
et al. [33]).
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respectively, represent the number of network input samples
and the number of neurons of mapping layer.

We assumeAm that it is the combination of the mapping
layer’s output matrix and the enhancement layer’s output
matrix. We assume Z � [Z1,Z2, . . . ,Zn]H � [H1,H2,

. . . ,Hm] that the output weight matrix can adopt the
pseudo-inverse method commonly used in the neural net-
work to solve the output weight matrix. However, when the
input sample has a high capacity and requires a high training
speed of the network, the pseudo-inverse method generally
cannot meet the requirements [40], so regularization can be
used to solve the output weight matrix indirectly [13]. 0e
network output and output weight matrix are shown in the
following:

Y � Z1,Z2, . . . ,Zn|H1,H2, . . . ,Hm􏼂 􏼃Wout

� [Z|H]Wout

� AmWout

Wout
� λI + Am Am

( 􏼁
T

􏼐 􏼑
−1

Am
( 􏼁

TY,

(4)

where Y represents network output, Wout represents weight
matrix of network output, and λ represents regularization
constraint item coefficient.

3. Broad Echo State Network with
Reservoir Pruning

3.1. Network Structure and Learning Method. As mentioned
in Introduction and Related Works, ESN reduces the
training complexity of the network with a reservoir struc-
ture. BLS can improve the data fitting ability by extending
the network units. 0e network scale should not be too large
in the ideal network solution for nonstationary time series
prediction, and the training algorithm should be fast. 0en
the BLS are explored to be combined with ESN.

Meanwhile, the structure of ESN brings the redundancy
nodes in the network, and the network should be optimized
for a concise and effective structure. Concretely, neurons in
the reservoir pool within each ESN are sparsely connected,
resulting in different contributions to the entire network.
0e connection between the reservoir pool and the output
layer is fully bonded, contrary to the sparse link of neurons
in the reservoir pool [41]. Referring to the sparse connection
in the reservoir pool, the redundant information may occur
with the needless nodes and connected weights. 0e pruning
algorithm is introduced into the ESN in the broad frame-
work. 0e correlation between the reservoir pool of neurons
is calculated, and the high correlation between sets of
neurons connected weights is set to zero. 0e rest of the
output weight is recalculated by the regression algorithm.
0e network structure proposed in this paper is shown in
Figure 2.

As shown in Figure 2, the original data is extracted by
linear mapping in the mapping layer to extract data features.
0e output of the mapping layer is used as the input of the
enhancement layer. Each unit of the enhancement layer is
ESN. 0e network output can be obtained through the

combination matrix of the enhancement layer’s output and
the mapping layer’s output. 0e effect is not up to the ex-
pected value. 0e number of ESNs is adjusted through the
incremental algorithm, and the pruning optimization al-
gorithm optimizes each ESN to optimize the network model.
0e output matrices of the mapping layer and the en-
hancement layer are Z � [Z1,Z2, . . . ,Zn],H � [H1,H2,

. . . ,Hm]. 0e output formula of each unit of the en-
hancement layer is as follows:

Hi(k) � (1 − α)Hi(k − 1) + αδ WhiZ(k) + WiHi(k − 1)( 􏼁.

(5)

0e enhancement layer begins to have the incremental
learning ability by replacing the unit with ESN. 0e entire
network can adapt to time series data and extract the data
feature by dynamically adding an ESN unit until the network
error reaches a default value. 0e update calculation is as
follows:

Am+1
� Am

|Hm+1􏼂 􏼃,

Am+1
􏼐 􏼑

∗
�

Am
( 􏼁
∗

− DBT

BT
⎡⎢⎣ ⎤⎥⎦,

W′ �
W − DBTY

BTY
⎡⎣ ⎤⎦.

