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ABSTRACT

The capacity to identify and isolate lineage-specific progeni-
tor cells from developing and mature tissues would enable
the development of cell replacement therapies for disease
treatment. The enteric nervous system (ENS) regulates im-
portant gut functions, including controlling peristaltic mus-
cular contractions, and consists of interconnected ganglia
containing neurons and glial cells. Hirschsprung’s disease
(HSCR), one of the most common and best understood
diseases affecting the ENS, is characterized by absence of
enteric ganglia from the distal gut due to defects in gut col-
onization by neural crest progenitor cells and is an excellent
candidate for future cell replacement therapies. Our previ-
ous microarray experiments identified the neural progenitor
and stem cell marker SRY-related homoebox transcription
factor 2 (Sox2) as expressed in the embryonic ENS. We now
show that Sox2 is expressed in the ENS from embryonic to

adult stages and constitutes a novel marker of
ENS progenitor cells and their glial cell derivatives.
We also show that Sox2 expression overlaps significantly
with SOX10, a well-established marker of ENS progenitors
and enteric glial cells. We have developed a strategy to
select cells expressing Sox2, by using G418 selection on cul-
tured gut cells derived from Sox2”%”* mouse embryos,
thus allowing substantial enrichment and expansion of
neomycin-resistant Sox2-expressing cells. Sox2#5¢° cell cul-
tures are enriched for ENS progenitors. Following trans-
plantation into embryonic mouse gut, Sox2%¢°° cells migrate,
differentiate, and colocalize with the endogenous ENS
plexus. Our studies will facilitate development of cell
replacement strategies in animal models, critical to develop
human cell replacement therapies for HSCR.  STem CELLS
2011,29:128-140
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INTRODUCTION

During embryonic development, multipotential progenitor
cells give rise to the diverse array of tissue-specific cell types
found in adult structures. As development proceeds, however,
there is a progressive restriction of cells to particular lineages
and within a particular lineage to the differentiated cell types
that constitute the mature tissue or organ. Nevertheless, some
cells retain multipotential progenitor potential late into
embryogenesis, at postnatal stages, and even into adulthood
[1]. Cells with such characteristics are highly sought after for
a variety of reasons. First, readily accessible multipotential
cells allow recapitulation and study of cell lineage progression
in culture conditions. Second, the capacity to obtain cells with
progenitor cell characteristics offers the potential for stem cell
replacement therapies, where progenitor cells can be used to
reconstitute cells or tissues that are defective due to injury or
disease.

The enteric nervous system (ENS) is the part of the
peripheral nervous system (PNS) that controls key aspects of
gut function, including peristalsis, the regulation of blood

flow, and secretion of water and electrolytes. The mature
ENS is composed of neurons and glial cells organized as
ganglia within in two concentric rings, the myenteric and sub-
mucosal plexus, situated between smooth muscle layers and
comprises 1%—5% of cells in the gut [2—4]. One of the most
common diseases affecting the ENS is Hirschsprung’s disease
(HSCR), a congenital disorder occurring in 1:5,000 births and
characterized by an absence of enteric ganglia in terminal
regions of the gut [2, 5]. Mouse models of HSCR show distal
aganglionosis of varying lengths of the gut [2, 5]. Absence of
the ENS in distal gut regions has dramatic effects on gut
function, causing intestinal obstruction, which can be life-
threatening if not treated. Currently, surgical intervention is
the routine treatment for infants with HSCR, entailing
removal of aganglionic gut regions and rejoining the remain-
ing gut to the anus. However, despite life-saving surgery,
such treatment does not necessarily result in complete restora-
tion of normal gut function, and affected individuals often
have a lifetime of gastrointestinal problems [6, 7]. Thus, there
is considerable interest in the potential of cell replacement
therapies to provide complimentary treatment for HSCR.
Clinicians and researchers aspire to transplant ENS progenitor

Author contributions: T.A.H.: conception and design, collection and assembly of data, data analysis and interpretation, manuscript
writing, final approval of manuscript; V.P.: conception and design, financial support, administrative support, data analysis and

interpretation, manuscript writing, final approval of manuscript.

Correspondence: Tiffany A. Heanue, Ph.D., Division of Molecular Neurobiology, MRC National Institute for Medical Research, The
Ridgeway, Mill Hill, London NW7 1AA, UK. Telephone: 208-816-2115; Fax: 208-816-2565; e-mail: theanue@nimr.mrc.ac.uk Received
June 21, 2010; accepted for publication October 16, 2010; first published online in STEM CELLS Express November 9, 2010; available
online without subscription through the open access option. © AlphaMed Press 1066-5099/2010/$30.00/0 doi: 10.1002/stem.557

STEM CELLS 2010;29:128-140 www.StemCells.com



Heanue and Pachnis

cells into aganglionic gut regions and to reconstitute a func-
tional ENS. To realize this aim, much work is underway to
identify suitable progenitor cell populations and to devise
successful transplantation strategies.

The ENS derives from neural crest cells (NCCs) migrating
from the vagal neural tube (enteric neural crest-derived cells
[ENCCs]) that colonize the developing gut in a rostral to
caudal migratory stream. ENCC progenitors can be identified
during embryogenesis by a number of criteria, including being
marked by the WntlCre;Rosa26°"™ NCC lineage marker [8—
10] or by expression of SRY-related homoebox transcription
factor 10 (SoxI10; an E-type of high-mobility-group [HMG]
box family transcription factors) [11]. Progressive differentia-
tion of progenitors into neurons and glial cells and organiza-
tion into ganglia occurs within the gut environment [2-4].
Although some progenitor cells give rise to differentiated
ENS cells in the gut as early as embryonic day (E) 9.5, when
the first HU-expressing enteric neurons are identified [12, 13],
progenitor cells persist through perinatal stages, when new
neurons and glial cells continue to be born [14-16].

