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The key factors leading to transformed follicular lymphoma (t-FL) include the aberrations of
epigenetic modifiers as early and driving events, especially mutations in the gene encoding
for histone acetyltransferase. Therefore, reversal of this phenomenon by histone
deacetylase (HDAC) inhibitors is essential for the development of new treatment
strategies in t-FL. Several t-FL cell lines were treated with various doses of chidamide
and subjected to cell proliferation, apoptosis and cell cycle analyses with CCK-8 assay,
Annexin V/PI assay and flow cytometry, respectively. Chidamide dose-dependently
inhibited cell proliferation, caused G0/G1 cycle arrest and triggered apoptosis in t-FL
cells. In addition, the effects of chidamide on tumor growth were evaluated in vivo in
xenograft models. RNA-seq analysis revealed gene expression alterations involving the
PI3K-AKT signaling pathway might account for the mechanism underlying the antitumor
activity of chidamide as a single agent in t-FL. These findings provide a basis for further
clinical exploration of chidamide as a promising treatment for FL.

Keywords: transformed-follicular lymphoma (t-FL), chidamide, HDAC, PI3K/AKT signaling, epigenetic
antitumor therapy
INTRODUCTION

Follicular lymphoma (FL) is the most common indolent lymphoma, accounting for approximately
20% of all non-Hodgkin lymphoma (NHL) cases (1, 2). With the use of current front-line regimens,
the majority of FL patients have an initial response to therapy, with 40 to 80% demonstrating
complete response (3, 4). However, despite improvement in front-line treatment, conventional
therapy for FL is not curative, and approximately 20% of patients still experience either
refractoriness or early relapse, which occurs in the first 2 years after diagnosis and treatment by
chemoimmunotherapy (5–7). Moreover, such early relapse cases are often chemo-resistant, leading
to significantly shorter survival (4, 8). Thus, integrating molecular targeted therapies into current
Abbreviations: t-FL, transformed follicular lymphoma; DLBCL, Diffuse large B-cell lymphoma; HDACs, Histone deacetylases;
HATs, histone acetyltransferases; NHL, Non-Hodgkin lymphoma; R/R, Relapsed or refractory; FBS, Fetal bovine serum;
CCK-8, Cell Counting Kit-8; qRT-PCR, Real-time quantitative PCR; GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes
and Genomes; PI, Propidium iodide; SPSS, Statistical Product and Service Solutions; GSEA, gene set enrichment analysis.
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treatment protocols and adjusting conventional treatment to
improve survival, without compromising long-term quality of
life is urgently needed in FL patients with poor prognosis.

Histone deacetylases (HDACs), which act as “epigenetic
erasers”, are known to catalyze the removal of acetyl groups
from histones and non-histone proteins, thereby altering the
transcription of oncogenes and tumor suppressor genes (9, 10).
Aberrant HDAC expression occurs in both solid tumors and
hematological cancers, including B-cell lymphoma (11, 12). Prior
findings showed that dysregulation of histone acetylation
contributes to lymphomagenesis, particularly in GC-derived
lymphomas (13, 14). FL, similar to other cancers, has recurrent
alterations in genes involved in maintaining chromatin structure
and transcription machinery genes (4, 8). For example, somatic
mutations or genomic loss in the CREBBP and EP300 genes that
encode HATs lead to an imbalance between acetylation and
deacetylation, and the occurrence of these mutations is
associated with disease relapse and poor prognosis in FL (15–
17). Perturbing the balance between histone acetylation and
deacetylation, which is tightly regulated by HDACs, is one of
the main mechanisms by which epigenetics may be exploited to
harness chromatin remodeling (18). In this context, it raises the
possibility that HDACs may serve as a potentially attractive
therapeutic target in this disease.

According to previous studies, Class I HDACs 1-3 are the
most important HDAC enzymes with close associations with the
corresponding malignant phenotypes (19, 20). Currently,
multiple HDAC inhibitors have been developed, Chidamide is
a noteworthy drug that may target specifically subtypes 1, 2 and 3
of Class I and subtype 10 of Class IIb HDACs and lead to
increased acetylation of histones H3 and H4, resulting ultimately
in the activation of gene transcription (21, 22). Chidamide was
first approved by the Chinese FDA for the treatment of relapsed
or refractory (R/R) peripheral T cell lymphoma (PTCL) (23, 24).
Afterwards, more and more studies have focused on the anti-
cancer effects of chidamide in various tumors, including
hematological tumors (25–27). However, significant knowledge
gaps remain, including the mechanism underlying chidamide’s
therapeutic effects. In addition, its clinical utility in FL is
currently unclear.