(6)

where Am is the state matrix, (Am)∗ is the pseudo inverse
matrix of Am, W′ is the output weight matrix after adding
the ESN unit, Y is the output of the network, and B,C, andD
are defined as follows:

D � Am
( 􏼁
∗Hm+1,

BT
�

(C)
∗
,C≠ 0,

1 + DTD􏼐 􏼑
−1
BT Am

( 􏼁
∗
,C � 0,

⎧⎨

⎩

C � Hm+1 − AmD.

(7)

0e thresholds should be set in adding ESN units
adaptively, and the thresholds can be determined with Root
Mean Squared Error (RMSE) and Mean Absolute Deviation
(MAE). It need not recalculate the pseudo inverse (Am)∗ of
the state matrix in each time of adding an ESN. It only needs
to update the ESN based on the previous network param-
eters, significantly shortening the running time.

0e correlation between neurons in the reservoir pool of
each ESN unit is calculated, and the correlation matrix is
obtained, as follows:

rnm �
􏽐

T
i�1 yni − yn( 􏼁 ymi − ym( 􏼁

��������������������������

􏽐
T
i�1 yni − yn( 􏼁

2
􏽐

T
i�1 ymi − ym( 􏼁

2
􏽱 ,

yn �
1
N

􏽘

N

i�1
yni,

(8)

where rnm represents the correlation coefficient between the
n-th neuron and the m-th neuron in the reservoir pool, yn

represents the mean value of the state vector of the layer
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where the neuron in the N reservoir pool resides, T rep-
resents the number of state vectors, and N represents the
number of neurons in the reservoir pool.

According to the correlation coefficient, the correlation
matrix r of a single ESN unit can be determined as follows:

r �

r11 r12 · · · r1N

r21 r22 · · · r2N

⋮ ⋮ ⋱ ⋮

rN1 rN2 · · · rNN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (9)

Based on the correlation matrix, the subscripts of k sets
of the largest elements in r are denoted as S � [(sn1, sm1)1,

(sn2, sm2)2, . . . , (snk, smk)k]. 0e neurons with the same serial
number with the subscript in S are selected, and their weight
matrix is set to zero. 0en, the ESN is trained again, and the
weights of the output matrix are calculated to obtain the
network error.

3.2. Pruning Algorithm to Optimize the Network. In this
paper, each ESN in the enhancement layer is optimized to
find the most appropriate size of the reservoir pool. 0e
internal neuron connection of the ESN reservoir pool is
sparse, and each neuron contributes to the network dif-
ferently. 0e pruning optimization algorithm is a practical
improvement to reduce the calculation cost, save time, and
improve the accuracy to a certain extent. Algorithm opti-
mization aims to calculate the correlation between the
neurons in each reservoir pool, obtain the correlation ma-
trix, and set the weight corresponding to the k neuron with
the highest correlation to zero. From the experimental re-
sults, the pruning optimization algorithm can reduce the
error of the network model. 0e algorithm flow is shown in
Figure 3, and the overall algorithm is shown in Algorithm 1.

4. Experiments and Results

4.1. Experimental Settings and Datasets

4.1.1. Experimental Environment and Settings. 0e experi-
ments are designed to verify the nonstationary time series
prediction neural network. Two different types of time series
data are selected as the subject to be predicted. One dataset is
the air quality monitoring data of Fangshan District in
Beijing, and the other is the power load data of the United
States. 0e two datasets represent the different systems, of
which the air quality data is from the natural environment,
and the power load data is from the man-made system. 0e
data can be regarded as the typical time series in the
common systems.

0e experiments are conducted on a small computing
platform.0e platform is based on a 64-bitWindows system.
Its RAM is 16GB, and the processor is AMD R7 4800H
(2.9GHz). 0e deep learning framework is based on Ten-
sorflow2.0. and Keras2.4.3. 0e code is applied in the
programming language of Python 3.7.