Despite progressive differentiation occurring during
embryonic and perinatal stages, in vitro experiments have
demonstrated the existence of cells with progenitor potential
within embryonic, postnatal, and even adult gut tissues. Cells
derived from dissociated gut tissues can be cultivated and
expanded, giving rise to neurons and glial cells [2, 17]. These
cells not only have proliferation and differentiation potential
but are also capable of migrating when transplanted into the
developing gut, just like their ENCC precursors [18-20].

To develop cell replacement therapies for HSCR, it is
essential to develop robust methods to identify and character-
ize ENS progenitors and to study their potential following
transplantation using animal models. To date, the techniques
developed to isolate ENS progenitors involve selection on the
basis of cell surface marker expression, culture with factors
favoring progenitor cell growth, or selection on the basis of
proliferative potential [2, 17]. In the best cases, these techni-
ques can be used to isolate multipotential ENS progenitors,
and in some cases, the cells have been shown to function as
self-renewing multilineage progenitors (stem cells) [2, 17].
However, some limitations exist to these methods, notably the
fact that cells are obtained in small numbers, and that the
populations are heterogeneous.

We have previously identified expression of the neural
progenitor and stem cell marker SOX2 in the E15.5 mouse
ENS [21]. Sox2 belongs to the Bl-type of HMG box family
transcription factors and is expressed in neural progenitors of
the developing central nervous system (CNS) and in adult
CNS stem cells [22, 23]. Identification of Sox2 expression
within the developing ENS, suggested that Sox2 may also
mark progenitors and stem cells within the enteric lineage, a
hypothesis we have sought to address in this study. We have
characterized SOX2 expression during ENS development,
relative to known markers of ENS progenitors. Our results
show that SOX2 is expressed in ENS progenitors and glial
cells, a profile that largely overlaps with SOX10. Having
identified SOX2 as a novel ENS progenitor marker, we have
exploited this fact as a means to enrich ENS progenitors from
gut-derived cell cultures. We describe an approach to selec-
tively propagate enteric progenitor cells on the basis of Sox2
expression and demonstrate that cells selected in this way
have the capacity to migrate and differentiate following trans-
plantation into the gut environment. Together, our results pro-
vide evidence that SOX2 is a new marker of ENS progenitors
and that selection of gut-derived cells on the basis of Sox2
expression enriches cells with progenitor characteristics.
These findings offer new tools that will facilitate the study of
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ENS progenitors/stem cells and provide a readily accessible
source of ENS progenitors to enable the development of cell
replacement therapies in animal models, both critical compo-
nents to develop strategies for improved treatment of HSCR
patients.

MATERIALS AND METHODS

Animals

Wild-type embryonic and postnatal tissues were isolated from
Parkes (outbred) mice. WntlCre;Rosa26"™", Sox2P%¢° and
B6.Rosa26°""" mice have been described [8-10, 24, 25]. The day
of the vaginal plug is considered to be E0.5.

Immunostaining and B Galactosidase Staining

Tissue sections and acute cultures of gut tissues were generated
as described [26, 27]. Peels of postnatal guts were performed as
described [26] and fixed flat by pinning. Immunostaining was per-
formed as described [26], with primary antibodies as follows:
SOX2 (goat, R&D Systems AF2018, 1:500; rabbit, kindly pro-
vided by Michael Wenger (R&D Systems, Abingdon, UK,
www.rndsystems.com), 1:50), SOX10 (goat, Santa Cruz sc-
17342, 1:50; Santa Cruz Biotechnology, Santa Cruz, CA,
www.scbt.com), TUJ1 (mouse, Covance, MMS-435P, 1:1,000,
rabbit, Covance, PRB-435, 1:1,000; Covance, Princeton, NJ,
www.covance.com), HU (mouse, Invitrogen A-21271, 1:500;
Invitrogen, Paisley, UK, www.invitrogen.com), green fluorescent
protein (GFP; rabbit, Invitrogen A-6455, 1:500; or rat, Nacalai
Tesque GF090R, 1:500; Nacalai Tesque, Kyoto, Japan, www.na-
calai.com), 2H3 (mouse, kindly provided by Marysia Placzek,
1:200), brain fatty acid binding protein (BFABP; rabbit, Millipore
AB9558, 1:500; Millipore, Billerica, MA, www.billerica.com),
S100 (rabbit, DAKO Z0311, 1:500), glial fibrillary acidic protein
(GFAP) (rabbit, DAKO Z0344, 1:500), Ki67 (mouse, BD Phar-
mingen, 550609, 1:50; Pharmingen, San Diego, CA,
www.bd.com) and with fluorescently conjugated secondary anti-
bodies as follows: Cy3 and Cy5 (Jackson, West Grove, PA,
www.jacksonimmuno.com, AlexaFluor 488 and 568, Invitrogen,
1:500). For [ galactosidase staining, tissues, tissue sections, or
cells were fixed for 10 minutes and stained as described [28].

Sox2P&¢° Cell Culture

Midgut and hindgut tissue was isolated from embryonic and post-
natal Sox2”5°'* or Sox2”2¢'*; B6.Rosa26°"""'* mice. Dissocia-
tion of gut tissues was performed as described [26]. After 1 day
in culture, media was changed, and on day 2, cells were passaged
as described [26]. On day 3 of culture, the media was replaced
with media containing G418 (Genetecin, Invitrogen, 200 ug/ml).
Expansion of cells followed protocols for generation of neuro-
sphere-like bodies (NLBs) [26], although cells were maintained
as adherent cultures. Plates were passaged while the cells were
adherent, prior to NLB formation, and continuously maintained in
media containing G418. Cells were maintained in culture with
periodic passaging for at least 2 months and are termed Sox2/%¢
cells. Withdrawal experiments involved a change to media with-
out G418 for 4 days of further culture.

