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1  | INTRODUCTION

A fundamental concern of cognitive neuroscience is how the func‐
tional organization of the human brain gives rise to adaptive behavior 

(Dehaene, Kerszberg, & Changeux, 1998; Miller & Cohen, 2001). 
Converging evidence from neuroimaging studies suggests that the 
human brain is configured by a core set of brain regions (e.g., frontal 
and parietal) supporting a wide variety of task demands (Duncan & 
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Abstract
Introduction: Modern network science techniques are popularly used to characterize 
the functional organization of the brain. A major challenge in network neuroscience is 
to understand how functional characteristics and topological architecture are related 
in the brain. Previous task‐based functional neuroimaging studies have uncovered a 
core set of brain regions (e.g., frontal and parietal) supporting diverse cognitive tasks. 
However, the graph representation of functional diversity of brain regions remains 
to be understood.
Methods: Here, we present a novel graph measure, the neighbor dispersion index, 
to test the hypothesis that the functional diversity of a brain region is embodied by 
the topological dissimilarity of its immediate neighbors in the large‐scale functional 
brain network.
Results: We consistently identified in two independent and publicly accessible rest‐
ing‐state functional magnetic resonance imaging datasets that brain regions in the 
frontoparietal and salience networks showed higher neighbor dispersion index, 
whereas those in the visual, auditory, and sensorimotor networks showed lower 
neighbor dispersion index. Moreover, we observed that human fluid intelligence was 
associated with the neighbor dispersion index of dorsolateral prefrontal cortex, while 
no such association for the other metrics commonly used for characterizing network 
hubs was noticed even with an uncorrected p < .05.
Conclusions: This newly developed graph theoretical method offers fresh insight into 
the topological organization of functional brain networks and also sheds light on indi‐
vidual differences in human intelligence.
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Owen, 2000; Fedorenko, Duncan, & Kanwisher, 2013). Specifically, 
meta‐analyses of functional magnetic resonance imaging (fMRI) data 
have uncovered a common pattern of activity in response to many 
different kinds of cognitive tasks in frontoparietal cortex, extending 
to anterior insula, dorsal anterior cingulate cortex (dACC), and sup‐
plementary motor area (Niendam et al., 2012; Torta & Cauda, 2011; 
Yeo et al., 2015), areas that are collectively referred to as the mul‐
tiple‐demand or cognitive control system (Dosenbach et al., 2007; 
Duncan, 2010). Therein, anterior insula and dACC are well‐known 
key	nodes	of	the	salience	network	(Ham,	Leff,	de	Boissezon,	Joffe,	&	
Sharp, 2013; Seeley et al., 2007). Furthermore, high functional diver‐
sity in frontoparietal and anterior insular regions has been quantified 
based on the profiles of brain activation in terms of task domains 
involved (Anderson, Kinnison, & Pessoa, 2013). Beyond focal brain 
activation, a study using multitask functional connectivity analysis 
indicated that frontoparietal regions can flexibly and adaptively up‐
date their pattern of global connectivity to support implementation 
of multiple and varied tasks (Cole et al., 2013). Through dynamic 
network approaches, frontal‐related brain networks show flexible 
reconfiguration during effortful working memory in humans (Braun 
et al., 2015). These findings demonstrate that the frontoparietal cor‐
tices as well as brain regions comprising the salience network show 
high diversity in function, in contrast to functionally specialized re‐
gions such as primary sensorimotor areas.

Despite the benefits of aggregating data from task‐based neuro‐
imaging studies in allowing us to characterize the functional diver‐
sity across brain regions (Genon, Reid, Langner, Amunts, & Eickhoff, 
2018; Laird, Lancaster, & Fox, 2005; Yarkoni, Poldrack, Nichols, 
Van Essen, & Wager, 2011), the complete functional repertoire of a 
brain region remains intangible. This is because a very limited range 
of behavioral conditions have been investigated, in contrast to the 
immense range of human behaviors that occur in real‐life scenarios. 
Thus, the functional characterization of brain regions may be biased 
according to the experimental tasks recruited. Moreover, the brain 
has been described as intrinsically active, rather than passively stim‐
ulus‐driven (Engel, Gerloff, Hilgetag, & Nolte, 2013). Accordingly, 
resting‐state fMRI is widely used to examine intrinsic brain activ‐
ity (Biswal, Yetkin, Haughton, & Hyde, 1995; Fox & Raichle, 2007). 
In particular, recent evidence suggests that resting‐state functional 
connectivity (network topology) describes the routes of task‐evoked 
activity flow (Cole, Ito, Bassett, & Schultz, 2016; Ito et al., 2017). 
This intrinsic network organization may capture the essence of brain 
function (Raichle, 2015). However, it remains to be understood how 
the topological structure of intrinsic functional networks is associ‐
ated with the functional diversity of brain regions.

Graph theoretical approaches have been successfully used to 
quantify the topological properties of complex brain networks 
(Bullmore & Sporns, 2009; Kaiser, 2011; Liao, Vasilakos, & He, 2017; 
Rubinov & Sporns, 2010; Yan et al., 2015). Specifically, hubs with 
particular importance in a brain network can be characterized by a 
series of graph metrics (van den Heuvel & Sporns, 2013b), such as de‐
gree (Buckner et al., 2009), betweenness centrality (Freeman, 1977; 
Liang, Zou, He, & Yang, 2013), and participation coefficient (Guimera 

& Nunes Amaral, 2005; Power, Schlaggar, Lessov‐Schlaggar, & 
Petersen, 2013). Based on these graph metrics, network nodes can 
be characterized as different types of hubs, such as connector and 
provincial hubs (Fornito, Zalesky, & Breakspear, 2015). For example, 
betweenness centrality and participant coefficient have been em‐
ployed to estimate connector hubs (Cole, Ito, & Braver, 2015). In par‐
ticular, the participant coefficient (or a similar concept) was recently 
used and interpreted as a measure of diversity (Bertolero, Yeo, 
Bassett, & D'Esposito, 2018; Bertolero, Yeo, & D'Esposito, 2017; 
Betzel, Medaglia, & Bassett, 2018; Schultz et al., 2019). However, 
its calculation depends on modular decomposition of the network 
(Guimera & Nunes Amaral, 2005). Moreover, the modular struc‐
ture can differ dramatically across network densities (Cole et al., 
2015; Power et al., 2011), likely resulting in altered community as‐
signment of a node and thus potentially affecting the measurement 
of the participant coefficient. Although Bertolero and colleagues 
(Bertolero et al., 2017) have shown that the participant coefficient 
is very consistent across densities (from 0.05 to 0.17), a previous 
study (Klimm, Borge‐Holthoefer, Wessel, Kurths, & Zamora‐Lopez, 
2014)	 has	 argued	 that	 the	measurement	of	 participant	 coefficient	
is also potentially influenced by the size of communities, because 
the contribution of a node to each community depends on the size 
of the community. In addition, the participation coefficient cannot 
distinguish two nodes whose links are all within the same module. 
A method to measure nodal diversity that does not depend on the 
community partition is desired.