In this paper, some typical time series prediction models
are selected as contrast methods. 0e proposed method is
BPESN, which integrates the ESN with BLS and the pruning
optimization algorithm. As the basis of the proposed
BPESN, the typical non-feedback neural network ESN and
BLS are set as the contrast. Besides, the integrated structure
of ESN and BLS is also set as the contrast, which is called
BESN. Moreover, the recurrent neural network has been the
representative method in the time series prediction. LSTM is
selected on behalf of the feedback recurrent neural network.
As an improvement of LSTM, GRU is widely applied in
prediction, which is also set as the comparison model.
Meanwhile, the k-fold cross-validation is a standard vali-
dation method for model evaluation and selection in the
field of machine learning [42]. It aims at avoiding the

Y

H

Output Layer

Z

Z1 Zn H2H1

Mapped Feature 1 Mapped Feature n

Φ (XWej+βej), i=1...n

Enhancement layer with pruning algorithm

Adding dynamically ESN unit
in enhancement layer

X
Z

Hm H’

Add

Figure 2: 0e structure of BPESN.
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occurrence of chance phenomena due to unreasonable data
division.0en, this paper uses k-fold cross-validation for the
evaluation of BPESN models to better evaluate the perfor-
mance of network models.

Some quantitative indexes are selected to evaluate the
prediction performance. 0e regression evaluation indexes
of the chosen experimental model in this paper include
Mean Absolute Deviation (MAE), Root Mean Squared Error
(RMSE), Symmetric Mean Absolute Percentage Error
(SMAPE), and determinant coefficients R2. MAE, RMSE,
and SMAPE reflect the predicted and actual values deviation.
0e smaller the three values, the better the model perfor-
mance. R2 reflects the reasonable degree of the final pre-
diction model. 0e closer to 1 for R2, the better the fitting
degree of the prediction model is. 0e formula of each
evaluation index is as follows:

MAE �
1
n

􏽘

n

k�1
|y(k) − 􏽢y(k)|,

RMSE �

�����������������

􏽐
n
k�1(y(k) − 􏽢y(k))

2

n

􏽳

,

SMAPE �
1
n

􏽘

n

k�1

|y(k) − 􏽢y(k)|

y(k) + 􏽢y(k)
,

R
2

� 1 −
􏽐

n
i�1(y(k) − 􏽢y(k))

2

􏽐
n
i�1 􏽢y(k) − 􏽢yrv( 􏼁

2 ,

(10)

where n is the number of samples, 􏽢y(k) is the k − th pre-
dicted value, y(k) is the k − th actual value, and 􏽢yrv is the
mean of the predicted values.

Algorithm Start

YES NO

Record the number of 
pruning C

The weights corresponding
to the K indexes are set to 0

Record the first K indexes
in matrix r`

r is reduced to a
one-dimensional matrix r`

Calculate the ESN
coefficient matrix r

Record pruning results

End

YES

NO
RMSE < thresholdRMSE

Calculate the current
RMSE

Calculate (Am)*and Wout

Update combination
matrix Am

Incremental algorithm to
increase ESN

Update ESN parameters

C < thresholdPrunNum

Figure 3: Pruning algorithm flowchart.
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4.1.2. Dataset. Two datasets are selected in the experiment,
including the air quality monitoring dataset and the power
load dataset.

0e air quality monitoring dataset of the Fangshan
District in Beijing includes AQI, CO, NO2, O3, PM10,
PM2.5, and SQ2. For the evaluation of air quality, the air
quality index (AQI) has been a comprehensive indicator
calculated with concrete monitoring parameters. 0e data
of AQI is analyzed in the experiment. 0e data are
monitored and recorded hourly, which began on February
15, 2017, and ended on December 2, 2018. A total of
15,000 hours are covered. In the experiment, 12,000 test
sets and 3,000 validation sets are included. 0e training
sets account for 80% of the total samples, and the test sets
account for 20%. 0e original trends of AQI data are
shown in Figure 4.