Ex Vivo Cell Transplantation

Recipient guts were isolated from Parkes embryos. Sox254¢° cells
were transplanted into the stomach or the cecum region of E11.5
guts using pulled capillary micropipets [20]. E11.5 hindgut seg-
ments and E12.5 distal hindgut segments were dissected to repre-
sent uncolonized regions of gut [29], and cells were transplanted
into the proximal end. Guts and gut segments containing trans-
planted cells were cultured in free-floating culture for 4 days as
described [20], then fixed for immunostaining or f§ galactosidase
staining.
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Figure 1. SRY-related homoebox transcription factor 2 (SOX2) is expressed within the mouse enteric nervous system over a broad develop-
mental time frame. Immunohistochemistry was conducted using an anti-SOX2 antibody on cross sections through the developing (A, B) and post-
natal (C, D) gut. Landmarks of the radially organized gut cross sections are noted for reference, and asterisks denote the lumen of the gut tube.
(A): At E11.5, SOX2 expression is seen in the foregut endoderm (en; arrowhead) and in a punctate pattern consistent with expression in enteric
neural crest-derived cells within the mesenchymal layer (me; arrows). (B): At E15.5, SOX2 expression in the midgut is observed in rings of cells
corresponding to the location of the myenteric plexus (my) within the muscular layers (mu; arrows). (C): At P3, SOX2 expression in the midgut
is observed in two rings, consistent with expression in the myenteric and submucosal (su) plexus layers within the muscular layers (arrows). (D):
At adult stages, SOX2 expression can be seen within clusters formed between midgut muscle layers corresponding to the location of ganglia of
the mature myenteric plexus (arrow). The gut epithelial layer is denoted as epi. Scale bar = 100 um.

RESuLTS

SOX2 Is Expressed in Migratory ENCCs
and Expression Persists at Adult Stages

Sox2 was identified as an ENS-expressed gene in a microarray
screen to identify novel markers of the developing ENS [21].
To gain insight into the possible roles of Sox2 during ENS
development, we analyzed the spatial and temporal expression
profile of SOX2 during key phases of ENS development.

At E11.5, when ENCCs are migrating along the gut wall,
SOX2 expression is observed in both the foregut endoderm
(Fig. 1A, arrowhead), consistent with previous reports [24],
and within a scattered population of cells within the gut mes-
enchyme (Fig. 1A, arrows). As development proceeds,
ENCCs differentiate and become organized as a plexus of
ganglia. At E15.5, SOX2 expression is observed in a ring of
cells corresponding to the location of the myenteric plexus
(Fig. 1B, arrows). The submucosal plexus forms at postnatal
stages, and at P3, SOX2 is expressed in two concentric rings
of cells, consistent with expression in the two plexus layers

(Fig. 1C, arrows). Within the adult gut, SOX2 is expressed in
clusters of cells in sites corresponding to the location of en-
teric ganglia (Fig. 1D, arrows). These results suggest that
SOX2 is expressed within the ENS over a broad developmen-
tal time frame.

To verify that SOX2 is expressed within ENCCs, and to
characterize the onset of SOX2 within this population, we
analyzed SOX2 expression within the NCC lineage using
embryos from the WntlCre;Rosa26°™*" background, which
express enhanced yellow fluorescent protein (EYFP) in all
neural crest-derived cells. At E9.5, SOX2 is expressed
throughout the neural tube (NT; Fig. 2A, 2D) and foregut
endoderm (asterisk, Fig. 2D) [24]. Expression of SOX2 is
downregulated in NCCs undergoing their initial migration
from the NT (Fig. 2A-2C, white arrows), consistent with pre-
vious findings [30]. We find that SOX2 is first expressed
within the NCC lineage at E9.5 (Fig. 2). A small number of
individual SOX2-expressing NCCs are observed adjacent to
the ventral NT and dorsal aorta (Fig. 2A-2C, yellow arrow;
Fig. 2D-2F, between yellow arrows and yellow arrowhead),
which may represent precursors of the sympathetic lineage
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E9.5 Wnt1CreR26EYFP

E9.5 Wnt1CreR26EYFP

E10.5 Wnt1CreR26EYFP

Figure 2. SOX2 expression is downregulated in early migratory enteric neural crest-derived cells (ENCCs), but SOX2 is expressed in ENCCs
within the gut. Immunohistochemistry was conducted on sections of E9.5 (A-F) and E10.5 (G-I) embryos from the Wnt/ Cre;Rosa26""" back-
ground, which express enhanced yellow fluorescent protein in all neural crest-derived cells (NCCs), using antibodies for SOX2 (A, D, G) and
GFP (B, E, H). Merged images are shown (C, F, I). (A-C): SOX2 is expressed throughout the NT. NCCs undergoing initial migration from the
neural tube downregulate SOX2 (white arrows). Faint antibody staining is detected in isolated NCCs adjacent to the ventral neural tube (yellow
arrow). (D-F): At positions where ENCCs are observed colonizing the foregut (white arrowhead; foregut endoderm indicated by asterisk), SOX2
expression is not observed in ENCCs. SOX2 expression is observed within small numbers of NCCs at positions between the ventral neural tube
and the dorsal aorta (da; between yellow arrows and yellow arrowhead). (G=I): At E10.5, when ENCCs are migrating extensively through the
gut, SOX2 is expressed in ENCCs at all positions within the gut (yellow arrows, foregut indicated by asterisk). Coexpression of nuclear and cyto-
plasmic GFP (green) and nuclear SOX2 (red) is evident as green cells containing yellow/orange nuclei (see inset in [I], which corresponds to
boxed region). Abbreviations: GFP, green fluorescent protein; NT, neural tube; SOX2, SRY-related homoebox transcription factor 2.
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Figure 3. SOX2 is expressed in all SOX10-expressing enteric neural crest-derived cells and SOX2 expression is excluded from differentiated
neurons. (A-F): Immunohistochemistry comparisons of SOX2 expression with expression of SOX10 (A-D) and enteric neuron markers TUJ1 (E)
and HU (F) on cross sections through the E11.5 midgut (A, E), E15.5 midgut (B, F) and adult midgut (D), and peel preparations of P15 midgut
outer muscle layers (C). (A-D): SOX2 and SOX10 expression is largely overlapping over a broad developmental time course. However, cells
expressing only SOX2 can be identified at embryonic and early postnatal stages ([A—C], arrows). (E, F): SOX2 expression is excluded from cells
expressing TUJ1 and HU. (G-T): Immunostaining on acute cultures of gut tissues from E11.5 (G, J-T), E15.5 (H), and P1 (I) wild-type animals
(G-1, S, T) or WntICre;Rosa26°* embryos (J-R). (G-I): Comparison of SOX2 and SOX10 expression reveals that the majority of SOX2-
expressing cells express SOX10 ([G-I], arrowheads; 72% at E11.5, 79% at E15.5, and 85% at P1) but that a distinct population expressing only
SOX2 is evident (SOX2" SOX10™; [G-I], arrows). (J-L): Analysis of acute cultures from WntlCre;:Rosa26°Y"™" shows that all SOX2-expressing
cells express green fluorescent protein (GFP) and are therefore derived from the neural crest (white arrow, white arrowhead). SOX2-expressing
cells either coexpress SOX10 (white arrowhead) or do not (white arrow). GFP-expressing SOX2~SOX10~ cells (yellow arrowhead) have projec-
tions characteristic of differentiated neurons (yellow arrowhead). (M=0): SOX2 is expressed in neural crest-derived cells displaying punctate
TUJI staining (arrow) but not in cells displaying a normal TUJ1 pattern ([J, K], yellow arrow). (P-R): SOX10 is expressed neither in cells dis-
playing a punctate pattern of TUJ1 staining (white arrow) nor in cells displaying normal uniform pattern of TUJ1 staining (yellow arrow).
SOX10 is expressed in cells that do not express TUJ1 (arrowhead). (S, T): Cells exhibiting a punctate pattern of TUJ1 staining also express Ki67
(arrows), and are therefore still within active phases of the cell cycle, whereas cells displaying a normal TUJ1 pattern do not express Ki67
(arrowheads), and are therefore postmitotic. Abbreviations: GFP, green fluorescent protein; SOX2, SRY-related homoebox transcription factor 2;
SOX10, SRY-related homoebox transcription factor 10.