This study evaluated the effects of chidamide in well-
characterized transformed follicular lymphoma cell lines and a
xenograft model of t-FL. In addition, we analyzed the molecular
basis of chidamide’s effects by evaluating gene expression using
microarrays in cells treated with the single agent in t-FL: 1) to
identify genes and pathways affected by chidamide; 2) to
determine biomarkers that could be used in preclinical studies.
MATERIALS AND METHODS

Cell Lines and Molecules
Established human cell lines derived from t-FL, including RL,
DOHH2, SU-DHL4 and Karpas422 cells, were obtained from
Cobioer Biotechnology Company (Jiangsu, China). All cell lines
were cultured at 37°C in a 5% CO2 incubator in RPMI-1640
Frontiers in Oncology | www.frontiersin.org 2
(Gibco, CA, USA) supplemented with 10% fetal bovine serum
(FBS, Gibco, CA, USA), 100 units/ml penicillin and 100 mg/ml
streptomycin (Invitrogen, CA, USA). Chidamide (CS055; HBI-
8000) was provided by Shenzhen Chipscreen Biosciences
(Shenzhen, China) and dissolved in sterile DMSO (Sigma, MO,
USA) to produce a 50-mM stock solution stored at -20°C for in
vitro experiments and diluted in 0.5% (w/v) CMC-Na suspension
for oral gavage.

Cell Viability Assessment
Cytotoxicity was determined with Cell Counting Kit-8 (CCK-8,
APExBIO, Texas, USA). Briefly, 3×104 cells/well were seeded in
100ml medium in 96-well plates and treated with various
concentrations of chidamide alone for 24, 36 and 48 h. The
CCK-8 reagent (10ml/well) was then added and incubated for
additional 2 h, after which absorbance at 450 nm was detected on
a Bio-Rad microplate reader (Bio-Rad, CA, USA). Data from
three independent triplicate experiments were presented as a
percentage of viable cells relative to untreated controls. IC50

values were determined with the GraphPad Prism 6 software.

FACS Analysis of the Cell Cycle
and Apoptosis
Cells were treated with various concentrations of chidamide for
the designated times. Cells were harvested and processed
according to the manufacturer’s protocols. For cell cycle
analysis, propidium iodide (PI)/RNase staining buffer from BD
Pharmingen (556463, New Jersey, USA) was used. Cells were
then analyzed on a CytoFlex S flow cytometer (Beckman Coulter,
CA, USA). Data analysis was performed with the FlowJo
software (San Carlos, CA, USA). Apoptosis was measured with
the Annexin V/PI apoptosis detection kit (BD Pharmingen,
USA). Cells positive for Annexin V were determined to be
apoptotic (28), and were located in the right quadrant of the
dot plot. Statistical analysis was performed by ANOVA. P-values
below 0.05 in comparison to the control group were
considered significant.

Western Blot
Protein extraction, separation and immunoblotting were
performed as previously described (29). The following
antibodies were used: anti-PDK1 (CA3062, 1:1000, Cell
Signaling Technology, MA, USA), anti-P-PDK1 (Ser241)
(CA3061, 1:1000, CST), anti-Akt (CA9272, 1:1000, CST), anti-
P-Akt (Ser473) (CA4060, 1:1000, CST), anti-P-Akt (Thr308)
(CA9275, 1:1000, CST), anti-CDK2 (CA2546, 1:1000, CST),
anti-P-CDK2 (Thr160) (CA2561, 1:1000, CST), anti-PARP
(CA9532, 1:1000, CST), anti-Cleaved PARP (CA5625, 1:1000,
CST), anti-Caspase-3 (CA9662, 1:1000, CST), anti-Cleaved
Caspase-3 (CA9661, 1:1000, CST), anti-P27 (CA3698, 1:1000,
CST), anti-HDAC1 (CA5356, 1:1000, CST), anti-HDAC2
(CA5113, 1:1000, CST), anti-HDAC3 (CA3949, 1:1000, CST),
anti-HDAC10 (ab108934, 1:1000, Abcam, Cambridge, UK),
anti-Histone H3 (CA4499, 1:2000, CST), anti-Histone H3/
acetyl K27 (ab4729, 1:1000, Abcam), and secondary HRP-
linked antibodies (1:2000, Cell Signaling Technology, MA,
USA). Anti-GAPDH (CA60004-1-Ig, 1:10000, Proteintech,
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Suite, USA) was used as a loading control. Blots were then
detected using the hypersensitive ECL chemiluminescence kit
(NCM Biotech, Suzhou, China) and the Bio-Rad ChemiDoc XRS
+ detection system (Bio-Rad, CA, USA).