US electric power load data collection began on January
1, 2017, until January 1, 2020. 0e sampling interval is
1 hour. In this experiment, the continuous 900 days of data
were selected as the total sample with 21600 sets. 0e
training set accounts for 80% of the total sample number,
and the test set accounts for 20%. 0e trend of the total
samples is shown in Figure 5.

0e nonstationary degree is tested firstly for the two
datasets. 0e ADF tests are conducted to obtain the indi-
cators. 0e test results are shown in Table 1.

It can be seen from Table 1 that the probability statistical
value p of the air quality dataset and US power load dataset is
greater than 0.05, and the TS is less than three critical values.
According to the method in Section 2.1, the null hypothesis

cannot be rejected in the ADF test; that is, the test sequence
is nonstationary. It is concluded that both datasets in this
experiment are nonstationary.

4.2. Prediction of Air Quality Monitoring Data. In the ex-
periment, the concrete parameters of the networks are de-
termined based on the data. 0e parameters of the networks
in this test are shown in Table 2.

0e data of AQI is predicted with the proposed network,
as well as the contrast methods. 0e results are shown in
Figure 6, in which the results are denoted with lines in
different colors. It can be found that the classical GRU and
LSTM deviate from the actual value in the whole trend.
Meanwhile, it can also be seen that ESN diverges signifi-
cantly with the obvious fluctuation in nonstationary data.
BESN will get better performance, which is combined with
the advantages of BLS. BPESN fits the actual data curve most
closely, based on BESN with the pruning optimization
algorithm.

0e results of different methods are represented by
boxplots, as shown in Figure 7. For the boxplots, the box
body means the range of most of the data. It can be seen that
the box body of ESN is the largest, indicating that the
fluctuation of predicted data is the largest. BESN makes the
information more concentrated, of which the mean and
median are close to the actual data. BPESN performs the best
among all the contrasts in view of the data distribution,
median, and mean, indicating that the prediction ability of
the BPESN model is the best.

Input: mappingNum, enhanceNum, mapFunction, enhanceFunction, thresholdRMSE, thresholdPrunNum, N, K
mappingNum← number of neurons in mapping layer
enhanceNum← number of neurons in mapping layer
mapFunction←mapping layer activation function
enhanceFunction← enhanced layer activation function
thresholdRMSE← threshold of RMSE in incremental learning
thresholdPrunNum← threshold of the number of pruning

N← number of neurons in reservoir pool in ESN
K← logarithms of neurons pruning the reservoir pool

Output: network prediction output after each pruning optimization
Algorithm:

(1) for i in mappingNum:
(2) for j in enhanceNum:
(3) enter data into the mapping layer and initialize it Wej, βej and get the matrix Z;
(4) initialize the ESN of the reinforced layer, collect the calculation result matrix H;
(5) each ESN is pruned and optimized, and the RMSE after optimization is calculated and record the

number of pruning C;
(6) if RMSE< thresholdRMSE or C< thresholdPrunNum:
(7) Add unpruned ESN units into the reinforced layer for further pruning;
(8) else:
(9) Calculation of the same mapping layer different enhancement layer ESN pruning optimized

performance index;
(10) end
(11) end
(12) the optimized parameters and predicted output are calculated.

ALGORITHM 1: BPESN with pruning optimization.

Computational Intelligence and Neuroscience 7



To evaluate the performance of each model quantifica-
tionally, the performance evaluation indexes are calculated
according to Section 4.1.1, as shown in Table 3. It can be seen
that the BESN has a minor prediction error than the single
ESN and BLSmodel. Referring to SMAPE,MAE, RMSE, and

R2, the prediction error of BPESN is less than the other
contrasts.

For the optimization capability of the pruning algorithm
on the air quality dataset, Figure 8 shows the performance
change of the BESN model before and after optimization by
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Figure 4: Air quality dataset of Fangshan District in Beijing.
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Table 1: Nonstationary degree tests based on ADF.

