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Nervous tissues from both humans with neurodegenerative diseases (NDD) and animals
with genetic models of human NDD, such as rare monogenic causes of Amyotrophic
Lateral Sclerosis (ALS), Alzheimer’s disease (AD), and Parkinson’s disease (PD), show
activated microglia, suggesting a potential causal role for inflammation in pathogenesis
of NDD. We performed paired-end (PE) RNA sequencing (RNA seq) of total RNA’s
extracted from frozen sections of cervical spinal cords from ALS and CTL subjects,
frontal cortical gray matter ribbons of AD and CTL subjects, and ventral midbrains
of PD and CTL subjects. Trimmed PE reads were aligned against the hg38 human
transcriptome using Tophat2/Bowtie2 (ALS) or HISAT2 (AD and PD) and quantitated
with Cufflinks. PE reads were also aligned using Bowtie2 against genomes from
representative species of Toxoplasma gondii and Trichinella sp. T6 (parasitic infectious
agents), Babesia microti and Borrelia burgdorferi (tick-vector borne agents), and
Treponema denticola and Porphyromonas gingivalis, agents causing chronic gingivitis.
Primary aligned reads of each agent in each tissue sample were quantitated with
SAMtools. We found small percentages (<0.1%) of transcriptomes aligned with
B. microti, B. burgdorferi, T. denticola, and P. gingivalis genomes and larger percentages
aligned with T. gondii (0.1–0.2%) and Trichinella sp. T6 (1.0–1.1%) genomes. In AD
specimens, but in no others, primary aligned transcriptome percentages, although
small, approached significance for being greater in AD compared to CTL samples
for B. burgdorferi (p = 0.067) and P. gingivalis (p = 0.068). Genes’ expressions in
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postmortem tissues of AD and ALS but not PD revealed significant changes among
disease-associated microglial (DAM) genes. Infectious agents’ transcripts can be
detected in RNA seq reads of both NDD and CTL tissues and vary from agent to agent.
Expressions of Stage 1 and Stage 2 DAM genes significantly changed, suggesting the
presence of Stages 1 and 2 DAM in our NDD tissue samples.

Keywords: neurodegeneration, microglia, ALS, Alzheimer’s disease, Parkinson’s disease, gene expression

INTRODUCTION

Microglia are CNS-resident immune cells that can serve both
beneficial (reduction of immune responses) and detrimental
(activation of neurotoxic immune responses) functions (all
references cited are restricted to those of last 3 years, 2016–2018)
(Asiimwe et al., 2016; Beamer et al., 2016; Calsolaro and Edison,
2016; Casas et al., 2016; Chen S.H. et al., 2016; Chen W.W et al.,
2016; Puentes et al., 2016; Ransohoff, 2016; Rothaug et al., 2016;
Su et al., 2016; Toledano et al., 2016; Trias et al., 2016; Ulrich and
Holtzman, 2016; Wes et al., 2016; Au and Ma, 2017; Bagyinszky
et al., 2017; Bickford et al., 2017; Blank and Prinz, 2017; Blaylock,
2017; Bolos et al., 2017; Cerami et al., 2017; Clayton et al., 2017;
Collier et al., 2017; Colonna and Butovsky, 2017; Du et al., 2017;
Guerriero et al., 2017; Han et al., 2017; Herz et al., 2017; Jay
et al., 2017; Joers et al., 2017; Keren-Shaul et al., 2017; Kober
and Brett, 2017; Koellhoffer et al., 2017; Labandeira-Garcia et al.,
2017; Lall and Baloh, 2017; Lannes et al., 2017; Nissen, 2017;
Plaza-Zabala et al., 2017; Roser et al., 2017; Sochocka et al., 2017;
Sorce et al., 2017; Spittau, 2017; Thompson and Tsirka, 2017;
Tse, 2017; van Horssen et al., 2017; Wolf et al., 2017; Yan et al.,
2017; Yang et al., 2017; Aguilera et al., 2018; Baufeld et al., 2018;
Bisht et al., 2018; Crisafulli et al., 2018; Deczkowska et al., 2018;
Edison and Brooks, 2018; Labzin et al., 2018; Maccioni et al.,
2018; Niranjan, 2018; Selles et al., 2018; Solleiro-Villavicencio and
Rivas-Arancibia, 2018; Spagnuolo et al., 2018; Taylor et al., 2018).