RNA-Sequencing
DOHH2 cells were incubated with chidamide for 24h, followed
by total RNA extraction with TRIzol reagent (Invitrogen, NY,
USA) according to the manufacturer’s instructions. Totally, 1mg
total RNA with RIN above 6.5 was used for subsequent library
preparation. Next generation sequencing libraries were
constructed according to the manufacturer’s protocol. Then,
libraries with different indices were multiplexed and loaded on
an Illumina HiSeq instrument according to the manufacturer’s
instructions (Illumina, CA, USA). Sequencing was carried out
using the 2x150 bp paired-end (PE) configuration; image
analysis and base calling were conducted with HiSeq Control
Software (HCS) + OLB + GAPipeline-1.6 (Illumina) on the
HiSeq instrument. KEGG pathway and GO analyses were
performed using the R Studio approach. Differential expression
analysis used the DESeq2 Bioconductor package, a model based
on negative binomial distribution; adjusted p value (padj)<0.05
indicated differential expression.

In vivo Experiments
All animal procedures were performed in accordance with the
guidelines of the Animal Care and Use Committee and Ethics
Committee of Xiamen University. DOHH2 cells (200ml of PBS,
1×107 cells/mouse) were inoculated subcutaneously into the back
of female CB17/Icr-Prkdcscid/IcrlcoCrl mice (approximately 14-
16g of body weight, Xiamen University Laboratory Animal
Center, Fujian, China). After 3 days, mice were randomly
divided into two groups (8 animals per group), to receive
vehicle (PBS with 0.2% methyl cellulose/0.1% Tween 80) and
chidamide (10 mg/kg/d), administered by oral gavage for 3
successive weeks, respectively. Tumor size and body weight
were measured every two days. Tumor volumes were
calculated according to the formula V= (L × W2)/2 [V, volume
(mm3); L, length (mm); W, width (mm)]. After euthanasia,
tumor tissues were extracted and divided into two parts: one part
was frozen at -80°C for protein extraction followed by Western
blot, and the other was fixed with 4% paraformaldehyde for
hematoxylin and eosin (H&E) staining, immunohistochemistry
(IHC) and immunofluorescence (IF). The slides were incubated
overnight at 4°C with primary antibodies targeting Ki67 (27309-
1-AP, 1:2000, Proteintech, Suite, USA) and PCNA (10205-2-AP,
1:200, Proteintech) antibodies. Subsequently, DAB (DAB-2032,
MXB Biotechnologies, Fujian, China) was applied for 5 min at
room temperature according to the manufacturer’s instructions.
TUNEL-FITC (A111-03, Vazyme Biotech, Jiangsu, China) was
applied at room temperature for 20 min, and analysis was
performed under a fluorescence microscope (Nikon, Eclipse
Ci-L, Japan).

Statistical Analyses
Statistical analyses were performed with Statistical Product and
Service Solutions (SPSS) 21.0 (IBM Corp., Amronk, New York,
Frontiers in Oncology | www.frontiersin.org 3
USA), GraphPad Prism 6 (GraphPad Software, CA, USA) and
Microsoft Office Excel (WA, USA). Unpaired Student’s t-test was
performed to compare group pairs. Multiple groups were compared
by one-way ANOVA, followed by post-hoc Bonferroni test. All
quantifications were performed based on at least three independent
experiments. P<0.05 was considered statistically significant.
RESULTS