Dataset p TS CV1 CV5 CV10

Air quality dataset of Fangshan District in Beijing 0.1608 −2.3357 −3.4325 −2.8623 −2.5672
US power load 0.3550 −2.4469 −3.9602 −3.4109 −3.1272

Table 2: Network model parameters of Fangshan District air quality dataset in Beijing.

Hyperparameter BPESN BESN ESN BLS
Number of neurons in mapping layer 1–15 1–15 N/A 1–15
Number of neurons in enhancement layer 1–20 1–20 N/A 1–20
Reservoir size 400–800 400–800 400–800 N/A
Spectral radius rate 0.95 0.95 0.95 N/A
Leaking rate 0.1 0.1 0.1 N/A
Sparseness 0.05 0.05 0.05 N/A
Pruning the number of times 1–10 N/A N/A N/A
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the pruning algorithm. 0e RMSE evaluation metric dem-
onstrates the pruning effect. 0e lines between the two
dashed lines represent the RMSE values obtained for the
model without pruning optimization. Each scatter point
between the two dashed lines represents the RMSE value of
the model after one pruning optimization.

To validate the performance of BPESN on the air quality
dataset, this experiment uses k-fold cross-validation (k� 10)
for validation, and the evaluation metrics of each validation
model are shown in Figure 9.

4.3. Prediction of Power Load Data. In the experiment of
power load prediction, the parameters are set firstly to obtain
the best performance of different models. 0e parameters of
the networks are shown in Table 4.

0e power load data is predicted with the proposed
network and the contrast methods, as shown in Figure 10.
0e experimental results are denoted with lines in different
colors, and it can be found that BPESN fits the actual data
curve most closely. Meanwhile, it can also be seen that BESN
has a significant improvement in the degree of fit compared

0

-200

-100

0

100

A
Q

I
200

300

400

200 400 600
Time steps

800 1000

real BLS
BPESN GRU
BESN LSTM
ESN

Figure 6: Prediction results of different network models in Fangshan District of Beijing.

REAL

-50

0

50

AQ
I

100

150

200

BPESN BESN ESN BLS GRU LSTM

Figure 7: Boxplot of air quality datasets predicted by different network models.

Table 3: Evaluation indexes of each model of Fangshan District air quality dataset in Beijing.

Model Training time SMAPE MAE RMSE R2

ESN 3.3921 0.35804 33.08395 48.83188 −0.36982
BLS 0.0471 0.26211 39.80818 42.67138 −0.04600
GRU 121.6488 0.40606 74.78422 78.14060 −2.50762
LSTM 113.3026 0.40862 75.36049 77.88657 −2.48485
BESN 46.6092 0.12338 12.87887 15.21721 0.86697
BPESN 82.3575 0.08593 8.56364 12.27334 0.91346
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Figure 8: RMSE distribution of BESN before and after pruning on air quality dataset.
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Table 4: Network model parameters of the US power load dataset.

Hyperparameter BPESN BESN ESN BLS
Number of neurons in mapping layer 1–15 1–15 N/A 1–15
Number of neurons in enhancement layer 1–20 1–20 N/A 1–20
Reservoir size 500–1000 500–1000 500–1000 N/A
Spectral radius rate 0.95 0.95 0.95 N/A
Leaking rate 0.1 0.1 0.1 N/A
Sparseness 0.05 0.05 0.05 N/A
Pruning the number of times 1–10 N/A N/A N/A
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to BLS and ESN. BPESN is the best in contrast after the
pruning optimization.

0e distribution of the prediction results is shown in
Figure 11. It can be seen that the ESN and BLS boxes are
larger. 0e upper and lower caps cover the largest range in
the ESN model, indicating that the forecast data fluctuates
the most. 0e results of BPESN optimized through the
pruning algorithm based on BESN are the closest to the
actual data in terms of box size, mean, and median, indi-
cating that the predictive ability of the BPESN model is the
best among all comparison models.

