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Abstract: Single-screw extruders are usually operated with the screw fully filled (flood-fed mode)
and not partially filled (starve-fed mode). These modes result in completely different processing
characteristics, and although starve-fed mode has been shown to have significant advantages, such
as improved mixing and melting performance, it is rarely used, and experimental studies are scarce.
Here, we present extensive experimental research into starve-fed extrusion at feeding rates as low
as 25%. We compared various operating parameters (e.g., residence time, pressure build-up, and
melting performance) at various feeding rates and screw speeds. The results show a first insight into
the performance of starve-fed extruders compared to flood-fed extruders. We explored starve-fed
extrusion of a polyethylene material which contains a Very High Molecular Weight Polyethylene
fraction (VHMWPE). VHMWPE offers several advantages in terms of mechanical properties, but
its high viscosity renders common continuous melt processes, such as compression molding, ram
extrusion and sintering, ineffective. This work shows that operating single-screw extruders in
extreme starve-fed mode significantly increases residence time, melt temperature, and improves
melting and that-in combination—this results in significant elongation of VHMWPE particles.

Keywords: single-screw extrusion; starve-fed extrusion; melting mechanism; VHMWPE

1. Introduction

Single-screw extruders are among the most important machinery in polymer process-
ing. They are usually operated in flood-fed mode, where the screw beneath the hopper
is fully filled and takes in as much material as possible. However, single-screw extruders
can also be operated in starve-fed mode, where the screw is not fully filled. As its output
depends on the feeding rate and not on the screw speed, a partially filled screw exhibits
processing characteristics (e.g., axial pressure profile and melting) that differ completely
from those of a screw operated in flood-fed mode [1]. The starve-fed mode is rarely used
in single-screw extrusion, although significant benefits in terms of improved melting and
mixing have been observed for twin-screw extruders operated in this mode. To date, only
a few studies that concentrate on starve-fed single-screw extrusion have been published.
The melting mechanism in starve-fed extrusion was discovered by various researchers.
All these studies show a completely different melting mechanism compared to flood-fed
mode. In starve-fed mode the melting mechanism consists of two stages. In the starve-fed
areas conductive melting is the major mechanism while dispersed solid melting in the fully
filled areas occurs [2–6]. Other groups were studying the improved mixing performance
in compounding with starve-fed mode compared to flood-fed mode [7]. In addition, the
processing advantages like limited die pressure fluctuations and a lower specific power
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consumption by starve-fed mode have been studied [8]. An optimization model for starve-
fed single-screw extrusion showed that the optimized mode in a single-screw extruder in
terms of specific energy consumption is starve-fed mode [9]. Recently Mazzanti showed
the improvement in mechanical properties of rubber-toughened wood composites through
starve-fed extrusion [10]. Compared to conventional polyolefins, very high molecular
weight polyethylene (VHMWPE) offers several advantages in terms of mechanical proper-
ties, such as very high impact strength and crack resistance. However, its high viscosity
makes pure VHMWPE unsuited to melting in common continuous processes such as com-
pression molding, ram extrusion and sintering [11,12]. The processability of VHMWPE has
been improved by decreasing the degree of chain entanglement [13], by applying atypical
polymerization techniques (polymerization with catalysts with decreased number of active
sites) [11,14–17] and by blending with lower-molecular-weight high-density polyethylene
(HDPE) [17,18]. HDPE exhibits branching only to a very limited degree and consists of long
chains that ensure its excellent mechanical properties [19,20]. Blending VHMWPE with
polyethylene (PE) results in poor dispersion and thus in the formation of “white spots” due
to the vast viscosity mismatch between the two components. White spots are VHMWPE
particles that are too viscous for carbon black to penetrate, which results in phase separa-
tion [21]. Various (unsuccessful) attempts have been made to improve the morphology and
homogeneity of VHMWPE/PE blends by melt blending and extrusion [22–24].

In the current work, we aimed to discover the effect of starve-fed extrusion on different
processing parameters like melt temperature, residence time, degradation of the material,
specific energy input and melting performance. Most notably, we were looking at the
influence of starve-fed extrusion on PE blends which contain a VHMWPE fraction. Since
blends containing a VHMWPE fraction are rather difficult to process we are showing the
possibility to process these blends with starve-fed extrusion. To quantify the influence on
starve-fed extrusion on the size and the shape of these particles we developed a program
which can quantify both.

2. Materials and Methods
2.1. Materials

A black high-viscosity bimodal hexane copolymer polyethylene compound for HDPE
pipes from Borealis with high density and an outstanding resistance to slow crack growth.
The melt-flow rate (MFR) of this polymer measured according to ISO 1133 was 0.25 g/10 min
(190 ◦C/5 kg). In the residence-time distribution measurements, we used this polymer in
its natural (white) color and added 0.2 g of fluorescent dye (lunar yellow). In the melting-
performance experiments, we used the same white polymer, to which we added 2% of
carbon black masterbatch.