We therefore developed a new graph measure, the neighbor dis‐
persion index (NDI), to describe the functional diversity of a given 
node based on the topological dissimilarity of its immediate neigh‐
bors in the network. That is, a brain region with higher diversity in 
function will have neighbors more dissimilar in topology, which may 
provide more possibilities for information spreading. Importantly, 
the calculation of NDI does not require preassumptions or depend 
on any other graph metrics (in contrast to the measurement of par‐
ticipant coefficient that requires a decomposition of functional net‐
work into modules). For an intuitive illustration, we first compared 
the NDI with several existing graph metrics (e.g., degree, between‐
ness centrality, and participant coefficient) commonly used for 
characterizing network hubs, in a hypothetical network. To test the 
ability and uniqueness of NDI in describing the functional diversity 
of brain regions, we subsequently applied the NDI and those hub‐
related metrics in empirical resting‐state functional brain networks 
constructed from two independent and publicly accessible datasets. 
We hypothesized that functionally diverse regions such as in fron‐
toparietal network and salience network would exhibit higher NDI 
compared with those functionally specialized areas such as in pri‐
mary visual and sensorimotor networks.

In addition, human intelligence is a common factor that influences 
performance	in	a	wide	range	of	cognitive	ability	(Spearman,	1904).	
Accumulating neuroimaging studies suggest that human intelligence 
is linked to broad cognitive control functions of the frontal and pari‐
etal	cortex	(Duncan,	2010;	Jung	&	Haier,	2007;	Woolgar	et	al.,	2010).	
Recent resting‐state fMRI studies revealed that frontoparietal 
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connectivity profiles are predictive of human intelligence (Finn et al., 
2015; Hearne, Mattingley, & Cocchi, 2016). To further validate the 
unique information captured by the NDI, we finally tested the as‐
sociation of each graph metric with individual differences in human 
intelligent behavior. We hypothesized that NDI values of frontal and 
parietal regions would be related to human intelligence.

2  | MATERIALS AND METHODS

2.1 | MRI datasets

Our analysis was performed on a resting‐state fMRI dataset of 100 
unrelated	 participants	 (age:	 29.1	 ±	 3.7	 years;	 46	 male)	 from	 the	
Human Connectome Project (HCP), which exclude family relations 
and represent a sample of the general population. This dataset was 
collected through the  (Van Essen et al., 2013). We also tested an‐
other resting‐state fMRI dataset of 198 subjects (Beijing site; age: 
21.2 ± 1.8 years; 76 male) from the “1000  (FCP)” (Biswal et al., 2010). 
Data collection was approved by the institutional review board of 
the individual site, and informed consent was obtained from each 
subject.

2.2 | Cognitive measures

Several cognitive measures were retrieved from the HCP database. 
We used the data from the NIH Toolbox behavioral measures, in‐
cluding Penn's Progressive Matrices, Picture Sequence Memory 
Test, Dimensional Change Card Sort Test, Picture Vocabulary 
Test, Pattern Comparison Processing Speed Test, and List Sorting 
Working Memory Test. For all measures, we used the raw, unad‐
justed values and the raw number of correct responses for Penn's 
Progressive Matrices following previous research (Schultz & Cole, 
2016). There were no cognitive measures for the FCP database. The 
relationship between graph metrics and cognition could therefore 
not be tested in the FCP dataset.

2.3 | Imaging acquisition

For the HCP dataset, the whole‐brain resting‐state fMRI scans were 
acquired with a 32 channel head coil on a modified 3 T Siemens Skyra. 
The sequence parameters are as follows: repetition time = 720 ms, 
echo time = 33.1 ms, flip angle = 52°, bandwidth = 2,290 Hz/Px, 
field of view = 208 × 180 mm, 72 slices, 2.0 mm isotropic voxels, 
with a multiband acceleration factor of 8 (Ugurbil et al., 2013). This 
dataset was collected across 2 days. On each day, 28 min of rest 
(eyes open with fixation) fMRI data were collected across two runs. 
In our current study, we only used the first run for each subject 
with 1,200 volumes. Details regarding the resting‐state data col‐
lection for this dataset have previously been described (Glasser et 
al., 2013). For the FCP dataset, scanning was performed on a 3 T 
MRI Scanner (Siemens). The whole‐brain resting‐state fMRI scans 
were acquired using an echo planar imaging sequence with repeti‐
tion time = 2,000 ms, slices = 33, volumes = 225 (Liu & Duyn, 2013).

2.4 | Resting‐state fMRI data preprocessing

For the HCP dataset, we used a minimally preprocessed volume 
version of the data, which underwent standard procedures includ‐
ing spatial normalization to a standard template, motion correction, 
and intensity normalization (Glasser et al., 2013); one subject was 
excluded due to poor image quality in the orbitofrontal cortex. We 
performed further preprocessing using SPM (SPM8; http://www.fil.
ion.ucl.ac.uk/spm) and REST (Song et al., 2011) software. The first 
10 volumes were discarded for signal equilibrium and to allow par‐
ticipants' adaptation to the scanning environment. We removed the 
variables of no interest from the time series using linear regression, 
including motion estimates, cerebrospinal fluid and white matter 
signals, and derivatives. In addition, we also conducted our analy‐
sis with global signal regression (GSR), given ongoing debate on this 
preprocessing step (Fox, Zhang, Snyder, & Raichle, 2009; Murphy, 
Birn,	Handwerker,	Jones,	&	Bandettini,	2009).	The	linear	trend	was	
removed, and the data were temporally bandpass filtered (0.01–
0.08	Hz)	and	spatially	smoothed	(full	width	at	half	maximum	=	4	mm).

For the FCP dataset, preprocessing was performed following 
our previous study (Yin et al., 2016), including slice timing, motion 
correction, spatial normalization (resampled to 3 mm isotropic vox‐
els), smoothing (full width at half maximum = 8 mm), removing linear 
trends, temporal bandpass filtering (0.01–0.08 Hz), and regressing 
out covariates (i.e., six head motion parameters, cerebrospinal fluid, 
and white matter signals) (six subjects were excluded according to 
the notes in the database).