Because activated microglia can produce known neurotoxic
substances, such as tumor necrosis factor alpha (TNF-α)
(Asiimwe et al., 2016; Islam, 2017; Tse, 2017), microglial presence
has suggested that immune-mediated neurodegeneration may
contribute to disease origin and/or progression in human
neurodegenerative diseases (NDD) (op cit above).

By sorting brain immune cells and carrying out massively
parallel RNA sequencing (RNA seq) on these cells over the
course of disease progression in the 5X FAD mouse model of
human AD Keren-Shaul et al. (2017), demonstrated the TREM2-
independent (“Stage 1”) and subsequent TREM2-dependent
(“Stage 2”) emergence of “disease-associated microglia,” or DAM,
during clinical and pathological progression (TREM = “triggering
receptor expressed on myeloid cells”).

Such DAM appeared to originate from “homeostatic”
microglia (see Figure 6 in Keren-Shaul et al., 2017), then
due to unknown causes, progressed to Stage 1 DAM by
TREM2-independent mechanisms, followed by TREM2-
mediated progression into Stage 2 DAM. At Stages 1 and 2,
DAM exhibited unique genotypes, consisting mainly of up-
regulated genes. Deczkowska et al. (2018) subsequently reviewed
the field of DAM.

We acquired postmortem samples of CNS tissues from
sporadic NDD cases and carried out moderate-high density
PE RNA sequencing on total RNA to seek systems biology
understandings of disease pathogenesis in ALS, AD, and PD
(Bennett et al., 2016; Brohawn et al., 2016; Bennett and Keeney,
2017; Ladd et al., 2017) (see also1).

We now sought to query these data to test the hypothesis
that subclinical CNS infections with common agents could be
associated with microglial activation and presence of DAM. To
do so, we sought (using the Bowtie2 aligner) to determine if
any of the PE RNA seq reads aligned with bacteria or parasite
genomes downloaded from the NIH genome site. We then
assayed the expression in each NDD tissue sample (of CTL) of
genes associated with homeostatic microglia, Stage 1 or Stage 2
DAM as defined by Keren-Shaul et al. (2017).

RESULTS

In our RNA seq studies we obtained between ∼56 and ∼172
million PE reads (based on Bowtie2 alignments). From these PE
reads, we found wide variation in the number of reads primarily
aligned with infectious agents’ genomes. When expressed as
% of total PE reads, we observed between ∼3.2 × 10−6

(B. microti) and ∼1.1 (Trichinella sp. T6). These results are
summarized in Figures 1, 2, which show mean % aligned
reads in each of the three NDD tissue specimens, expressed
as mean ±SEM. In the case of AD frontal cortex samples,
but in no others, we observed a difference between AD and
CTL cases for Borrelia burgdorferi and Porphyromonas gingivalis
that approached significance (p = 0.067 for B. burgdorferi and
p = 0.068 for P. gingivalis, both by unpaired t-test). In no
other pair did we observe a situation where NDD >CTL for
transcript abundance of infectious disease agents. Because all
of our total RNA extracts were treated with DNAase and used
cDNA’s generated for multiplex RNA seq reads, we are confident
that alignments represent NDD tissue transcripts (i.e., RNA)
aligned to infectious agent genomes (i.e., DNA). We did note a
substantial difference in abundance of transcripts aligned to the
genome of Trichinella sp. T6 compared to all others examined.

In the second part of our study, we examined expressions
of genes associated with homeostatic microglia and Stage 1
and Stage 2 disease-associated microglia (DAM), as defined by
Keren-Shaul et al. (2017); see their Figure 6) and discussed by
Deczkowska et al. (2018). Figure 3 (ALS), Figure 4 (AD), and

1http://ndtherapeutics.org/rna-sequencing-of-parkinsons-ventral-midbrain-to-
estimate-gene-expression-reveals-marked-heterogeneity-and-gadd45a-as-a-
potential-therapeutic-target/
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FIGURE 1 | Bar charts of % of total PE reads that aligned in Bowtie2 to the
genomes of Babesia microti, Borrelia burgdorferi, Porphyromonas gingivalis,
and Treponema denticola. Shown are mean % +SD.

FIGURE 2 | Bar charts of % of total PE reads that aligned in Bowtie2 to the
genomes of Toxoplasmosis gondii and Trichinella sp. T6. Shown are mean %
+SD.