Heanue and Pachnis

E11.5 acute

E15.5 acute

P1 acute

Figure 4. SOX2 is expressed in enteric nervous system (ENS) progenitors and glial cells. Immunostaining on acute cultures from E11.5 (A-D),
E15.5 (E-H), and P1 (I-K) gut tissues using markers of ENS progenitors (SOX10, [A]), neural differentiation (HU, TUJ1, 2H3, [B-F]), and glial
cell differentiation (BFABP, S100, GFAP, [G-K]). (A): SOX10 is expressed in the majority of SOX2-expressing cells at E11.5. Expression of
neural markers HU, TUJ1, and 2H3 are excluded from SOX2-expressing cells at E11.5 (B-D) and E15.5 (E, F). (G, H): At E15.5, a large pro-
portion of SOX2-expressing cells coexpress BFABP (54%, arrowheads [G]) and S100 (43%, arrowheads [H]). (I-K): At P1, almost all SOX2+
cells express markers of progressive glial cell differentiation, BFABP (99%, [I]), S100 (95%, [J]), and GFAP (32%, [K], arrowheads). Abbrevia-
tions: BFABP, brain fatty acid binding protein; GFAP, glial fibrillary acidic protein; SOX2, SRY-related homoebox transcription factor 2;

SOX10, SRY-related homoebox transcription factor 10.

[31]. However, NCCs invading the foregut do not express
SOX2 (Fig. 2D-2F, white arrowhead). By E10.5, however,
SOX2 is expressed in ENCCs at all positions within the gut,
including the cells at the front of migration (Fig. 2G-2I,
arrows).

SOX2 Is Expressed in ENS Progenitors

To further characterize SOX2 expression in the ENS, we
compared expression of SOX2 with that of known ENS
markers. SOX10 represents an established marker of ENS
progenitors and enteric glial cells [11, 26, 32]. During pro-
gressive stages of ENS development, all SOX10-expressing
cells coexpress SOX2 (Fig. 3A-3C), indicating that SOX2 is
expressed in ENS progenitors. We also identify a small popu-
lation of cells that express SOX2 but are negative for SOX10
(SOX2" SOX10; arrows in Fig. 3A-3C). By adult stages,
SOX2 and SOX10 show completely overlapping expression,
and contrary to findings at embryonic stages, we were unable
to identify any SOX2" SOX10~ cells (Fig. 3D). Comparison
of SOX2 expression with that of the neural markers HU and
TUJ1 shows that, like SOX10, SOX2 is not expressed within
neural populations of the ENS (Fig. 3E, 3F) [26]. These data
reveal that SOX2 is expressed in ENS progenitors and offer
suggestive evidence that SOX2 is also expressed within
enteric glial lineages.

To further characterize the SOX2" SOX10~ population,
we analyzed expression in short-term (acute) cultures of
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embryonic and postnatal tissues. SOX2 and SOX10 are co-
expressed in the majority of cells, that is, at E11.5, 72% of
SOX2-expressing cells coexpress SOX10 (Fig. 3G, also
Fig. 4A). As development proceeds, the proportion of SOX2/
SOX10 coexpressing cells increases from 79% at E15.5 to
85% at P1. (Fig. 3H, 3I). Accordingly, the SOX2" SOX10~
population decreases during development (from 28% to 21%
to 15% at E11.5, E15.5, and P1, respectively).

We verified that all SOX2-expressing cells are derived
from NCCs using acute cultures established from EI11.5
WntlCre;Rosa26°""" embryonic midgut and hindgut and
show that all SOX2-expressing cells are EYFP' (data not
shown and Fig. 3J, 3K, 3M, 3N). This analysis further
identified three distinct populations of neural crest-derived
cells, that is, cells coexpressing SOX2 and SOX10
(SOX2"SOX10", 68.1% of GFP" cells; Fig. 3J-3L, white
arrowhead), cells that express only SOX2 (SOX2* SOX10~,
15.6% of GFP™ cells; Fig. 3J-3L, white arrow), and cells that
express neither SOX2 nor SOX10 (SOX2™ SOX107, 16.3%
of GFP* cells; Fig. 3J-3L, yellow arrow). SOX2*SOX10"
cells show no TUJ1 staining and represent ENS progenitors
(arrowhead in Fig. 3P, 3R; Fig. 4C and data not shown).
SOX2" SOX10~ cells show punctate TUJ1 expression
(Fig. 3M-30, white arrow). The fact that SOX10 is not
expressed in such cells (Fig. 3P-3R, white arrow) demon-
strates that these cells are not progenitor cells or glial cells
[11, 26, 32] and indicates that they belong to the neural line-
age, consistent with the presence of TUJ1 expression.