2.5 | Construction of functional brain networks

We constructed functional brain networks based on preprocessed 
resting‐state fMRI images. For node definition, we used a parcella‐
tion	scheme	composed	of	264	putative	functional	areas	(Power‐264,	
spherical regions of interest (ROIs) with the same size; Power 
et al., 2011), as well as 90 ROIs according to the commonly used 
Automated Anatomical Labeling template (AAL‐90, ROIs with dif‐
ferent size; Tzourio‐Mazoyer et al., 2002). The time series of each 
ROI was obtained by averaging the residual time courses of all voxels 
within the ROI. A symmetric N × N (N	=	264	for	the	Power‐264	par‐
cellation; N = 90 for the AAL‐90 template) functional connectivity 
matrix was generated, and elements of the matrix Aij represent the 
Pearson's correlation coefficient between the time courses of two 
ROIs, i and j. Functional connectivity matrices were thus obtained 
for each participant. The next step is selection of cost threshold (re‐
flecting network density). The cost of the network G was defined as 
the total number of edges in a graph, divided by the maximum pos‐
sible number of edges:

where Ki is the degree of node i, defined as the number of direct neigh‐
bors of a node.

cos t=
1

N
(
N−1

)
∑

i∈G

Ki,

http://www.fil.ion.ucl.ac.uk/spm
http://www.fil.ion.ucl.ac.uk/spm
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However, there is currently no definitive criterion for thresh‐
old selection (Fornito, Zalesky, & Breakspear, 2013). Low cost may 
lead to a fragmented network with long shortest pathway, while 
high cost may reduce the economy of network. Considering that 
the network organization of the human brain is economic with fea‐
tures of small‐worldness and connectedness (Bassett & Bullmore, 
2006; Bullmore & Sporns, 2009, 2012), we first calculated these 
topological properties of the functional brain networks across a 
wide	range	of	cost	(0.05	≤	cost	≤	0.5,	with	an	incremental	interval	
of 0.05) using graph theoretical analysis (see Methods S1 for the 
details of calculation of small‐worldness). We then selected the 
cost threshold that enables the brain network to be small‐world. In 
addition, we considered that the minimum mean degree of nodes 
across subjects should be >1, to minimize the disconnected nodes. 
We finally validated our main findings across cost thresholds 
within small‐world regime.

2.6 | Neighbor dispersion index of each node in 
a network

Here, we assume that the functional diversity of a brain region is em‐
bodied by topological differentiation of its immediate neighbors in the 
large‐scale functional brain network. To characterize the functional 
diversity of each node in a network, we propose a new graph metric 
NDI, quantified by the ratio of topological distance between immedi‐
ate neighbors of a given node i and the maximum possible distance:

where Gi denotes the set of nodes that are the immediate neighbors 
of the node i, Ki is the degree of i, dst indicates topological distance 
between two nodes, s and t, defined as:

where A is the adjacency matrix, here the distance is evaluated using 
Manhattan distance. The NDI of a node is close to 1 if the neighbors 
of its neighbors are largely nonoverlapped and 0 if the neighbors of 
its neighbors are completely overlapped or its degree is <2. The NDI 
measures the degree of dispersion of information from a node in the 
network. To illustrate the concept of NDI, a toy graph is shown in 
Figure 1a.

2.7 | Existing graph metrics commonly used for 
identifying network hubs

For comparison purposes, we calculated three existing graph met‐
rics, commonly used for identifying network hubs, including de‐
gree, betweenness centrality, and participation coefficient. Degree 

Ki is defined as the number of immediate neighbors of a node i. 
Betweenness centrality Bi is defined as the number of shortest 
paths between any two nodes that run through node i (Freeman, 
1977):

where nj,k (i) is the number of shortest paths between nodes j and k that 
run through node i and nj,k is all shortest paths between nodes j and 
k. Bi captures the influence of a node over information flow between 
other nodes in the network, which tends to be high for brain regions 
with extensive across‐network connectivity. The participation coeffi‐
cient Pi of node i is defined as follows (Guimera & Nunes Amaral, 2005):

where NM is number of modules, identified by a spectral optimization 
algorithm (Newman, 2006), Kis is the number of links of node i to nodes 
in module s, and Ki is the degree of node i. The participation coefficient 
of a node is close to 1 if its links are uniformly distributed among all the 
modules and 0 if all its links are within its own module.

To consider that the contribution of a node to each community 
also depends on the size of the community, Klimm and colleagues 
have introduced refined versions of the participation coefficient, 
called the participation index (pi) and the dispersion index (di; Klimm 
et	al.,	2014).	We	also	calculated	these	two	indices	as	a	comparison.	
The formulas of these two indices are as follows:

where NM indicates the number of modules of a given network, σ(·) 
evaluates the standard deviation of the elements, PVi denotes par‐
ticipation vector whose elements PVis represent the probability that 
node i belongs to module s, s = 1, 2, 3, …, NM, the probability is given 
by PVis = Kis/N, where Kim is the number of links of node i to nodes in 
module s, N is the size of the module. To eliminate the effect of the 
degree Ki, here the participation vector PVi is normalized such that 
∑NM

s=1
PVis=1.

The pi reflects the global reach of a node's links among all the 
modules. In contrast, the di is proposed as a measure of how difficult 
it is to classify a node into only one module. The definition of di is 
equivalent to the pi but considering only the nonzero entries of the 
participation vector:

where PV′
i
 is the subvector containing only the nonzero entries of PVi, 

and N′

M
 is the dimension of PV′

i
.

NDI (i)=

∑
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�
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�
×
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2.8 | Correlation analysis between each metric and 
human intelligence across the whole brain

We used Penn's Progressive Matrices as a measure of fluid intelli‐  
gence (Bilker et al., 2012; Prabhakaran, Smith, Desmond, Glover, & 
Gabrieli, 1997). General intelligence, composed of fluid intelligence 
(novel/flexible processing; e.g., solving a novel problem) and crystal‐
lized intelligence (learned/stereotyped processing; e.g., vocabulary 
knowledge), is a broader construct than fluid intelligence (Horn & 
Cattell, 1966). We estimated general intelligence by considering scores 
on multiple measures of cognition function using factor analysis. We 
included scores from tests of fluid intelligence (Penn's Progressive 
Matrices), episodic memory (Picture Sequence Memory Test), execu‐
tive function and cognitive flexibility (Dimensional Change Card Sort 
Test), language and vocabulary comprehension (Picture Vocabulary 
Test), processing speed (Pattern Comparison Processing Speed Test), 
and working memory (List Sorting Working Memory Test). We aggre‐
gated these six scores using principal component analysis and treated 
the first component as an evaluation of general intelligence (Schultz 
& Cole, 2016). We performed correlation analyses between all brain 
regions (i.e., AAL‐90 atlas) and each measure of intelligence (i.e., fluid 
intelligence and general intelligence), resulting in 90 Pearson correla‐
tion coefficients. For each correlation coefficient, a permutation test 
where the intelligence scores of individuals were shuffled 5,000 times 
yielded a nonparametric p‐value. Nonparametric p‐values for all brain 

regions were corrected for multiple comparisons (i.e., 90) using the 
Bonferroni method (a corrected cutoff p‐value = .05/90 = .00056). 
Finally, both corrected and uncorrected p‐values combined with ob‐
served correlation coefficients were reported. To validate the asso‐
ciation between NDI and human intelligence, we further conducted 
the above correlation analysis across network densities, preprocess‐
ing strategies (without/with GSR), and brain parcellations. The valida‐
tion analyses were not independent of the primary tests and were 
therefore not corrected.