0e evaluation indicators are calculated in Table 5. 0e
BESN network model has smaller prediction errors and
more accurate capabilities than ESN, BLS, GRU, and LSTM.
BPESN is a network based on BESN that has pruning op-
timization simultaneously. 0e SMAPE, MAE, and RMSE of
BPESN descend compared with the BESN model. 0e fitting
degree of the BPESN network is better in view of R2.

Figure 12 shows the optimization capability of the
pruning algorithm on the US power load dataset, similar to
Figure 8. 0e relationship between the dash locations and
scatter points indicates that the BPESN network model has
less prediction error than the BESN model. It can be seen
that the pruning algorithm can still optimize the BESN
model within a specific range.

0e cross-validation is also carried on BPESN for the
electric load dataset. 0is experiment uses k-fold cross-
validation (k� 10) for validation, and the evaluation metrics
for each validation model are shown in Figure 13.

5. Discussion

5.1. Error Analysis. BPESN was proposed in this paper and
verified in the experiments. It can be seen from Figures 7 and
11 that the box of ESN and BLS is more prominent, and the
upper and lower cap of ESN have the most considerable
coverage, indicating that the fluctuation of predicted data is
the largest. Although the boxplot of BLS is smaller, the mean

and median move back up. 0e box of the BESN model is
smaller, and the median and mean move down appropri-
ately. It can be seen from Tables 3 and 5 that the R2 of GRU
and LSTM of BESN is closest to 1 relative to ESN, indicating
that the network fitting ability of BESN is good. From the
perspective of RMSE, BESN is 68.84%, 64.34%, 80.53%, and
80.46% lower than ESN, BLS, GRU, and LSTM, respectively.
In terms of the American power load dataset, the RMSE of
BESN decreases by 27.67%, 3.23%, and 8.22%, compared
with ESN, GRU, and LSTM, respectively, but it increases by
5.42% compared with BLS. It can be seen from Figure 11 that
BESN is not sensitive to fluctuations of power data, resulting
in a smaller box and increased RMSE.

0e pruning optimization algorithm acts on the reserved
layer of ESN and realizes pruning through different con-
tribution degrees of reservoir pool neurons, which can
improve network performance to a certain extent and is
verified by experiments. Figures 8 and 12, respectively, show
the RMSE changes of the network before and after 100
pruning of BESN with the same configuration of BPESN.
Suppose the RMSE after pruning is defined to be smaller
than the RMSE before pruning. 0e effective pruning rate is
34% on the Fangshan air quality dataset and 90% on the
American power load dataset. From the perspective of
RMSE, the BPESN of Fangshan air quality dataset decreased
by 19.35% compared with BESN, and the BPESN of the
American power load dataset was reduced by 15.22%. From
the perspective of R2, the network fitting ability of BPESN
compared with BESN is improved by 5.36% and 13.87%,
respectively. In terms of network model fitting degree and
error, BPESN is superior to other models mentioned above.

To better evaluate the performance of network models
and avoid the occurrence of chance phenomena, k-fold
cross-validation (k� 10) is used to assess BPESN models. As
shown in Figure 9, the RMSE and R2 fluctuate between the
intervals [10.97, 14.22] and [0.88, 0.93] with mean values of
12.698 and 0.9067, respectively. As shown in Figure 13, the
RMSE and R2 fluctuate between the intervals [1112.96,
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Figure 10: Prediction results of different network models in the US power load dataset.
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1225.04] and [0.74, 0.78] with mean values of 1173.7239 and
0.7631, respectively. In the cross-validation, each evaluation
index fluctuates less around the mean value. It indicates that
BPESN has better prediction performance and stability on
the Fangshan air quality and US power load datasets.