134

However, because a normal TUJ1 pattern is not observed, we
conclude that such cells are undifferentiated cells of the neu-
ral lineage or cells undergoing early neuronal differentiation.
Consistent with this conclusion, we show that cells exhibiting
punctate TUJ1 (SOX2* SOX107) are Ki67" (Fig. 3S, 3T,
arrows), indicating that they are still within active phases of
the cell cycle. SOX2~ SOX10™ cells have differentiated as
neurons and have neuronal morphology and display a normal
profile of TUJ1 expression (yellow arrow in Figs. 3J-3L, 3P—
3R, 4C). Cells expressing this normal TUJ1 profile are Ki67~
(Fig. 3S, 3T; arrowheads), reflecting the fact that they are
postmitotic. Taken together, these results indicate that SOX2
is expressed in ENS progenitors and undifferentiated or early
differentiating cells of the neural lineage, but it is excluded
from differentiated neurons.

SOX2 Is Expressed in Glial Cells

The coexpression of SOX2 and SOX10 during later embryo-
nic stages (Fig. 3H, 3I), and the expression of SOX2 in non-
neural ENCCs (Fig. 3E, 3F), suggested that SOX2 is also
expressed in glial cells. We tested this idea directly by com-
paring SOX2 expression with markers of neural versus glial
cell differentiation. SOX2 expression is absent from cells
expressing the pan-neural markers HU, TUJ1, and neurofila-
ment (2H3; Fig. 4B—4F). In contrast, all cells expressing glial
cell markers, such as BFABP, S100, and GFAP, express
SOX2 (arrowheads in Fig. 4G—4K; supporting information
Fig. 1).

Glial cell differentiation can be tracked through progres-
sive acquisition of glial cell markers, the first being BFABP,
followed by S100b, and last GFAP [16]. At E15.5, 54% of
SOX2-expressing cells express the early glial cell marker
BFABP. S100 identifies further differentiated glial cells and
marks 43% of SOX2-expressing cells. At PO, 99% and 95%
of SOX2-expressing cells express BFABP and S100, respec-
tively, and 32% of SOX2-expressing cells coexpress the
mature glial cell marker GFAP. Taken together, our results
show that SOX2 is expressed in all glial cells and identifies
both early differentiating and mature glial cells.

ENCCs Can Be Selected on the Basis
of Sox2 Expression

Our results demonstrate that SOX2 represents a novel marker
of enteric progenitor cells within the embryonic and/or post-
natal ENS. Therefore, we reasoned that we might be able to
identify and select for ENS progenitors on the basis of SOX2
expression. Toward this end, we analyzed the Sox2#4¢° line, a
knock-in of a f§ galactosidase/neomycin-resistance fusion gene
(Pgeo) into the Sox2 locus [24], for potential use to allow
selection of Sox2-expressing ENS progenitors. LacZ staining
on sections of E14.5 Sox2"$”/* embryos demonstrates that
the figeo transgene is expressed within the ENS. Punctate
LacZ staining is detected in regions corresponding to the
myenteric plexus (Fig. 5A, 5B, arrows) and that are distinct
from the previously described foregut endoderm expression of
SOX2 [24] (Fig. 5B, e).

We harnessed the expression of the fgeo transgene within
Sox2-expressing ENS population to place midgut and hindgut
tissues derived from Sox2”¢”’* embryos under G418 selec-
tion, thereby eliminating any non-Sox2-expressing cells but
allowing survival and expansion of neomycin-resistant
ENCC-derived Sox2-expressing cells. We established primary
gut cultures from E14.5 Sox2P¢°”’* embryos using protocols
that promote the expansion of ENCCs relative to other gut-
derived cell types [26]. Following 2 days of culture, G418
was added to the culture media. At this point, Sox2-expressing
cells comprise 3.3% of the cells in the culture (data not
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shown). After 4 days, cells were analyzed by LacZ staining,
which revealed dramatic enrichment of fgal-expressing cells
relative to untreated control cultures (compare Fig. 5D with
Fig. 5C). Bright field examination of these cultures shows
that untreated control cultures contain clusters of large smooth
muscle cells (arrows in Fig. 5E). In cultures treated with
G418, smooth muscle cells are absent, and the gaps observed
in the cultures (asterisk in Fig. 5F) likely correspond to sites
where non-Sox2-expressing smooth muscle cells were elimi-
nated by addition of G418. After 7 days, untreated cultures
contain 8.4% Sox2-expressing cells, whereas G418-treated
cultures contain 96.1% Sox2-expressing cells (data not
shown). Similar results were obtained by culturing Sox2P$¢°/+
tissues derived from E11.5 embryos and from peels of the
myenteric layer of postnatal and adult guts (data not shown).
These data suggest that G418 selection of Sox2%$°'* tissue
cultures leads to massive enrichment of Sox2-expressing cells
and loss of non-ENCC cell types, such as smooth muscle
cells. Moreover, Sox2P4¢° seven cells can be maintained and
expanded in culture for at least 2 months (data not shown),
suggesting the potential for long-term culture and generation
of large numbers of Sox2-expressing cells.