2.9 | Statistical analysis

To show the brain map of each graph metric, we calculated the mean 
value of each brain region across all participants. In order to quantify 
whether and how values of each metric varied across brain regions 
and potential functional roles, we divided the brain into 10 different 
functional networks according to a previous study (Power et al., 2011). 
Then, a one‐way analysis of variance (ANOVA) was performed on the 
mean values of each metric within these functional networks. Finally, 
post hoc two‐sample t‐tests were conducted to assess the significant 
differences in the mean values of each metric between any two func‐
tional networks. A threshold of p < .05 with Bonferroni correction 
was considered statistically significant. To identify distinguishability 
of NDI, we performed Pearson correlation analyses between NDI and 
the other metrics across the whole brain, and r values are reported.

F I G U R E  1   Illustration of the concept and performance of our proposed graph metric NDI in hypothetical networks. (a) A toy graph 
shows NDI of node i, in which j and k are neighbors of i. The colored shadows indicate neighbors' connectivity patterns of node i (the color 
corresponds to that of the neighbor node). The smaller the overlap among nodes in the neighbors' connectivity patterns, the higher the 
NDI of node i. (b) A hypothetical network is composed of a core and integrated system and three peripheral and segregated systems. Four 
nodes likely having different topological roles are labeled by numbers. (c) A graph illustration of the two nodes (i.e., node 1 and 3) with the 
same degree (K = 3) but in different systems for each metric. The colored shadows, nodes, and edges represent the topological information 
captured by each graph metric. (d) Comparison between NDI and four commonly used graph metrics for the four nodes. The maximum value 
of each metric among the four nodes was labeled with underlines. The arrows indicate the values following a descending order, suggesting 
the ability of those metrics to distinguish the topological role of different nodes. BC, betweenness centrality; CC, clustering coefficient; NDI, 
neighbor dispersion index; PC, participation coefficient
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3  | RESULTS

3.1 | Comparing NDI with several commonly used 
graph metrics for identifying network hubs in a 
hypothetical network

We first illustrated the performance of our proposed graph metric 
NDI by comparing it with four commonly used graph metrics, that 
is, degree, betweenness centrality, participation coefficient, and 

clustering coefficient, in a hypothetical network (Figure 1b). The 
hypothetical network is composed of a core, integrated system 
and three peripheral, segregated systems. Four nodes likely hav‐
ing different topological roles are labeled numerically. Figure 1c 
shows the topology patterns of the neighbors of two nodes with 
the same degree (K = 3) but in different systems as well as graph 
illustration for other metrics. The NDI of the node in the core 
system is greater than that of the node in the peripheral sys‐
tem (0.7 vs. 0.5). The complete comparison shows that NDI and 

F I G U R E  2   Illustration of the procedures for calculating the NDI in a single subject (HCP#100307). Based on preprocessed functional 
images	(a),	mean	time	course	of	each	region	of	interest	(here	using	Power‐264	parcellation	(b))	was	extracted	(c).	Pearson	correlation	
analysis was then performed for the time courses of each pair of brain regions, and thus, a functional connectivity matrix was obtained 
(the	size	of	matrix	is	264	×	264)	(d).	To	construct	a	functional	brain	network,	network	sparsification	using	a	density	threshold	is	often	
needed (here cost = 0.15) (e). Finally, the NDI of each brain region was calculated on the basis of topological dissimilarity of its immediate 
neighbors. (f) shows the connectivity patterns of two representative nodes (i.e., DLPFC and V1) and their immediate neighbors. The 
topological architecture of immediate neighbors (blue nodes) for the two representative nodes (red nodes) is also shown, respectively 
(g). The connectivity pattern (gray lines) of DLPFC's immediate neighbors is dispersed and almost covers the whole brain. In contrast, the 
connectivity pattern (gray lines) of V1's immediate neighbors is localized and primarily concentrated on visual cortex and posterior parietal 
cortex. The red lines denote direct connections between DLPFC/V1 and their immediate neighbors. DLPFC, dorsolateral prefrontal cortex; 
NDI, neighbor dispersion index; V1, primary visual cortex
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betweenness centrality can consistently distinguish between the 
four nodes, but degree, participation coefficient, and clustering 
coefficient cannot (Figure 1d). This result suggests that NDI and 
betweenness centrality are comparable in characterizing the di‐
versity of nodes for the hypothetical network.

3.2 | Comparing NDI with several commonly 
used graph metrics for identifying network hubs in 
empirical resting‐state functional brain networks

We next applied NDI and commonly used graph metrics to the em‐
pirical functional brain networks constructed from the HCP data‐
set. The main results reported here are based on a single network 
density (cost = 0.15), which was identified under the consideration 
that network organization of the human brain is economic with fea‐
tures of small‐worldness and connectedness (Figure S1). Figure 2 il‐
lustrates the procedures for calculating the NDI in a single subject 
(HCP#100307). For intuitive understanding of the NDI, we depicted 
the topological architecture of the immediate neighbors for two 
representative nodes with NDI equal to 0.69 and 0.35, located in 
the dorsolateral prefrontal cortex (DLPFC) and primary visual cortex 
(V1), respectively. The connectivity pattern of DLPFC's immediate 
neighbors is dispersed and almost covers the whole brain. In con‐
trast, the connectivity pattern of V1's immediate neighbors is local‐
ized, mainly concentrated in the visual cortex and posterior parietal 
cortex.

At the nodal level, we found that lateral prefrontal cortex, infe‐
rior parietal lobule, anterior insula, dACC, and supplementary motor 
area consistently showed higher NDI regardless of data preprocess‐
ing without or with GSR, but not betweenness centrality, participant 
coefficient, degree, and clustering coefficient (Figure 3). Across the 
whole‐brain regions, we found weak correlations (without/with 

GSR) between NDI and betweenness centrality (r = .17/r = .11) and 
participant coefficient (r = 0/r = .31) and degree (r	=	−.44/r	=	−.49).	
Despite a relatively high (anti) correlation between NDI and clus‐
tering coefficient (r	=	−.75/r	=	−.89),	 the	correlation	 is	not	perfect	
(Figure S2). For instance, many brain regions show clustering coef‐
ficients equal to 0 and 1. However, their NDI values are widely dis‐
tributed. This is because the clustering coefficient takes into account 
only direct connections among immediate neighbors of a given node, 
while NDI captures information of entire topological patterns of the 
neighbors, which may explain the remaining variances. This result 
indicates that NDI is distinguishable from the other graph metrics 
and able to capture unique topological information.