Effect of Chidamide on t-FL Cell Viability
We evaluated the anti-proliferative activity of chidamide in four
t-FL cell lines, including RL, DOHH2, SU-DHL4 and Karpas422
cells. As assessed by the CCK-8 assay, after exposure to a series of
concentrations for 24, 36 and 48 h, chidamide potently reduced
cell viability in all four FL cell lines in a dose-dependent manner
(Figure 1). The IC50 values of chidamide for these four cell lines
over different treatment periods (Supplementary Table 1)
revealed that chidamide inhibition of RL, DOHH2, SU-DHL4
and Karpas422 cells was time-dependent. IC50 values for
chidamide-treated DOHH2 cells (9.08± 2.03, 0.85 ± 0.07 and
0.54 ± 0.05 mM, respectively) were close to those obtained in SU-
DHL4 cells (4.56± 0.31, 3.17± 0.2 and 1.67± 0.05 mM,
respectively) following incubation times of 24, 36 and 48 h.
However, for the same incubation times, IC50 values in RL (30.39
± 26.45, 7.447 ± 0.87 and 1.87± 0.25 mM, respectively) and
Karpas-422 cells 10.92 ± 0.15, 5.10 ± 0.23 and 3.09 ± 0.23 mM,
respectively) decreased steeply with increasing drug exposure
time (about 16.0 and 3.0-fold from 24 h to 48 h, respectively),
and were higher than the corresponding IC50 values recorded for
DOHH2 and SU-DHL4 cells. These findings suggested that
DOHH2 and SU-DHL4 cells may be more sensitive to
chidamide in terms of viability and proliferation.

Chidamide Induces Caspase-Dependent
Apoptosis in t-FL Cells
To further assess the antitumor effect of chidamide on t-FL cells,
flow cytometry after Annexin V/PI staining was performed to
examine whether chidamide induces apoptosis in t-FL cells. Four
t-FL cell lines were cultured with increasing concentrations of
chidamide for 24 and 48 h before apoptosis assessment.
Consistent with the CCK-8 assay, dose and time-dependent
induction of cell death was evident in both DOHH2 and SU-
DHL4 cells, whereas RL and Karpars422 cells showed reduced,
although significant induction of apoptosis (Figure 2 and
Supplementary Figure 1), further indicating that DOHH2 and
SU-DHL4 cells were more sensitive to chidamide and suggesting
cell line-specific differences. Thus, besides the reduced cell
proliferation, increased cell death might be another factor
contributing to chidamide activity in t-FL cells. We next
sought to confirm the potential mechanism underlying
chidamide’s anti-apoptotic effect. Western blot was carried out
to detect the expression of activated caspase-3 and cleaved PARP
after chidamide treatment for 12, 24 and 36 h, respectively, in
DOHH2 and SU-DHL4 cells. Chidamide treatment for 24 h
markedly upregulated cleaved caspase-3 and cleaved PARP
December 2021 | Volume 11 | Article 780118
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(Figure 3). Taken together, these results suggested that
chidamide induced apoptosis in FL cells by triggering the
caspase dependent pathway.

Chidamide Induces Cell Cycle Arrest in the
G0/G1 Phase
Aberrant HDAC expression has previously been shown to
impair a subset of genes involved in cell cycle regulation.
Accordingly, inducing cell cycle arrest may be an underlying
mechanism of chidamide’s effect on FL cells. In the above CCK-8
Frontiers in Oncology | www.frontiersin.org 4
assay, chidamide exhibited a potent inhibitory effect on the
proliferation of all four FL cells studied. We further
investigated the effect of chidamide on cell cycle distribution in
these four FL cell lines. After 24 h of incubation with various
concentrations of chidamide, cell cycle analysis by flow
cytometry revealed that chidamide induced the accumulation
of cells in the sub-G0/G1 phase and reduced cells in the S phase
in a concentration dependent manner, with little change in the
G2 phase in RL, DOHH2, SU-DHL4 and Karpas422 cells
(Figure 4 and Supplementary Figure 2). These data indicated
A B

C D

E F

FIGURE 1 | Chidamide inhibits viability in FL cell lines. Human FL RL, DOHH2, SU-DHL4 and Karpas422 cells were exposed to the indicated concentrations of
chidamide for (A) 24 h, (C) 36 h or (E) 48 h, after which cell proliferation was measured by the CCK-8 assay. Data (mean ± S.D.) from at least three independent
experiments are shown in (B) 24 h, (D) 36 h and (F) 48 h. (**p < 0.01; ****p < 0.0001).
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that chidamide inhibited the proliferation of FL cells by inducing
cell cycle arrest.