Analysis of ENCC marker gene expression within control
and G418-treated Sox2”¢°”’* embryonic gut cultures reveals
that ENCC-derived cell types are dramatically enriched
through this selection protocol. At the start of culture,
SOX10-expressing cells represent 2% of cultured cells,
whereas TUJ1-expressing cells represent 1.7% of cultured
cells and S100-expressing cells are undetected (data not
shown and supporting information Fig. 2A, 2B). After just 2
days of culture, G418 selection quickly leads to large
increases in the proportion of SOX10-expressing cells within
the culture (41.2% vs. 9.3% in untreated controls; data not
shown), and after 7 days of selection, 75.1% of cells express
SOX10 versus 5.2% in untreated controls (data not shown
and supporting information Fig. 2C, 2E). On 7 days of G418
selection, 14.4% of cells are found to express TUJ1 versus
1.7% in untreated control cultures (data not shown). Consist-
ent with the fact that fully differentiated neurons do not
express SOX2, no neurons expressing high levels of TUJ1 are
found in G418-treated cultures, although these are evident in
control cultures (Fig. 6A, 6B, arrows; supporting information
Fig. 2D, 2F). Presumably, following loss of SOX2 expression
on complete neuronal differentiation (transition from low
to high levels of TUJ1), neurons are eliminated. On removal
of G418 selection, however, cells are capable of differ-
entiating as neurons expressing high levels of TUJ1 and
possessing long neuronal processes (supporting information
Fig. 2G).

The proportion of glial cells also increases on selection;
following 2 days of G418 selection, 16.3% of cells express
S100 versus 6.3% in untreated control cultures (Fig. 6C, 6D;
data not shown), and after 7 days of culture, 23.1% express
S100 versus 4.3% in controls (data not shown and supporting
information Fig. 2C, 2E). It is significant that the culture con-
ditions used here favor progenitor cells over differentiated
cell types [26], so although glial cells express SOX2 and have
the potential to constitute a large portion of the selected popu-
lation, the culture conditions used here keep glial cell num-
bers relatively low.

Together, these data show that we have established a pro-
tocol for selecting and expanding Sox2-expressing ENCCs in
culture (hereafter referred to as Sox2”4° cells). Using our pro-
tocol, cultures are enriched for SOX27SOX10™ ENCCs,
which represent both ENS progenitors and glial cells, and
show a striking absence of differentiated neurons in the
population.
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Sox2feeo+ culture
+G418

Figure 5. Sox2Peeol* mice express the fgeo transgene within the enteric nervous system (ENS), thus allowing selection of Sox2-expressing cells

in culture. (A, B): f galactosidase staining on sections of E14.5 intestine (midgut; [A]) and stomach (foregut; [B]) from Sox2Pseol+ embryos

reveals expression of the fgeo transgene (blue cells) within normal sites of Sox2 expression, the ENS (arrows), and the foregut endoderm (e).
(C): f galactosidase staining on primary cultures established from E14.5 Sox2Pseol+ embryos reveals the presence of cells expressing the fgeo
transgene (blue cells). (D): Primary cultures from E14.5 Sox2Peeort midgut and hindgut tissue treated with G418 display a massive enrichment of
cells expressing the fgeo transgene. (E, F): Bright field images of primary cultures established from E14.5 Sox2P$°”"" reveals the presence of
large flat cells that correspond to smooth muscle cells ([E], arrows), which are absent in cultures treated with G418 (F). Asterisk indicates voids
present in G418-treated cultures that are likely to represent sites where G418 eliminated non-Sox2-expressing smooth muscle cells (F). LacZ indi-
cates f galactosidase staining.

Bgeo :
Sox2 Cells Possess Migratory and est to further characterize the properties of these cells follow-

Differentiation Potential ing transplantation into animal models.

The development of a protocol for generating enriched popu- We tested the migratory and differentiation properties of
lations of ENS progenitors lends itself well for modeling Sox2P¢® cells following transplantation into the murine gut.
strategies for stem cell replacement therapies for diseases of To distinguish transplanted cells from the endogenous ENS,
the ENS, such as HSCR. It is therefore of considerable inter- we have generated Sox2P4¢° cells from animals that are
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Sox2°eeo* culture
+G418

Sox2feeo’+ culture
+G418

Figure 6. Sox2”#°° cell cultures are enriched for enteric neural crest-derived cell and glial cells and do not contain mature neurons. Immuno-
staining of primary cultures derived from E14.5 Sox2Pseol+ midgut and hindgut tissues after 4 days without treatment (A, C) or treated with
G418 (B, D) using markers of neural (TUJI, [A, B]) and glial cell development (S100, [C, D]). (A): Fully differentiated TUJ1-expressing neurons
(arrowhead), which are characterized by strong staining and multiple elaborated cell processes (arrows), are frequently observed in untreated cul-
tures derived from Sox2”¢¢”/* embryos. (B): Following treatment with G418, cells that express TUJ1 do so at low levels (arrowheads) and do not
contain elaborated processes characteristic of differentiated neurons but contain only short processes (arrow). (C, D): The proportion of S100-

expressing cells (arrowheads) is increased following treatment with G418.

expressing EYFP in all cells (Sox2#¢¢”/"; B6.Rosa26°Y""/ ),
so that transplanted cells can be identified on the basis of
their fluorescence. A small number of Sox2/#° cells were
grafted into the stomach region of explanted E11.5 guts. After
4 days in culture, guts were examined to identify EYFP"
Sox2P¢ cells. EYFP" cells can be observed in the midgut
(Fig. 7A, 7B) and distal hindgut (Fig. 7A, 7C), indicating that
Sox2Ps¢° cells are capable of migrating over long distances
through the developing gut. Transplantation of hundreds of
EYFP" Sox2P%°° cells into the relatively ENS-sparse cecum
region, between the midgut and hindgut, shows clearly that
transplanted Sox2”%° cells express TUJ1 and have long pro-
jections characteristic of fully differentiated neurons (Fig. 7D,
7E). Moreover, transplanted Sox27¢¢ cells are closely associ-
ated with endogenous, non-EYFP-expressing neurons (Fig.
7D, 7E). Finally, we have tested the capacity of Sox2%¢°° cells
to migrate within uncolonized gut regions of E11.5 hindgut
and E12.5 distal hindgut [29], an established model of agan-
glionic gut regions [18, 33], and demonstrate that Sox2Pgee
cells are capable of migrating from the site of transplantation
(Fig. 7F, 7G, asterisks) along the length of these gut regions
(Fig. 7F, 7G, arrows). Taken together, these results demon-
strate that Sox2P¢¢° cells possess key properties of ENS pro-
genitors, such as migratory potential and differentiation poten-
tial and are capable of colonizing aganglionic gut regions.