At the network level, we consistently observed that the brain 
map of each metric was heterogeneous across functional net‐
works (i.e., without GSR: ANOVA, F(9,980) = 20.5, p < .0001 for NDI; 
F(9,980) = 38.7, p < .0001 for betweenness centrality; F(9,980) = 87.0, 
p < .0001 for participant coefficient; F(9,980)	 =	 154.5,	 p < .0001 
for degree; F(9,980) = 75.2, p < .0001 for clustering coefficient; and 
with GSR: ANOVA, F(9,980) = 26.6, p < .0001 for NDI; F(9,980) = 67.8, 
p < .0001 for betweenness centrality; F(9,980) = 75.7, p < .0001 
for participant coefficient; F(9,980)	 =	 104.2,	 p < .0001 for degree; 
F(9,980) = 30.6, p < .0001 for clustering coefficient). Post hoc results 
(p < .05, Bonferroni corrected) showed that NDI of the frontoparietal 
network and the salience network was significantly higher than that 
of the auditory, visual, and sensorimotor networks for both with‐
out and with GSR conditions. However, this was not the case for 
betweenness centrality, participant coefficient, degree, or cluster‐
ing coefficient. Specifically, auditory network and salience network 
showed higher betweenness centrality; dorsal attention network 
and salience network showed higher participant coefficient; audi‐
tory and sensorimotor networks showed higher degree; and visual 
and sensorimotor networks showed higher clustering coefficient 

F I G U R E  3   Mean values of each node across participants for both without and with GSR. The color bar denotes the magnitude of mean 
values. The black squares highlight the brain regions in the lateral prefrontal cortex, anterior insula, inferior parietal lobule, dorsal anterior 
cingulate cortex, and supplementary motor area. BC, betweenness centrality; CC, clustering coefficient; Deg, degree; GSR, global signal 
regression; NDI, neighbor dispersion index; PC, participation coefficient
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(Figures	4	and	S3).	This	result	demonstrates	that	NDI	is	capable	of	
describing functional diversity across human brain.

To show the uniqueness of NDI, we also calculated pi and di, as 
refined versions of the participation coefficient. Although the sa‐
lience network showed higher pi and di, we found that the frontopa‐
rietal network did not show higher pi or di	(Figure	S4).	This	result	not	
only suggests that the size of modules may not significantly affect 
the measure of participation of nodes in the empirical functional 
brain networks, but also further implies that our proposed NDI cap‐
tures connectivity diversity in a manner that is different from graph 
metrics based on modular decomposition.

3.3 | Validation analysis of the methodology

To test the effect of GSR, we first showed the differences of func‐
tional connectivity matrices without and with GSR. We found that 

the differences were distributed across the whole matrix (Figure 5a–
c). Through correlation analysis of each graph metric between con‐
ditions without and with GSR, we observed significant correlations 
for NDI (r = .25, p = 3.7 × 10–5), betweenness centrality (r = .68, 
p = 7.9 × 10–38), participant coefficient (r = .35, p	=	3.4	×	10–9), de‐
gree (r = .83, p = 3.1 × 10–68), and clustering coefficient (r = .71, 
p = 1.0 × 10–41), although correlations for NDI and participant coef‐
ficient were relatively weaker (Figure 5d–h). This result suggests that 
NDI and participant coefficient are more sensitive to the changes of 
network topology due to GSR.

To test the effect of different brain parcellations, we calculated 
the NDI and the other metrics based on another commonly used 
AAL‐90 template. We found that the brain maps of NDI (r = .60, 
p = 1.6 × 10–8), betweenness centrality (r = .38, p = 8.0 × 10–4), partici‐
pant coefficient (r = .39, p	=	6.4	×	10–4), degree (r = .69, p = 1.6 × 10–11),  
and clustering coefficient (r = .75, p = 3.7 × 10–14) were matched 

F I G U R E  4   (a) Ten different functional 
networks of human brain were divided 
according to a previous study (Power 
et al., 2011). (b) Mean values of each 
functional network both without and 
with GSR. The mean values of each 
functional network were calculated 
across all participants and across regions 
within that functional network. Error 
bars stand for SEM. The dashed lines 
denote the global mean value across all 
functional networks. A one‐way analysis 
of variance (ANOVA) was performed on 
the mean values of each metric within 
these functional networks. Aud, auditory 
network; BC, betweenness centrality; CC, 
clustering coefficient; CON, cingulate‐
opercular network; DAN, dorsal attention 
network; Deg, degree; DMN, default 
mode network; FPN, frontoparietal 
network; GSR, global signal regression; 
NDI, neighbor dispersion index; PC, 
participation coefficient; SEM, standard 
error of the mean; SM, sensorimotor 
network; SN, salience network; Sub, 
subcortical network; VAN, ventral 
attention network; Vis, visual network
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between the two brain parcellations (Figure 6). This result suggests 
that our findings are robust to different brain parcellations.

To reproduce the brain map of each graph metric in a second 
dataset, we analyzed a 198‐subject resting‐state fMRI dataset from 
the database known as “1000‐FCP.” We found that the brain maps 
of NDI (r	 =	 .47,	 p = 7.0 × 10–16), betweenness centrality (r	 =	 .49,	
p = 9.8 × 10–17), participant coefficient (r	 =	 .40,	 p = 8.0 × 10–12), 
degree (r = .72, p = 8.7 × 10–44), and clustering coefficient (r	=	.64,	
p = 9.8 × 10–32) were consistent between the two datasets (Figure 7). 
This result implies that the brain map of each metric is robust to dif‐
ferent fMRI datasets even with different temporal and spatial reso‐
lutions, and pipelines of data preprocessing.

In the above analyses, the values of NDI were calculated for 
binary networks. To test the applicability of NDI in networks with 
connectivity weights, we applied it to weighted functional brain net‐
works with a wide range of network densities (i.e., cost = 0.15, 0.30, 
and 0.60), without setting a density threshold (however, all negative 
correlations were set to zero as NDI is not applicable for negative 
weights). We found the regional profile of NDI to be highly consistent 
between the binary and weighted networks (r = .998, p < .0001 for 
cost = 0.15; r	=	.994,	p < .0001 for cost = 0.30; and r = .983, p < .0001 
for cost = 0.60). However, the quantitative differences in NDI be‐
tween binary and weighted networks are dramatic at a higher net‐
work density (cost = 0.60; Figure 8).

F I G U R E  5   Functional connectivity matrices (cost = 0.15) without (a) and with (b) GSR, as well as the differences of the two conditions (c, 
with GSR > without GSR). Correlation of each graph metric between the two conditions was also shown (d–h). Aud, auditory network; BC, 
betweenness centrality; CB, cerebellum; CC, clustering coefficient; CON, cingulate‐opercular network; DAN, dorsal attention network; Deg, 
degree; DMN, default mode network; FPN, frontoparietal network; GSR, global signal regression; Mem, memory retrieval network; NDI, 
neighbor dispersion index; PC, participation coefficient; SM, sensorimotor network; SN, salience network; Sub, subcortical network; VAN, 
ventral attention network; Vis, visual network
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For the weighted networks without a set density threshold, we 
consistently found that the frontoparietal and salience networks 
showed higher NDI while primary sensory networks showed lower 
NDI, and the regional profile of NDI was correlated across prepro‐
cessing strategies (without/with GSR, r = .71, p	=	2.4	×	10–41), brain 
parcellations	(Power‐264/AAL‐90,	r	=	.43,	p = 1.2 × 10–4), and data‐
sets (HCP/FCP, r	=	.54,	p	=	1.4	×	10–21). However, the weighted net‐
works showed a narrow dynamic range of NDI across brain regions, 
particularly without GSR (Figure 9). This result demonstrates that 
our new metric NDI is applicable to weighted networks.