Transcriptional Signature of Chidamide’s
Effects in t-FL Cells
To obtain a global profile of the transcriptional changes after
chidamide treatment, we performed genome-wide gene
Frontiers in Oncology | www.frontiersin.org 5
expression (GEP) on the most sensitive cell line (DOHH2
cells) treated with DMSO or chidamide (5µM) for 24 h.
Totally, 4114 and 2095 genes in DOHH2 cells were
significantly upregulated and downregulated (log2FC≥1,
P<0.05) by chidamide, respectively (Figure 5A). KEGG
analysis revealed that chidamide affected several important
biological processes, including DNA replication, MAPK
A B

C G

E F

D H

FIGURE 2 | Chidamide induces apoptosis in highly sensitive FL DOHH2 and SU-DHL4 cells. (A, B) DOHH2 and (E, F) SU-DHL4 cells were treated with various
doses of chidamide for 24 h or 48 h, after which the percentages of apoptotic cells were examined by Annexin V/PI double staining. The levels of apoptotic
cells were remarkably increased at the indicated times of exposure to chidamide in (C, D) DOHH2 and (G, H) SU-DHL4 cells. Data are mean ± S.D. (*p < 0.05;
**p < 0.01; ***p < 0.001; ****p < 0.0001; NS, p > 0.05).
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signaling, PI3K/AKT signaling and cell cycle regulation
(Figures 5B, C). The downregulated transcripts mainly
comprised HDAC, P53 and CDK2 or genes involved in the
PI3K/AKT pathway (Figure 5D). In this context, Western blot
was performed to validate the target specificity of chidamide on
Frontiers in Oncology | www.frontiersin.org 6
HDAC1, 2, 3 and 10. As shown in Figure 6, exposure of DOHH2
and SU-DHL4 cells to chidamide resulted in time-dependent
downregulation of HDAC1, 2, 3 and 10, thereby causing hyper-
acetylation of histones H3 and H4. Chidamide also upregulated
p27 and downregulated phosph-CDK2 (Thr160) in a time-
FIGURE 3 | Chidamide induces apoptosis in FL cells by triggering the caspase dependent pathway. Western blot of apoptosis signaling proteins in DOHH2 and
SU-DHL4 cells, including PARP, cleaved-PARP, caspase-3 and cleaved caspase-3, exposed to 5mM chidamide for 12h, 24 h and 36 h.
A

B

FIGURE 4 | Chidamide induces FL cell cycle arrest in the G0/G1 phase. DOHH2 and Karpas422 cells were treated with chidamide for 24 h at the indicated
concentrations, and cell cycle distribution in (A) DOHH2 and (B) Karpas422 cells was analyzed by flow cytometry. Representative flow cytograms are shown in the
right panel.
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dependent manner. However, Western blot detected no
expression change for P27 in RL and Karpas-422 cells
(Supplementary Figure 3), which might be partially
responsible for their lower sensitivity to chidamide. Taken
together, these results suggested that the mechanism
underlying the anti-proliferative activity of chidamide might
involve downregulation of molecules related to the PI3K kinase
pathway and cell cycle arrest in t-FL cells.

Chidamide Affects the PI3K/PDK1/AKT
Signaling Pathway in t-FL Cells
Chidamide negatively regulated transcripts encoding MYC- and
P53-regulated genes, as well as PI3K/AKT signaling pathway
effectors, including HDAC10, AKT1, CDK2, MYC, PARPBP,
PCNA, PDK1, PRDM10 and PRDM15 in DOHH2 cells
(Figure 5D). The inhibitory effect of chidamide on the PI3K/
AKT signaling pathway was further confirmed at the protein
level. Western blot showed a marked reduction in the expression
Frontiers in Oncology | www.frontiersin.org 7
of PDK1 and phospho-AKT (Ser473 or Thr308) in both DOHH2
and SU-DHL4 cells after chidamide treatment for 36 h
(Figure 6). In contrast, chidamide did not affect the expression
of phospho-AKT (Ser473) in RL and Karpas-422 cells
(Supplementary Figure 3). Thus, we speculated that
chidamide might promote apoptosis and suppress proliferation
in part by disrupting the PI3K/PDK1/AKT signaling pathway in
t-FL cells.