2.2. Extrusion Experiments

A single-screw extruder was used with a diameter of 45 mm and a length of 41 times
the diameter that had a grooved-barrel feeding section. The extruder was equipped with
seven pressure transducers at various axial positions, as listed in Table 1. All pressure
sensors where from Gefran. P1–P6 had an upper limit of 2000 bar and P7 had an upper
limit of 500 bar. A pressure valve at the screw tip was used to adjust the backpressure to
specified values. A schematic representation of the extrusion line can be seen in Figure 1.
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Table 1. Positions of the pressure sensors along the grooved barrel given in multiples of the extruder
diameter (D).

Pressure Sensor Position (D)

P1 8.2
P2 14.0
P3 19.7
P4 25.4
P5 31.2
P6 38.5

P7 (backpressure) 42.5

The temperature profile of the extruder (Table 2) was held constant across all experi-
ments: The F0 zone extended to the end of the grooves of the barrel. Successive heating
zones (Z1, Z2, Z3, Z4, Z5, and Z6) covered the whole barrel. The “tool” zone heated the die.

Table 2. Temperature zones of the extruder.

Zone Temperature [◦C]

F0 40
Z1 220
Z2 215
Z3 210
Z4 200
Z5 200
Z6 200

Tool 200

A commercially available barrier screw from KraussMaffei was used. The solids-
conveying section, the melting or barrier section and the melt-conveying section were
500 mm, 650 mm and 450 mm long, respectively. The mixing section consisted of a double
maddock and a distributive toothed mixing element and was 240 mm long. To control the
amount of material fed to the single-screw extruder, we used a volumetric dosing system
which feeds directly into the feed hopper of the extruder.

2.3. Experimental Overview

The experiments were performed at two different screw speeds and four different
feeding rates. All parameters were evaluated for the operating points listed in Table 3.

Table 3. Operating points used in the experiments.

Screw Speed (rpm) Feeding Rate (%)

50 25
50 50
50 75
50 100
200 25
200 50
200 75
200 100

For each operating point we analyzed:

• Output;
• Melt temperature;
• Specific energy input (SEI);
• Degradation after extrusion;
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• Residence-time distribution;
• Melting performance;
• VHMWPE particle distribution;
• Shape distribution of the VHMWPE particles.

2.4. Measurement of Melt Temperature

The melt temperature of the extruded samples was measured inside the pressure
valve by a temperature-measuring sword with a length of 7.60 mm and a width of 5.15 mm
from Graeff GmbH.

2.5. Specific Energy Input

The drive power P of the extruder is calculated by:

P = Ms ∗ 2 ∗ π ∗ Ns, (1)

where Ms is the torque and Ns the screw speed. The specific energy input (SEI), that is, the
mechanical energy that must be provided by the screw torque to extrude 1 kg of polymer,
is calculated by:

SEI =
P
ṁ

. (2)

A lower specific energy input indicates that less mechanical energy is applied to
the material.

2.6. Measurement of Degradation after Extrusion

An Anton Paar Plate-Plate Rheometer (MCR302) was employed using the frequency-
sweep method from 628 rad/s down to 0.01 rad/s. Viscosity, storage module and loss
module were determined for this range to investigate degradation effects. Measurements
were carried out at 210 ◦C under nitrogen to avoid degradation during the rheology
measurements using a parallel plate geometry with a diameter of 25 mm and a thickness
of 0.8 mm. The pellet and all extruded samples were measured using the same method.
Deviation of an extruded sample’s curve from that of the pellet is considered to signify
degradation. In particular, the deviation at the zero-shear viscosity is a sign of degradation.
The ratios of the viscosity of the pellet and the extruded samples at zero shear rate have
been used to determine degradation.

η∗ =
ηExt

ηPellet
(3)

where η∗ is the ratio of the viscosities at a shear rate of 0.01 s−1, ηExt is the viscosity of the
extruded sample at a shear rate 0.01 s−1 and ηPellet is the viscosity of the pellet at a shear
rate 0.01 s−1.

2.7. Measurement of Residence Time

To investigate the residence-time distribution in the extruder for a given setting, flu-
orescence spectroscopy was used [25]. An amount of 0.2 g of lunar yellow (fluorescent
dye) was placed in the extruder entrance and determined its residence time. The fluores-
cence sensor measured the concentration of the fluorescent dye in the extruded material
as a function of time. The residence time distribution function f (t) was calculated by
Equation (4).

f (t)(t) =
c(t)∫ ∞

0 c(t)dt
, (4)
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where c(t) is the fraction of molecules that have been in the extruder for time t or longer.
The cumulative residence time distributions F(t) is given by Equation (5).