To test the effect of different network costs, we performed correla‐
tion analyses for brain maps of each metric across different cost thresh‐
olds. We found that the brain maps are consistent across different 
cost thresholds for each metric (mean r = .76 for NDI; mean r = .81 for 
betweenness centrality; mean r = .85 for participant coefficient; mean 
r = .97 for degree; and mean r = .72 for clustering coefficient; Figure 9). 
In addition, we observed the relationships between the graph metrics 
to be consistent across different cost thresholds (Figure 10). This result 
suggests that our findings are robust to different network costs.

In addition to the consistency of the regional profile of the NDI, 
we also found the relationship between the NDI and functional net‐
works to be robust across datasets, network densities, and prepro‐
cessing strategies (Figure S5).

3.4 | Correlations between each graph metric and 
human intelligence across the whole brain

To obtain a brain map of regional correlation coefficients, we per‐
formed association analysis between each graph metric and human 
fluid and general intelligence across the whole‐brain regions. We 
used Penn's Progressive Matrices as a measure of fluid intelligence 
and estimated general intelligence (including fluid intelligence and 
crystallized intelligence) by considering scores on multiple measures 
of cognitive function using factor analysis. For the factor analysis, 
the Kaiser–Meyer–Olkin test statistic was 0.63 and the statisti‐
cal significance of Bartlett's test was p < .001 (suggesting that it 
is suitable for factor analysis). In accordance with a previous study 
(Schultz & Cole, 2016), we treated the first component (explaining 
34.1%	of	the	variance)	as	an	evaluation	of	general	intelligence.	We	
generally found that the NDI of prefrontal cortex correlated with 
fluid intelligence, and the NDI of prefrontal cortex, inferior pari‐
etal lobule, and insula correlated with general intelligence, but this 
was not the case for the other metrics (permutation tests; p < .05 
uncorrected; Figure 11). After multiple comparison correction was 
applied, we found that only the NDI of left DLPFC positively corre‐
lated with fluid intelligence (permutation test; p = .0002; Bonferroni 
corrected). No significant correlations were observed between any 

F I G U R E  6  Robust	brain	map	of	each	graph	metric	for	different	brain	parcellations.	An	overlay	of	Power‐264	and	AAL‐90	parcellations	
was	shown	in	(a);	however,	only	73	AAL	regions	have	overlapping	spherical	nodes	in	Power‐264.	The	mean	values	of	spherical	nodes	within	
each AAL region were first calculated. Then, Pearson correlation analysis of each graph metric across brain regions was performed between 
the two brain parcellations (b–f). BC, betweenness centrality; CC, clustering coefficient; Deg, degree; NDI, neighbor dispersion index; PC, 
participation coefficient; SMA, supplementary motor area
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F I G U R E  7   Robustness brain map of each graph metric for different resting‐state fMRI datasets. To reproduce the brain map of each 
graph metric in a second dataset, another 198‐subject resting‐state fMRI dataset from the database known as “1000‐FCP” was also 
analyzed. Significant correlation of each graph metric across brain regions was found between the HCP and FCP datasets. BC, betweenness 
centrality; CC, clustering coefficient; Deg, degree; FCP, Functional Connectomes Project; fMRI, functional magnetic resonance imaging; 
HCP, Human Connectome Project; NDI, neighbor dispersion index; PC, participation coefficient
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other metrics and human fluid or general intelligence at any brain 
regions. The raw correlation coefficients are shown in Figure S6. 
This result suggests that the NDI is different from the other graph 
metrics in characterizing functional brain organization.

To validate the relationship between the NDI and intelligence, 
we have also calculated the correlations across parameters of pre‐
processing strategies, network densities, brain parcellations, as well 
as network types (binary and weighted). We found some consisten‐
cies in correlation between NDI and intelligence across these pa‐
rameters, mainly involving the frontal and parietal cortices, although 
obvious differences do exist, particularly for the weighted networks 
(uncorrected p < .05; Figures 12 and S7). In addition, we plotted the 
correlation between fluid intelligence and NDI of the left DLPFC for 
both	 AAL‐90	 and	 Power‐264	 parcellations,	 together	 with	 a	 histo‐
gram of the null distribution generated during the permutation test 
(Figure S8).

From the scatter plot of correlation between fluid intelligence 
and NDI of the left DLPFC, we noticed two subjects who are outliers 
with lowest NDI equal to 0 (although their fluid intelligence scores 
are also the lowest). We therefore further examined the functional 
connectivity patterns of these two subjects as well as two subjects 
with NDI greater than 0. We found relatively few prefrontal connec‐
tions in the brain networks of the two outliers, and the left DLPFC 
has only one neighbor (Figure S9). This result not only suggests that 
lower fluid intelligence is likely attributed to the relatively lower 
functional connectivity of prefrontal cortex, but also indicates that 
NDI could be a good expression of fluid intelligence.

To test whether our main results hold after the removal of these 
two outliers, we recalculated the correlations between fluid intelli‐
gence and the NDI and clustering coefficient of the left DLPFC after 
excluding the two subjects. We nevertheless found a significant 
correlation between fluid intelligence and NDI of the left DLPFC 

F I G U R E  8   Applicability of NDI in both binary and weighted networks with different densities (i.e., cost = 0.15, 0.30, and 0.60). The 
regional profile of NDI is highly consistent between the binary and weighted networks across a wide range of densities. However, the 
quantitative differences of NDI between binary and weighted networks are dramatic at higher network density (cost = 0.60). NDI, neighbor 
dispersion index
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(r = .18, p = .036), although the correlation weakened. In contrast, 
no significant correlation was found for the clustering coefficient 
(r	=	−.09,	p = .18; Figure S10). This result suggests that our main con‐
clusion is not significantly affected by the two outliers.

In addition, a previous study has suggested that subjects with 
lower overall functional connectivity have more randomly organized 
brain networks (van den Heuvel et al., 2017). Considering that the 
connectivity profile of the DLPFC covers almost the whole brain, a 
more random topology of the network will also influence the NDI of 

the DLPFC. To test this effect, we first performed correlation anal‐
ysis between NDI of the DLPFC and overall functional connectiv‐
ity (i.e., the mean of all positive functional connectivity values). We 
found significant negative correlation between NDI of the DLPFC 
and overall functional connectivity both with (r	=	−.25,	p = .011) and 
without (r	 =	−.20,	p	 =	 .047)	 the	 two	outliers	 (Figure	S11).	This	 re‐
sult indicates that lower overall functional connectivity may lead to 
higher NDI of the DLPFC, which is likely attributed to a more random 
topology of the network. We subsequently conducted correlation 

F I G U R E  9   Applicability of NDI in weighted networks without setting a density threshold. (a) Mean NDI values of each node across 
participants for both without and with GSR. The color bar denotes the magnitude of mean values. (b) Mean NDI values of each functional 
network both without and with GSR. The mean values of each functional network were calculated across all participants and across regions 
within that functional network. Error bars stand for SEM. The dashed lines denote the global mean value across all functional networks. A 
one‐way analysis of variance (ANOVA) was performed on the mean values of each metric within these functional networks. (c) Correlations 
between regional profiles of weighted NDI across different preprocessing strategies, brain parcellations, and datasets. GSR, global signal 
regression; NDI, neighbor dispersion index; SEM, standard error of the mean
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analysis between fluid intelligence and NDI of the DLPFC after re‐
gressing out the overall functional connectivity. We consistently ob‐
served significant correlations between fluid intelligence and NDI of 
the DLPFC both with (r = .38, p = 0) and without (r = .25, p = .007) the 
two outliers (Figure S11). Moreover, we found that the correlations 
were higher after regressing out the overall functional connectivity. 
This result suggests that our main findings still hold when consider‐
ing the potential effect of overall functional connectivity.