Chidamide Has Antitumor Activity in a FL
Tumor Xenograft Model
Finally, the anti-tumor activity of chidamide was examined in a
CB17/Icr-Prkdcscid/IcrlcoCrl mouse xenograft model bearing
DOHH2 cells. In this study, DOHH2 cells (107) were injected
subcutaneously into the back of mice, which were randomly
divided into the vehicle control and chidamide groups. Vehicle
or chidamide (10 mg/kg/day) was orally given continuously daily
for three weeks (Figure 7A). After chidamide treatment for 13
A

B

C

D

FIGURE 5 | Effects of chidamide in genome-wide gene expression and relative pathway in DOHH2 cells. RNA-seq was performed to profile genome-wide gene
expression in DOHH2 cells treated with 5mM chidamide for 24 h. (A) Volcano plot depicting 4114 and 2095 genes significantly upregulated and downregulated
compared with the DMSO control groups, respectively. (B) Gene Ontology (GO) enrichment analysis of DEGs was performed by Gene Set Enrichment Analysis
(GSEA). Pathways affected by chidamide in the DOHH2 cell line. (C) Differential signaling pathways in KEGG pathway enrichment analysis showing genes involved in
PI3K/AKT signaling were significantly enriched. (D) Heat map of differentially expressed genes in DOHH2 cells in response to chidamide for 24 h.
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days, compared with the control group, mouse tumors showed
obvious growth inhibition with no fatal toxicity (Figures 7B, C).
Although a temporary body weight loss was observed at the
beginning of chidamide administration, it was recovered after a
short period of time. Tumors were collected from 5 mice
randomly selected per group at the study endpoint (Day 22).
As shown in Figure 7D, chidamide treatment resulted in a
marked reduction of tumor burden, reflected by decreased
volume and weight of tumor masses, compared with the
vehicle control (Figures 7E, F). Besides, chidamide
significantly prolonged survival in the treatment group
compared with vehicle treated animals (Figure 7G).

The tumor tissues obtained from chidamide treated animals
displayed obvious nuclear shrinkage as shown by H&E staining
(Figure 8A). Apoptosis in tumor tissues was detected by the
TUNEL assay. The number of apoptotic cells was markedly
increased in chidamide treated tumors (Figures 8B, C), in
Frontiers in Oncology | www.frontiersin.org 8
agreement with in vitro findings. Immunohistochemical
staining revealed that Ki-67 and PCNA levels were decreased
in tumor tissues from chidamide treated mice (Figures 8D–F).
Compared with the vehicle control group, chidamide treated
mice showed significantly reduced p-PDK1 expression, and
markedly increased expression of P27, cleaved caspase-3 and
cleaved PARP (Figure 7H). These results were consistent with in
vitro findings. Taken together, these data suggested that
chidamide effectively inhibited t-FL tumorigenesis and
development in vivo.
DISCUSSION

Transformed follicular lymphoma (t-FL) is considered a disease
predominantly caused by several epigenetic aberrations (e.g.,
mutations affecting the epigenetic modifiers KMT2D, EZH2,
FIGURE 6 | Differential gene and protein expression in FL cells after chidamide treatment. DOHH2 and SU-DHL4 cells were treated with 5mM chidamide for the
indicated times. The levels of differential genes were determined by Western blot.
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A