F(t) =
t∫

0

f (τ) dτ, (5)

2.8. Melting-Performance Analysis

To investigate the influence of various feeding rates on melting performance, screw-
pulling tests were conducted. To this end, each operating point (i.e., a specified combination
of screw speed and feeding rate) was configured and held for 30 min. Subsequently, the
extruder was stopped abruptly and cooled down to room temperature. The screw was
then pulled out of the extruder, and the solidified melt removed from the screw, cut into
pieces, polished and finally scanned. The images were analyzed by transforming them
into a black-and-white representation as shown in Figure 2, where the white and black
parts, respectively, indicate the solid and the melt content. Samples were taken after
each revolution.
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Figure 2. Scanned image of the melt cross section: (a) raw image, (b) after transformation to black
and white.

2.9. Analysis of Sample Homogeneity

To check whether extrusion increased the homogeneity of the materials, VHMWPE
particles, which are suspended within—and are immiscible with—were tested in the
polymer matrix. For this analysis, the extruded samples were cut by a Leica Rotation
Microtome RM2265 into 12 µm-thick slices that were embedded in (Eukitt) resin between
glass and cover slide. The resin was left to harden for 10 h, and then an Olympus SZX10
stereomicroscope equipped with a UC90 camera (Figure 3) was used to capture images at
10× and 20× magnification.
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In (A) the representation of the sample preparation in (B) a microscope picture.

2.10. Analysis of Particle-Size Distribution

The images were analyzed by means of the Wavemetrics Igor Pro 8 software tool. In
order to keep the analysis as objective as possible, code was written to repeatedly perform
the same automated steps. The images were first converted from RGB to a gray-scale
representation, and then the built-in procedure for bimodal distributions was used to
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determine a threshold from the intensity distribution. In cases in which this did not deliver
satisfactory results, we used the built-in iterative method. Particles were identified in
the binary image as ellipses, using the threshold and excluding particles smaller than
5-pixel2 or touching the edge of the image. Parameters recorded for each particle were area,
circularity, and mean size of the ellipse axis.

2.11. Analysis of VHMWPE Particle-Shape Distribution

To determine the influence of starve-fed extrusion on the shape of VHMWPE particles,
the circularity (roundness) (Ř) parameter was used, which is calculated by Equation (6).

Ř =
4 ∗ π ∗ A

P2 , (6)

where A is the area and P the perimeter. Different shapes and corresponding circularity
values can be seen in Figure 4.
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3. Results and Discussion
3.1. Influence of Feeding Rate on Output

The influence of feeding rate on the output measured is illustrated in Figure 5. It can
be seen that, at both screw speeds (50 rpm and 200 rpm), the output measured decreases
with decreasing feeding rate. A 25% reduction in feeding rate results in a 25% reduction in
output. The output at the feeding rate of 100% for 50 rpm was 48.7 kg/h and for 200 rpm
was 197.6 kg/h.
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3.2. Influence of Feeding Rate on Melt Temperature

Figure 6 plots the melt temperature as a function of the feeding rate. A reduction in
feeding rate has a great impact on the melt temperature: At a screw speed of 200 rpm,
reducing the feeding rate from 100% to 25% increases the melt temperature from 220 to
291 ◦C. With decreasing feeding rate, the screw is no longer fully filled, and thus particles
experience greater shear and remain longer within the extruder. Increases in shear and
residence time result in a significant increase in melt temperature. With decreasing screw
speed, the influence of feeding rate on melt temperature also decreases markedly.
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3.3. Influence of Feeding Rate on Pressure Build-Up

Figure 7 illustrates the influence of the feeding rate on the axial pressure profile at
a constant backpressure of 300 bar. At a feeding rate of 100% the extruder is completely
filled, and at 25% feeding rate the first three pressure sensors are without pressure, which
means that the screw is partially filled in the intake zone. With decreasing feeding rate,
all other pressure sensors also show a drop in pressure. The results show that starve-fed
extrusion results in a completely different pressure build-up.
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constant backpressure of 300 bar.