4  | DISCUSSION

Although the idea of functional specialization or segregation has led 
to breakthroughs in cognitive neuroscience, it has also been realized 
that the specific functional attributes of a brain region are related to 
its connectivity (integration) with other areas of the brain (Cole et al., 
2013; Friston, 2011; Genon et al., 2018; Sallet et al., 2013; Yin et al., 
2016). Specifically, a recent study has argued that long‐range con‐
nections are key for the functional diversification of brain regions 
(Betzel & Bassett, 2018). In this study, we present a new graph met‐
ric (i.e., NDI), via capturing the topological dissimilarity of immediate 
neighbors, to characterize the functional diversity of brain regions. 
Our method emphasizes that the functional role of a brain region is 
largely determined by the relationship between its neighbors' topol‐
ogy	patterns,	rather	than	just	its	connections	(Jbabdi,	Sotiropoulos,	
& Behrens, 2013). A likely reason for this is that the entire topology 
patterns of its neighbors probably better embody the potential of 
information spreading from that brain region.

Through comparing NDI with several existing graph metrics 
commonly used for characterizing nodal capacity of information 
integration (or network hubs), in hypothetical and empirical func‐
tional brain networks, we demonstrated the ability of our proposed 

graph metric to map the functional diversity of the human brain. 
Specifically, we found the frontoparietal and salience networks 
to show higher NDI, while visual, auditory, and sensorimotor net‐
works showed lower NDI, and this was not the case for any other 
metric. Consistently, a multitask activation study has revealed high 
functional diversity of frontoparietal and anterior insular regions 
(Anderson et al., 2013). Based on the structural connectome, a re‐
cent study using a method of entropy over the motif participant dis‐
tribution highlighted high diversity of the cognitive control system 
(Betzel et al., 2018). Brain regions with higher NDI largely overlap 
with the multiple‐demand or cognitive control system (Dosenbach 
et al., 2007; Duncan, 2010), which includes the DLPFC, inferior 
parietal lobule, dorsomedial prefrontal cortex/dACC, and anterior 
insula/frontal operculum. The cognitive control system is thought 
to consist of functionally diverse regions that contribute to flexi‐
bly configure information processing in response to changing task 
demands (Braun et al., 2015; Dosenbach et al., 2007; Posner & 
Petersen, 1990). In particular, frontoparietal regions play a vital role 
in flexible top‐down control by biasing information flow across mul‐
tiple functional systems (Cole et al., 2013; Miller & Cohen, 2001). 
Nodes of the salience network are capable of detecting and attend‐
ing to salient goal‐relevant events in a flexible manner, particularly 
important for the initiation of cognitive control (Chen, Cai, Ryali, 
Supekar, & Menon, 2016; Ham et al., 2013; Menon & Uddin, 2010). 
From a network science perspective, our findings not only demon‐
strate that NDI is capable of describing functional diversity, but also 
suggest that a high capability in dispersion of information may un‐
derlie the adaptive cognitive control of brain regions constituting 
the frontoparietal and salience networks.

For the association analyses, we observed that human fluid intel‐
ligence was associated with the NDI of DLPFC, while no such asso‐
ciation for the other metrics was noticed even with an uncorrected 

F I G U R E  1 0   Correlations of each graph metric across different cost thresholds (a), as well as correlations between the graph metrics 
across different cost thresholds (b). Color bars denote r values. BC, betweenness centrality; CC, clustering coefficient; Deg, degree; NDI, 
neighbor dispersion index; PC, participation coefficient
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p < .05. In contrast, the participation coefficient of frontoparietal 
regions has shown correlation with a wide range of other behav‐
iors (Bertolero et al., 2018). Research in cognitive neuroscience 
has long sought to understand the nature of individual differences 
in human intelligence, and different theories have been proposed 
based on neuroimaging studies (Barbey, 2018). For example, early 
studies investigating the neural basis of human intelligence primar‐
ily implicated the lateral prefrontal cortex (Duncan & Owen, 2000; 
Duncan et al., 2000; Gray, Chabris, & Braver, 2003). Colom et al 
argued that human intelligence relates to areas distributed across 
the	 brain,	 not	 exclusively	 to	 frontal	 lobes	 (Colom,	 Jung,	 &	 Haier,	
2006). Later, emergence of network‐based theories accounted for 
individual differences in human intelligence on the basis of multi‐
ple discrete brain regions, such as parieto‐frontal integration theory 
(Jung	&	Haier,	2007)	and	multiple‐demand	theory	 (Duncan,	2010).	
Although differences exist across theories, there are important con‐
sistencies that the areas associated with human intelligence mainly 
involve frontal and parietal lobes. In particular, evidence from lesion 

studies has shown causal correlations between human fluid/general 
intelligence and lesions in distributed frontal and parietal regions as 
well as damage to major white matter tracts (Glascher et al., 2010; 
Woolgar et al., 2010).

Moreover, there is also a wealth of studies exploring rela‐
tionships between functional connectivity and intelligence (Cole, 
Yarkoni, Repovs, Anticevic, & Braver, 2012; Ferguson, Anderson, & 
Spreng, 2017). The original study by van den Heuvel et al (van den 
Heuvel, Stam, Kahn, & Hulshoff Pol, 2009) reported an associa‐
tion between global network efficiency and intelligence. However, 
more recent investigation in a larger sample size showed that global 
efficiency was not associated with intelligence (Kruschwitz, Waller, 
Daedelow, Walter, & Veer, 2018). Instead, connectivity profiles of 
the frontoparietal network have been identified to be related to 
human intelligence (Finn et al., 2015; Hearne et al., 2016). These 
studies linked network level connectivity/edge to intelligence 
but did not delve into properties of nodes as our current study 
did. Notably, for our metric, the connectivity pattern of DLPFC's 

F I G U R E  11   Correlation between 
each graph metric and human intelligence 
across whole brain. The color bar 
denotes r value × D (p‐value|.05), where 
if p‐value < .05, D = 1, otherwise D = 0. 
Only correlation between NDI of the left 
DLPFC and fluid intelligence survives the 
Bonferroni correction. BC, betweenness 
centrality; CC, clustering coefficient; Deg, 
degree; FI, fluid intelligence; GI, general 
intelligence; NDI, neighbor dispersion 
index; PC, participation coefficient
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immediate neighbors is dispersed and almost covers the whole 
brain. Although the overall functional connectivity can affect 
global network measure (van den Heuvel et al., 2017), we argue 
that connectivity topology of the frontoparietal network is likely 
more sensitive in representing intelligence than a global network 
measure. Accordingly, we have demonstrated that correlation be‐
tween fluid intelligence and NDI of the left DLPFC still holds after 
regressing out the overall functional connectivity. Our finding not 
only supports previous theories related to human intelligence, but 
also suggests that NDI is substantially different from other graph 
metrics in characterizing functional brain organization.