Figure 5 (PD) show the results of our RNA seq studies of gene
expressions associated with (a) homeostatic microglial genes (top
graph in each Figure); (b) expression of Stage 1 DAM genes
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(middle graph in each Figure); and (c) expression of Stage 2
DAM genes (lower graph of each Figure). Each gene’s expression
is shown as % of mean CTL tissue samples expression (±SEM)
for each postmortem tissue. ALS gene expressions were derived
from a Tophat2/Bowtie2/Cufflinks pipeline and the AD and PD
expressions were derived from a HISAT2/Cufflinks pipeline. In
all cases the genes were aligned against the most current available
(hg38) version of the human genome.

Two-way ANOVA tests showed significant variation by gene
for the ALS (homeostatic microglial, Stages 1 and 2 DAM) and
AD (homeostatic microglial and Stage 1 DAM) samples but
not for the PD samples. Individual unpaired t-tests revealed
significant changes for all gene groups in the ALS and two gene
groups in the AD, but none for the PD samples. We note that
for the Stage 1 DAM analysis in the AD samples, we found a
significant decrease in expression of P2RY12 (purinergic receptor
P2Y12), also observed by Keren-Shaul et al. (2017).

DISCUSSION

By querying ∼52 to ∼172 million RNA seq paired-end (PE)
reads in tissues from the three major adult NDD’s, we found that
highly variable numbers of primary alignments could be found
for several infectious agents known to affect humans. This is a
limited list of infectious agents, and we appreciate that others
could have been selected. These agents were selected based on
documented infections in humans and availability of genomes.
CNS involvement with parasitic infections, in particular, is
known for Toxoplasma and Trichinella (Dzikowiec et al., 2017).

Our initial study of this approach yielded both very low
frequencies of alignments (for B. burgdorferi, P. gingivalis, and
Treponema denticola) and much higher alignment frequencies
(for Trichinella sp. T6). With one exception (AD), we found
no evidence that alignment frequencies in a NDD tissue set
was greater than in CTL tissues from the same brain region.
These findings suggest it is unlikely that sub-clinical infections
could account for inflammation associated with NDD tissues we
examined with RNA-seq. This assessment is tempered by the
possibility that RNA species from the infectious agents could have
been produced earlier in the NDD illnesses we studied, since we
were restricted to CNS tissues from end-stage diseases.

By comparing expression of genes reported by Keren-
Shaul et al. (2017) to be associated with homeostatic
microglia, or Stage 1 or Stage 2 DAM, we observed
significant changes in our AD and ALS but not PD
populations. These findings suggest but do not prove
that homeostatic microglia and DAM are present in our
postmortem tissue samples. More stringent proof of homeostatic
microglia or DAM existence would require RNA seq of
individually identified microglia in each tissue sample. This
approach is not feasible with our current logistical and
economic constraints.

There are multiple limitations to our study. These include:

1. Use of postmortem materials. RNA seq is always problematic
in these tissues, likely due to variable post-mortem

intervals, inevitable RNA decay during frozen sectioning,
and other unknown variations. We did attempt to use
comparable RNA quality specimens, but in our hands these
are always less than optimal (compared, for instance, to
freshly isolated cells in culture).

2. End-stage disease. We do not know the effects of end-stage
disease, compared to earlier stages, on any of the variables
we examined. For instance, we do not know about potential
loss of infectious agents’ transcripts as disease progresses,
nor do we know anything about expression of DAM genes
over the course of illness in humans (compared to that in
mice expressing mutated NDD genes).

3. Dilution of microglial gene expressions. Microglia,
if present, likely represent a minority of cells. As
such, their contributions to total gene expression are
predicted to be limited.

4. Causal relationship(s) of Stage 1/Stage 2 DAM to
neurodegeneration in each NDD. We do not presume
to ascribe causality of Stage 1/Stage 2 DAM presence to the
neurodegenerative process represented by the subjects who
donated tissues we used. This is particularly of concern
since we were not able to define clearly any potential causes
for NDD phenotype or DAM gene expression.

In spite of the above limitations, we hope that our findings
will stimulate additional investigations into the potential role of
DAM in pathogenesis of NDD’s. Lessening of DAM appearance
or transition from Stage 1 DAM to Stage 2 DAM (Keren-Shaul
et al., 2017) may represent a therapeutic opportunity in NDD.
In addition, if our results can be extrapolated to multiple NDD’s,
they suggest a common qualitative mechanism that could be
therapeutically approached.