B C

D

G H

E

F

FIGURE 7 | Effect of chidamide on tumor growth in xenograft mouse models. (A) Cell injection protocol in a FL tumor xenograft model. Tumor volumes (B) and body
weights (C) of mice were measured daily and presented as mean ± S.D. (D) Images of tumors from DOHH2-bearing xenograft mice after the indicated treatments
(n=10). Tumor volumes (E) and weights (F) in the control and chidamide groups were compared to evaluate the treatment response to chidamide. (G) Kaplan Meier
overall survival (OS) curves of tumor-bearing xenograft mice. (H) Chidamide suppressed the PDK1-Akt-P27-CDK2 signaling pathway in vivo. The protein levels of
PDK1, AKT, P27, CDK2, PARP, cleaved-PARP, caspase3 and cleaved-caspase-3 were determined by Western blot. (**p < 0.01; ***p < 0.001).
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CREBBP and MEF2B) rather than sequential acquisition of
genetic aberrations (8, 18). Thus, targeting enzymes involved
in the regulation of DNA methylation and histone modifications
might be critical for developing more effective treatment
strategies in t-FL. In this regard, histone deacetylases (HDACs)
represent the most widely studied therapeutic targets, with
HDAC inhibitors (HDACi) including chidamide, vorinostat
and romidepsin, approved for use in the therapy of cutaneous
T-cell lymphoma (23, 30). However, clinical practice has not yet
delivered desirable results by applying HDACi in the treatment
of t-FL. Furthermore, the biological effects of HDACi in t-FL
remain unclear, as well as the identification of response
mechanisms. Taking these observations into consideration, we
evaluated the activity and underlying mechanism of a
benzamide-type selective HDAC inhibitor, chidamide, in
preclinical models of t-FL cells.
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HDACs have been demonstrated to play a crucial role in
the pathogenesis of lymphoma (31, 32). Gil et al. reported that
aberrant expression of HDAC9 could lead to lymphoproliferative
disorders, including germinal center (GC) and post-GC
lymphomas (33). In follicular lymphoma (FL) and diffuse large
B cell lymphoma (DLBCL), Bcl6 recruits HDAC3 to repress
transcription and trigger B cell lymphoma (34). All these data
strongly suggest that HDACs are promising therapeutic targets
for GC lymphomas. Furthermore, HDAC inhibitors have been
reported to induce Bcl6 downregulation in GC lymphomas
including DLBCL (35). Herein, we demonstrated that
chidamide had an anticancer effect as a single agent in several
t-FL cell lines. At clinically achievable concentrations, chidamide
showed cell type- and dose-dependent cytotoxicity in t-FL cells at
24 h, with IC50 values ranging from 4.5µM to 30µM, and varied
responses to chidamide among different cells. In DOHH2 and
A

B

C E

D

F

FIGURE 8 | Inhibition of tumor growth in vivo by chidamide. (A) Tumor samples collected after treatment with vehicle/control or chidamide were fixed, sliced and
stained with H&E. (B) Representative images of immunofluorescent TUNEL staining performed on serial sections of the tumors are shown; the corresponding
statistical results are shown in (C). Images were acquired under a Nikon microscope (original magnification, ×400). (D) The expression levels of Ki67 and PCNA were
detected by immunohistochemical staining. (E, F) Data represent three independent experiments, and are mean ± S.D. (**p < 0.01).
December 2021 | Volume 11 | Article 780118

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhong et al. Chidamide in Transformed Follicular Lymphoma
SU-DHL4 cells, which were relatively more sensitive to
chidamide, a higher degree of apoptosis induced by chidamide
was found as strongly evidenced by the activation of caspase-3.
This is likely due to the cell origins or unknown differences of
their genetic differentiation.

Since chidamide inhibited cell proliferation and induced
apoptosis in t-FL cells, we further investigated whether
chidamide regulates cell cycle progression, which is one of the
main mechanisms by which HDACi induce tumor cell death. In
this context, previous studies have shown that G1 arrest appears
to be a common response to chidamide in various tumor cells
(36–38). Thus, cell cycle regulators, including cyclins and CDK
inhibitors (e.g., p21 and p27), may be tightly controlled by
chidamide (27, 36, 39). In general, p27 is known to control G1
length and cell cycle exit by inhibiting the kinase activity of
CDK2 bound to cyclin E, thereby causing the dephosphorylation
of retinoblastoma protein (Rb), which blocks E2F activity in the
transcription of genes required for G1/S transition (40, 41). In
this study, microarray analysis of chidamide-treated t-FL cells
pointed to cell cycle arrest in the G1 phase. Upon chidamide
treatment, CDK2 was found to be specifically inhibited in
DOHH2 and SU-DHL4 cells accompanied by p27 activation.
However, obvious changes of p27 expression were not observed
in RL and Karpas-422 cells, in disagreement with the anti-
proliferative phenotype as well as G1 arrest in these cells,
indicating that p27-mediated inhibition of CDK2 might
partially contribute to chidamide-induced cell cycle arrest. On
the other hand, we showed that chidamide treatment
simultaneously caused the accumulation of histone H3
acetylation and the activation of p27 and cell cycle exit in
DOHH2 and SU-DHL4 cells. The present findings indicate
that the mechanism by which chidamide induces G1 arrest by
inhibiting HDACs is cell-specific.