For the validation analysis between NDI and intelligence, we found 
some consistencies mainly involving the frontal and parietal cortices, 
although obvious differences were also noticed, especially for the 
weighted networks. Previous brain network studies have demon‐
strated that organization principles are robust across spatial scales, 
but quantitative measures of graph metrics, especially for individual 
regions, vary substantially (de Reus & van den Heuvel, 2013; Hayasaka 
& Laurienti, 2010; Wang et al., 2009). In particular, the association be‐
tween global network efficiency and intelligence has not been suc‐
cessfully replicated across different datasets, even with a wide range 
of network densities and spatial scales (Kruschwitz et al., 2018; van 
den Heuvel et al., 2009). Therefore, caution should be noted when 
interpreting differences in quantitative measures across different 
preprocessing strategies, network densities, brain parcellations, and 
datasets, although organization principles of brain network are robust.

A few methodological issues should be considered. First, despite 
the	existence	of	many	centrality	metrics	 (Jalili	et	al.,	2015;	Oldham,	
Fulcher, Parkes, Arnatkeviciute, & Fornito, 2018), to the best of our 
knowledge, only the participant coefficient (or a similar concept) was 
recently used and interpreted as a measure of diversity (Bertolero  
et al., 2017, 2018; Betzel et al., 2018; Schultz et al., 2019). However, the  
calculation of the participant coefficient requires a decomposition of 
the functional network into modules, which are highly dependent on 
the community detection algorithms and may result in different mod‐
ules on every run (Betzel et al., 2018; Guimera & Nunes Amaral, 2005; 
Power et al., 2013; Sporns & Betzel, 2016). In addition, Bertolero and 
colleagues recently defined a “diverse club,” containing nodes with 
both a high participant coefficient and a high degree, to describe inte‐
grative network function (Bertolero et al., 2017). Both diverse club and 
classic rich club (van den Heuvel & Sporns, 2013a) are identified based 
on predefined network hubs (i.e., nodes with higher degree). In con‐
trast to our finding that frontoparietal and salience networks showed 
higher diversity, their result showed that nodes from the diverse club 
were mainly involved in ventral attention network and salience net‐
work, and nodes from rich club were primarily included in visual and 
dorsal attention networks. This suggests that our NDI captures dis‐
tinct topological properties from diverse club and rich club. Moreover, 
our proposed measure is relatively simple, and its calculation is not 
based on other graph metrics such as modularity and degree.

Second, there was a negative correlation between NDI and clus‐
tering coefficient. Mathematically, NDI may capture some common 

F I G U R E  1 2   Validation of correlations 
between NDI and human intelligence 
across network densities, preprocessing 
strategies, and brain parcellations. The 
black triangles indicate the brain regions 
consistent with those in main result. The 
color bar denotes r value × D (p‐value|.05), 
where if p‐value < .05, D = 1, otherwise 
D = 0. FI, fluid intelligence; GI, general 
intelligence; GSR, global signal regression; 
NDI, neighbor dispersion index
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information with the clustering coefficient (i.e., the NDI captures entire 
topological patterns of immediate neighbors of a node, while the clus‐
tering coefficient captures only direct connections among immediate 
neighbors of a node). However, the correlation was not perfect, which 
means that NDI cannot be well described by the clustering coefficient 
through a linear relation. More importantly, we found that correlations 
of NDI and clustering coefficient with human intelligence were distinct 
across the whole brain. This suggests specificity of NDI in capturing in‐
formation from network topology compared to clustering coefficient.

Third, although there were brain‐wide correlations for the graph 
metrics between without and with GSR, the specific brain regions or 
functional networks were found to be influenced by GSR. For exam‐
ple, NDI of default mode network relatively decreased and subcorti‐
cal network increased after performing GSR (i.e., the NDI of default 
mode network is significantly higher (p < .05 with Bonferroni correc‐
tion) than that of subcortical network without GSR. Inversely, the NDI 
of subcortical network is significantly higher (p < .05 with Bonferroni 
correction) than that of default mode network after performing 
GSR), and participant coefficient of subcortical network relatively in‐
creased with GSR. Consistently, previous studies also reported that 
both global and local graph theoretical measures were impacted by 
GSR (Liang et al., 2012; Sinclair et al., 2015). However, including GSR 
in the preprocessing of resting‐state functional connectivity data is 
not inherently right or wrong because of no accepted gold standard 
(Murphy & Fox, 2017). Furthermore, we found that degree and clus‐
tering coefficient were more robust to the GSR compared with NDI 
and participant coefficient. It is possible that NDI and participant co‐
efficient are more sensitive to the changes of network topology.

Finally, although our new metric NDI is applicable for weighted 
networks, connectivity weights seem to play a minor role in sparse 
weighted networks. The sparser the weighted networks, the nar‐
rower the distribution of connectivity weights (i.e., the difference 
of connectivity weights is small). Perhaps, this is why connectivity 
weights appear to play a minor role in sparse weighted networks. 
It is possible that connectivity topology plays a more crucial role in 
the NDI of nodes than connectivity weights do, especially in sparse 
weighted networks. Moreover, we found that weighted networks 
without a set density threshold showed a narrow dynamic range 
of NDI across brain regions, particularly without GSR. Previous 
evidence suggests that GSR may introduce negative correlations 
(Murphy & Fox, 2017). It is likely that weighted networks without 
GSR could be denser than those with GSR (negative correlations 
were set to zero). In addition, we did not find a significant correlation 
between NDI and intelligence in frontoparietal regions for weighted 
networks. This suggests that NDI might not be sensitive in distin‐
guishing the roles of different nodes in dense weighted networks.

In conclusion, this study proposes a novel graph measure to de‐
scribe the functional diversity of brain regions on the basis of to‐
pological dissimilarity between immediate neighbors. Our method 
successfully demonstrated that brain regions showing higher func‐
tional diversity are primarily located in the frontoparietal and sa‐
lience networks. In contrast, unimodal sensory regions show lower 
functional diversity. Furthermore, the NDI of DLPFC is associated 

with variations in human fluid intelligence, while no such associa‐
tion for the other metrics commonly used for characterizing network 
hubs was noticed even with an uncorrected p < .05. Our findings 
not only provide new insight into the network architecture of brain 
function, but also shed light on individual differences in human intel‐
ligence. Moreover, this new graph method has potential for explor‐
ing how functional diversity of brain regions evolves during brain 
development or is disrupted in neuropsychiatric disorders.
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