DiscussioN

We have established SOX2 as a novel marker of ENSs pro-
genitor cells and their glial cell derivatives. The expression
profile of SOX2 shows high degrees of similarity to that of
SOX10, a well-established enteric progenitor and glial cell
marker. Furthermore, we have demonstrated that cells selected
on the basis of Sox2 expression (Sox2P%¢ cells) have charac-
teristics of ENS progenitors and are capable of migrating and
differentiating following transplantation into a gut environ-
ment. Therefore, Sox2#%¢ cells will be useful tools in efforts
to model stem cell replacement therapies.

Coexpression of SOX2 and SOX10 in ENS
Progenitors and Glial Cells

The profile of expression we describe for SOX2 in ENS pro-
genitors and enteric glial cells is largely overlapping with that
described for SOX10, with two notable differences. First,
SOX10 is expressed in NCCs as they delaminate from the NT
and continues to be expressed in migratory NCCs during
migration into the developing gut. In contrast, SOX2 expres-
sion, which is found throughout the NT, is downregulated
among delaminating and early migrating NCCs. However, on
reaching the developing gut, SOX2 is upregulated and from
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LacZ -/ LacZ

Figure 7. So0x2P%¢° cells possess migratory and differentiation potential. (A—E): Immunostaining of cultured wild-type guts 4 days after trans-
plantation of enhanced yellow fluorescent protein (EYFP)-expressing Sox2P¢°® cells into the E11.5 gut, using GFP to detect transplanted cells and
TUJ1 to detect differentiated neurons (B, C, E). (F, G): LacZ detection of Sox2”¢°° cells transplanted into uncolonized regions of the E11.5
hindgut and E12.5 distal hindgut. (A): Following transplantation of a small number of cells (less than 50) into the stomach (s) of an explanted
gut, EYFP-expressing cells (in green) can be observed in the midgut (m; yellow arrows in area bounded by box B) and distal hindgut (h; yellow
arrows in area bounded by box C). (B, C): GFP and TUJ1 immunostaining in higher magnification view of box B and C in (A) shows trans-
planted GFP™ Sox2Pee cells among endogenous TUJ1-expressing enteric neurons (in red). (D): The site of transplantation of hundreds of cells
into the enteric nervous system-sparse cecum region (c), between the midgut (m) and the hindgut (h; see inset E) is identified by intense GFP
expression (green arrow). Transplanted EYFP-expressing Sox2P2¢ cells have migrated away from the site of transplantation (yellow arrows). (E):
GFP and TUJ1 immunostaining in higher magnification view of box E in (D) shows clearly that transplanted EYFP-expressing Sox2%¢°° cells
express TUJ1 (arrows) and possess long processes. The transplanted TUJ1-expressing cells (in yellow) are found in close association with endog-
enous TUJ1-expressing neurons (in red). (F, G): Following transplantation of Sox2”%¢° cells into the proximal region of the E11.5 HG (F) or
E12.5 distal hindgut ([G], blue arrows, asterisks), cells migrate to the distal end of the gut segment (black arrows). Abbreviations: GFP, green
fluorescent protein; HG, hindgut.

this point onward, SOX2 and SOX10 show extensive overlap lineage or early differentiating neurons, whereas SOX10 is
in expression. A second notable exception is that SOX2 is not. So, although SOX2 and SOX10 are both downregulated
transiently expressed in undifferentiated cells of the neural on neural differentiation, SOX10 is downregulated more
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rapidly. Consistent with this finding, in the spinal cord,
expression of the SOX B1 group proteins (SOX1, SOX2,
SOX3) is only gradually extinguished as neural differentiation
proceeds [34], whereas SOX10 is more tightly downregulated,
such that SOX10 is only transiently coexpressed in a few
cells that express early differentiation markers such as
MASHI [35]. Whether isolated expression of SOX2 simply
identifies early commitment to neuronal differentiation within
the ENS or has an additional role in regulating this process
warrants further investigation. The expression profiles of
SOX2 and SOXI10 in the developing ENS glial lineages are
indistinguishable. Thus, despite the extensive overlap between
SOX2 and SOX10 expression, the existence of two significant
differences in their expression profiles suggests differences in
the regulation of these two related proteins. Whether differen-
ces in regulation may reflect differences in function remains
to be determined.

At postnatal stages, the vast majority of SOX2" cells are
glial cells. However, we also identify a small population of
postnatal SOX2 cells that do not express glial markers (rep-
resenting 1% of the SOX2* population at P1). These cells
may represent early differentiating neurons or ENS progeni-
tors that are known to exist within these tissues [26]. Interest-
ingly, studies show that ENCCs that express neither neural
nor glial cell markers (PGP9.5 and S100b, respectively) com-
prise 1.7% of the PO ileum and 4.7% of the PO colon and are
proposed to represent ENS progenitors [16]. Given the simi-
larities in numbers, we suggest that SOX2" cells in the post-
natal gut that do not express glial cell markers may corre-
spond to ENS progenitors. This population may be the source
of multilineage progenitors found within cultures of postnatal
gut tissues [26] and could also constitute the source of neuro-
genic progenitors identified in the adult [36].