The integration of gene expression profiling and sensitivity
in cancer cells allowed the identification of functional pathways
that might predict the response to chidamide (27, 42). DOHH2
cells with the highest sensitivity to chidamide had high
expression levels of genes involved in the PI3K/PDK1/AKT
pathway, which is regulated in several human carcinomas,
including lymphoid malignancies (43, 44). In addition, an
important biological effect of chidamide, both in vitro and
in vivo, was the downregulation of the PI3K/AKT pathway.
Several studies have indicated that PI3K/AKT pathway
downregulation is a relevant mechanism of chidamide’s effects
in various cancer cell lines (27, 45, 46). The PI3K/AKT pathway
was shown to be activated in human cancers by oncogenic
mutations of the PIK3CA gene encoding the catalytic subunit
p110a (47). In lymphoid malignancies, including DLBCL (48),
MCL (49) and FL (50), hyperactivation of AKT is due to its
enhanced activation/phosphorylation at Serine 473 (Ser473). In
accordance with apoptosis and caspase-3 activation observed at
24 to 48 h, AKT phosphorylation at ser473 was inhibited in both
DOHH2 and SU-DHL4 cells by chidamide treatment. Taken
together, these findings suggested that chidamide modulated
PI3K/AKT signaling, which is known to be involved in cell
proliferation, cell cycle regulation, apoptosis and tumor
development (Figure 9).
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As the activity of chidamide, as monotherapy at the doses
tested in this study was modest, understanding potential
biomarkers that are predictive of response is very important for
the design of future clinical trials (51). In addition, emerging data
from in vitro studies indicate that HDAC inhibitors, such as
chidamide, may have improved activity when used in
combination therapy (52–54). To this end, several recent studies
have provided a strong preclinical rationale for combination with
chemotherapy, immunotherapy, or molecular targeted therapy,
paving the way for possible studies in selected populations
(53–55). In our previous work, we revealed that ABT-199 (25)
or MLL-menin inhibitor (56) has a synergistic inhibitory effect on
acute myeloid leukemia cells when combined with chidamide.
Combination with a demethylating agent also showed benefit in
diffuse large B cell lymphomas (DLBCLs) (53). In addition,
chidamide could increase PD-L1 expression in the tumor
microenvironment, and preclinical studies have demonstrated
synergy between chidamide, and PD-1 blockade in solid tumors
(55, 57). A single-arm-phase II study is therefore currently
ongoing to evaluate the activity of chidamide in combination
with sintilimab in relapsed or refractory peripheral T-cell
lymphomas (58). It is possible that chidamide administration in
the context of these combination strategies could further enhance
the killing of tumor cells.

In summary, this study demonstrated the importance of
HDACs in the progression and transformation of FL, and
provided a critical link between epigenetic changes and
increased FL aggressiveness. We also provided evidence that
chidamide exerts anticancer effects by inducing G1 arrest and
apoptosis via PI3K/PDK1/AKT signaling pathway inactivation.
Furthermore, in t-FL cells relatively sensitive to chidamide-
induced apoptosis, chidamide caused significant changes in the
FIGURE 9 | Illustration of the mechanism underlying chidamide induced
follicular lymphoma growth inhibition. Chidamide exerts antitumor activity
toward FL both in vitro and in vivo, potentially by targeting the PDK1-Akt-
P27-CDK2 pathway and triggering caspase dependent apoptosis, finally
markedly blocking cells in the G0/G1 phase.
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transcriptome profile, providing a compelling rationale for
chidamide as an effective single-agent in aggressive FL. The
data presented here provide the basis for further exploration of
chidamide in combination therapies.
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Supplementary Figure 1 | Chidamide induces apoptosis in relatively de novo
resistant FL RL and Karpas422 cells. Representative flow cytograms depicting RL
(A, B) and Karpas422 (E, F) cells exposed for 24 h or 48 h to chidamide. Data
represent three independent experiments examining RL (C, D) and Karpas422
(G, H) cells, and are mean ± S.D. (*p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001;
NS: p > 0.05)

Supplementary Figure 2 | Chidamide induces G0/G1 arrest in FL cell lines.
Representative flow cytograms of SU-DHL4 (A) and RL (B) cells treated for 24 h
with chidamide.

Supplementary Figure 3 | Effect of chidamide on protein expression in resistant
FL RL and Karpas422 cell lines. RL (A) and Karpas422 (B) cells were treated with
5mM chidamide for the indicated times. The levels of phospho-AKT (Ser473) and
P27 were determined by Western blot.

Supplementary Table 1 | IC50 values of chidamide in FL cell lines.
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