5.2. Complexity Analysis. 0e complex network computa-
tion and structure can reduce the prediction error and
improve the prediction performance, which usually in-
creases time and space consumption. 0is subsection will
analyze the complexity of the models based on ESN, in-
cluding the time complexity and space complexity. As-
suming K>N, the running time of each ESN is dominated

by the reservoir pool computationΟ(KN2) and the pseudo-
inverse computation Ο(N3) [37]. 0e space occupation is
concentrated in the reservoir pool computation process, and
the space complexity isΟ(N2). 0en, the time complexity of
the ESN is shown in as follows:

Ο KN
2

+ N
3

􏼐 􏼑 ≈ Ο KN
2

􏼐 􏼑. (11)

0e mapping layer in BESN is a linear matrix operation
with time complexityΟ(n), and there are m ESN units in the
reinforcement layer with time complexity Ο(m(KN2

+ N3)). 0e space occupation is concentrated in the com-
putation of the reservoir pool in the reinforcement layer.
0en, the time complexity of BESN is shown as follows:
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Figure 11: Boxplot distribution of the predicted results of different network models in the US power load dataset.

Table 5: Evaluation indexes of each model in the US power load dataset.

Model Training time SMAPE MAE RMSE R2

ESN 3.8098 0.0529 1453.4936 1915.5536 0.3696
BLS 0.1380 0.0332 909.3070 1311.3357 0.7045
GRU 169.8198 0.0390 1127.0565 1432.7877 0.6473
LSTM 152.8951 0.0410 1190.1022 1510.7332 0.6079
BESN 77.2083 0.0358 1055.7738 1386.5070 0.6697
BPESN 109.9256 0.0297 875.2953 1175.4368 0.7626
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Figure 12: RMSE distribution of BESN before and after pruning on US power load dataset.
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Ο n + m KN
2

+ N
3

􏼐 􏼑􏼐 􏼑 ≈ Ο m KN
2

+ N
3

􏼐 􏼑􏼐 􏼑 ≈ Ο mKN
2

􏼐 􏼑.

(12)

BPESN is implemented based on BESN by the pruning
optimization algorithm. 0e time complexity of the opti-
mization algorithm is Ο(2PN2log N), and P is the number
of pruning. 0e space complexity is Ο(mN2) and the time
complexity of BPESN is shown in equation (13). 0e time
and space complexity of different ESN-based networks are
summarized in Table 6.

Ο n + m KN
2

+ N
3

+ 2PN
2log N􏼐 􏼑􏼐 􏼑

≈ Ο m KN
2

+ N
3

+ 2PN
2log N􏼐 􏼑􏼐 􏼑

≈ Ο m KN
2

+ 2PN
2log N􏼐 􏼑􏼐 􏼑.

(13)

While the accuracy of the network model is improved, it
can be seen from Table 6 that the time and space complexity
of BPESN are larger than those of a single ESN and BESN.
0is is due to the special structure of the broad learning
system and the pruning optimization algorithm. BPESN

needs more time and space to learn a network structure to
improve network performance.

6. Conclusion

A new network structure is studied in this paper. 0e proposed
BPESN integrates the ESN in the framework of BLS with the
pruning algorithm. In the optimization, the correlation coeffi-
cient matrix of the neuron in the reservoir pool is calculated,
based on which the network model can remove the redundant
information. 0e network’s fitting ability is improved, and a
better prediction effect is achieved. In the experiment, the
datasets are tested with the nonstationary evaluation method. It
is proved that the proposed network applies to the nonstationary
time series data. Based on the experiment verification in this
paper, the proposed network should be validated in the theo-
retical analysis and practical applications in future work [43–46].

Data Availability

0e data used to support the findings of this study are
available from the corresponding author upon request.
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Figure 13: Cross-validation of BPESN on US power load dataset.

Table 6: Time complexity and space complexity of different models.

Model Time complexity Space complexity
ESN Ο(KN2) Ο(N2)

BESN Ο(mKN2) Ο(mN2)

BPESN Ο(m(KN2 + 2PN2log N)) Ο(mN2)
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