MATERIALS AND METHODS

Our methods for tissue acquisition, RNA seq analyses and
bioinformatics have been described in multiple publications
(Bennett et al., 2016; Brohawn et al., 2016, 2018; Bennett and
Keeney, 2017; Ladd et al., 2017). The particular tissue sets for
ALS (Bennett et al., 2016; Brohawn et al., 2016; Ladd et al.,
2017), AD (Bennett and Keeney, 2017)2 and PD (see text footnote
1) have been previously described. Briefly, tissues from persons
with sporadic NDD’s were stored at −80 degrees and blocks
dissected from these unfixed, frozen specimens. Frozen 20-
micron tissue sections from these unfixed tissue blocks were
placed into Qiazol buffer and stored at −80 degrees until RNA
isolation was carried out (miRNeasy, Qiagen). An on-column
DNAase step was included for each sample. RNA quality was
analyzed by gel electrophoresis. Illumina sequencing libraries
were constructed according to manufacturer instructions and
quantitated by qPCR, either by us (ALS/CTL cervical spinal
cord) or by Cofactor Genomics (AD/CTL frontal cortex, PD/CTL
ventral midbrain) and paired-end (PE) Illumina sequencing was

2http://ndtherapeutics.org/rna-sequencing-reveals-similarities-and-differences-
in-gene-expression-in-vulnerable-brain-tissues-of-alzheimers-and-parkinsons-
diseases/
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FIGURE 3 | Expression of genes associated with homeostatic microglia (top graph), Stage 1 DAM (middle graph), and Stage 2 DAM (bottom graph) according to
Keren-Shaul et al. (2017) in ALS and CTL cervical spinal cord samples. Gene alignments were based on paired-end (PE) Illumina sequencing of rRNA-depleted
tissue total RNA, followed by removal of sequencing adapters (Trimmomatic R©) and alignment against the hg38 version of the human genome using Tophat2/Bowtie2
and quantitation with Cufflinks. All samples with mean CTL FPKM <2.0 were removed. Data are expressed as average ±SD of mean CTL gene expression. Two-way
ANOVA results are shown in each graph. Unpaired t-tests for significance showed: (1), p = 0.055 (nearly significant); (2), p = 0.0032; (3) p = 0.040; (4), p = 0.046; (5),
p = 0.0032; (6), p = 0.0018; (7), p = 0.021; (8), p = 0.0050; (9), p = 0.0038. n = 7 AlS and 8 CTL.
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FIGURE 4 | Same as Figure 3, except for AD (n = 10) and CTL (n = 9) frontal cortical ribbons. Alignments against the hg38 human genome were carried out with
HISAT2 and quantitated with Cufflinks. Two-way ANOVA results are given in each graph. Unpaired t-test results are as follows: (1), p = 0.014; (2), p = 0.016.
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FIGURE 5 | Same as Figures 3, 4, except for PD (n = 12) and CTL (n = 8) ventral midbrain. No significant differences were detected by 2-way ANOVA or unpaired
t-tests.
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carried out by Cofactor Genomics, Inc.3 Compressed (gz) PE
reads in fastq format were trimmed of Illumina sequence adapters
(Trimmomatic R©) and analyzed for expression based on the hg38
human genome by Tophat2/Bowtie2 (ALS) or HISAT2 (Kim
et al., 2015) and quantitated with Cufflinks. In other experiments,
trimmed PE reads were aligned using Bowtie2 against genomes
of infectious agents, downloaded in FASTA format from the
NIH website4 “genome.” Bowtie2-build was used to construct
Bowtie2 index files for each genome, samtools was used to
convert the SAM files to BAM files, and the samtools command
samtools view -c -F 260 x.bam was used to quantitate the
number of primary aligned reads in each sample for each
NDD. All bioinformatics assays were performed “blind” and
were based solely on sample number ID (not disease state).
All graph constructions, correlations and statistical assays were
performed in Prism 75.

DATA AVAILABILITY

All tissues were acquired commercially from National Disease
Resource Interchange (http://ndriresource.org; NDRI) (ALS/CTL

3 https://cofactorgenomics.com/
4 https://www.ncbi.nlm.nih.gov/pubmed/
5 http://www.graphpad.com

cervical spinal cords); under the auspices of an IRB-
approved collection protocol (most AD/CTL and some
PD/CTL), or were declared exempt from IRB oversight
(some AD/CTL and some PD/CTL). All sequencing data
discussed are the property of Neurodegeneration Therapeutics,
Inc., and were acquired with private funds. Untrimmed,
compressed (gz) FASTQ sequencing files are available
to all legitimate investigators, following request to the
corresponding author (JB), completion of a Material Transfer
Agreement and provision of either a FTP URL or a
memory storage device capable of storing 2 TB of data.
Trimmed, processed BAM files following Trimmomatic
and Tophat2/Bowtie2 analyses are also available upon
reasonable request.
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