Profiles of SOX2 Expression Vary Between
Regions of the Nervous System

Comparing the expression profile of SOX2 in the ENS with
the expression profile of SOX2 in other nervous system
regions reveals some clear similarities and some striking dif-
ferences. SOX2 has been studied most extensively within the
CNS, where it is expressed in early neuronal progenitors, in
neural stem cells, and in small numbers of mature neurons,
but only rarely in CNS glial cells [37, 38]. In the dorsal root
ganglia (DRG) of the PNS, SOX2 is expressed on arrival of
migrating NCCs to the DRG [39], turned off in differentiated
neurons but maintained in glial cells [39, 40]. Thus, our
observations of SOX2 expression within developing ENS are
more similar to SOX2 expression during DRG development,
rather than in CNS development. However, a notable differ-
ence is that while SOX2 is expressed in adult ENS glial cells,
glial cells differentiated within the adult DRGs (Schwann
cells and satellite glial cells) do not express SOX2 [40]. Inter-
estingly, in both cases, adult glial cells express SOX10 (Fig.
3D; [40]. Thus, although the expression profile of SOX10 is
consistent in the adult ENS and DRG glial cells, the expres-
sion profile of SOX2 is different. Taken together, our studies
uncover a distinct profile of SOX2 within a nervous system
lineage.

Possible Functional Roles for SOX2 in the ENS

In general, the SOXB1 family members (SOX1, SOX2,
SOX3) and SOXE family members (SOX8, SOX9, SOX10)
are thought to have distinct functions [23]. For example,
SOXBI1 proteins are expressed in largely overlapping patterns
in the CNS [30] and function as neural competence factors
and are required for neural stem cell maintenance [34, 41,
42]. SOXE proteins are also expressed in overlapping patterns

Sox2 to Isolate Enteric Nervous System Progenitors

in the CNS, just prior to the onset of gliogenesis, initially in
the presence of SOXB1 proteins and are required for gliogen-
esis [43, 44]. In different regions of the nervous system (CNS
vs. PNS), however, the same SOX proteins are thought to
have different functions [23]. For example, in the PNS,
SOXE proteins are expressed in migrating neural crest pro-
genitor cells where they function to maintain pluripotency and
suppresses neuronal differentiation [8, 35, 41, 45]. The role in
maintaining pluripotency is therefore similar in SOXB1 pro-
teins in the CNS and SOXE proteins in the PNS. Our data
suggest that SOXB1 proteins may play similar roles in pro-
genitors in the CNS and PNS, as SOX2 is expressed in both
CNS and ENS progenitors. Moreover, expression of SOX3 in
the developing ENS (SOXI1 is not apparently expressed in the
ENS; data not shown) suggests that a possible role for
SOXBI1 proteins in the ENS may extend beyond SOX2.

It has been proposed that SOXB1 proteins and SOXE pro-
teins have opposing functions within NCCs [46]. This point is
illustrated by the fact that overexpression of SOX2 blocks
NCC formation [39], whereas overexpression of SOX9 leads
to overproduction of premigratory NCCs [47]. At these time
points, SOX2 and SOX10 have mutually exclusive expression
profiles, with SOX2 downregulated in SOX10-expressing pre-
migratory and early migratory NCCs. At later time points,
when SOX2 and SOX10 are coexpressed in ENS progenitors
and in the glial cell lineage, it is possible that these two pro-
teins are no longer acting antagonistically but rather have
similar or even cooperative functions.

Sox10-deficient mice have a complete absence of ENS in
the gut due to extensive cell death within the vagal NCCs
[11, 48-50], and SoxI0™~! mice exhibit aganglionosis of the
distal colon, due to loss of ENS progenitors [45, 51]. Despite
overlapping expression of SOX2 and SOX10, it is clear that
SOX2 cannot compensate for loss of SOX10 during these
early stages of ENS development. No functional requirement
for SOX2 in ENS development has been revealed using
mouse genetic techniques, perhaps confounded by the fact
that although Sox2 heterozygous mice (such as Sox2/%¢/")
are viable and have an apparently normal ENS (data not
shown and supporting information Fig. 3), Sox2~/~ embryos
die at implantation stages [24]. Further study will require the
use of Sox2 hypomorphic mutations [37] or conditional Sox2
mutations [52]. Finally, although Sox10"~1 mice do not have
obvious defects in gliogenesis, SoxI0""1:Sox8/~1 mice ex-
hibit apparent reductions in glial cell number [45]. Whether
glial cell differentiation phenotypes would be compounded by
additional mutations in Sox2 would be of great interest.

SOX2 As a New Tool to Identify ENS Progenitors

Critical first steps in developing human cell replacement
therapies for HSCR are to establish methods to identify and
characterize ENS progenitors, and to use animal models to
study the potential of these cells on transplantation. A number
of techniques have been developed to isolate ENS progenitors
from murine or human sources, including selection based on
cell surface marker expression, cell culture techniques that
favor growth of progenitors, and selection on the basis of pro-
liferative capacity [2, 17]. A limitation to these approaches is
that cells are available in small numbers, and can represent
mixed cell populations, containing differentiated cells along
with progenitors. Still other techniques aim to use embryonic
stem cells or neural stem cells as ENS progenitors [2, 17, 53].
Although these techniques have the capacity to grow cells in
large numbers, their usefulness depends on the ability to
purify cells of specific ENS progenitor potential, a technique
that has yet to be established.
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The approach we describe here attempts to circumvent
previous limitations. Having identified SOX2 as a marker of
enteric progenitor cells, we combined genetic and cell culture
techniques to enable a Sox2-expressing population to be
selected. Such cells can be expanded and passaged in culture
for months, and thus provide ENS progenitors in large num-
bers. Selection on the basis of Sox2 expression has the added
benefit of limiting the number of neurons present in the popu-
lation, thus reducing the heterogeneity of the population. The
usefulness of this strategy in obtaining cells with appropriate
progenitor properties is demonstrated by the fact that cells
transplanted into the gut can migrate, differentiate, and estab-
lish close associations with the endogenous ENS. Moreover,
such cells are capable of colonizing aganglionic gut regions.
Recent experiments using a similar approach to select embry-
onic cells on the basis of Sox/0 expression has also success-
fully enriched for cells with migratory and differentiation
potential [54]. We suggest that these techniques will facilitate
the development of cell replacement therapies in animal mod-
els, a critical first step in developing methods to be used in
treating human HSCR patients.

CONCLUSION

We have identified SOX2 as a novel marker of enteric pro-
genitor cells and glial cells, a finding that will facilitate the
study of ENS progenitors. In addition, we have used a selec-
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