Polymers 2021, 13, 944 8 of 17

3.4. Influence of Backpressure on Pressure Build-Up at Various Feeding Rates
3.4.1. Influence of Backpressure on Pressure Build-Up at 100% Feeding Rate

Figure 8 plots the overall pressure build-up as a function of backpressure at a feeding
rate of 100% for screw speeds of 50 rpm and 200 rpm; with rising backpressure, the pressure
in all other zones increases, which is typical in extrusion.
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3.4.2. Influence of Backpressure on Pressure Build-Up at 25% Feeding Rate

For comparison, Figure 9 illustrates pressure build-up versus backpressure for a
feeding rate of 25% at screw speeds of 50 rpm and 200 rpm.
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As in the previous case of 100% feeding rate, with increasing backpressure an over-
all increase in the pressure profile can be observed for both screw speeds investigated.
With decreasing feeding rate, the pressure zone in the first few sections of the extruder
depressurizes. An increase in backpressure increases the pressure in the extruder. For low
feeding rates, the backpressure length increases with increasing backpressure. Due to the
low feeding rate and the ensuing depressurization in the feeding section, the grooves of the
extruder no longer affect the output-pressure behavior, which results in a transformation
from grooved single-screw to smooth single-screw extruder behavior.

3.5. Influence of Feeding Rate on Specific Energy Input (SEI)

The relationship between feeding rate and specific energy input for screw speeds of
50 rpm and 200 rpm is shown in Figure 10.
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Figure 10. Influence of feeding rate on specific energy input (SEI) for two screw speeds.

The results clearly show that with decreasing feeding rate the specific energy input
rises. A high SEI value indicates that more mechanical energy is put into the material,
which may result in severe degradation of the material. In contrast to the melt-temperature,
the specific energy input for the lower screw speed (50 rpm) also increases significantly
with decreasing feeding rate. Hence, this indicates that for the lower screw speed the
cooling unit of the single-screw extrusion machinery was able to compensate the increased
mechanical energy input, but was unable to do so for the higher screw speed.

3.6. Analysis of Degradation by the Extrusion Process

The frequency-sweep method is a cheap and fast way of determining the degree by
which the extruded material has degraded. The influence of screw speed and feeding rate
on degradation is illustrated in Figure 11. The greater the deviation of a sample curve
from that of the pellet (especially in the low-shear region), the greater the degradation of
the material.

The ratios of the viscosities at a shear rate of 0.01 s−1 η∗ can be seen in Table 4.
While the degree of degradation is visible at a screw speed of 200 rpm and 25% feed-

ing rate, it is practically non-existent at 50 rpm, independent of feeding rate and 200 rpm.
Degradation can be caused by long residence time of the material inside the extruder (ther-
mal degradation) or by high shear stresses or high shear rates (mechanical degradation).
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feeding rates.

Table 4. Ratios of the viscosities at a shear rate of 0.01 s−1 (η∗ ).

Screw Speed (rpm) Feeding Rate η∗

50 25 0.95
50 50 0.99
50 75 0.93
50 100 0.93

200 25 0.85
200 50 0.96
200 75 0.99
200 100 0.98

3.7. Residence Time Distribution

The residence time distribution of the different screw speeds with different feeding
rates can be seen in Figure 12.
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The values of the mean residence time for screw speeds with different feeding rates
can be seen in Table 5.

Table 5. Mean residence time for screw speeds of 50 rpm and 200 rpm and various feeding rates.

Feeding Rate 50 rpm 200 rpm

25% 877 s 189 s
50% 450 s 141 s
75% 281 s 102 s

100% 224 s 67 s

The results of the cumulative residence-time distribution measurements can be seen
in Figure 13 and Table 6.
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feeding rates.

Table 6. Influence of screw speed on cumulative residence-time distribution at screw speeds of
50 rpm and 200 rpm and 100% feeding rate.

Percentage of Particles 50 rpm, 100% Feeding Rate 200 rpm, 100% Feeding Rate

10% 141 s 41 s
30% 171 s 50.5 s
50% 207 s 65.5 s
75% 269 s 105.5 s

100% 412,5 s 216 s

At lower screw speeds, the influence of the feeding rate is particularly pronounced.
Figure 13 shows the cumulative residence time and Table 7 shows the cumulative residence
times for various proportions of particles (%) observed.
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Table 7. Influence of screw speed on cumulative residence-time distribution at screw speeds of
50 rpm and 200 rpm and 25% feeding rate.

Percentage of Particles 50 rpm, 100% Feeding Rate 200 rpm, 100% Feeding Rate

10% 512 s 127.5 s
30% 713 s 231 s
50% 920 s 369.5 s
75% 1197 s 577 s

100% 1658 s 912.5 s

The average residence times for various screw speeds and feeding rates are listed in
Table 8.

Table 8. Average Residence Time for screw speeds of 50 rpm and 200 rpm and various feeding rates.

Feeding Rate 50 rpm 200 rpm

25% 920 s 369.5 s
50% 452.5 s 155.5 s
75% 300 s 87 s

100% 207 s 65.5 s

With decreasing feeding rate the width of the residence timer distribution function
increases. An increase in the residence time distribution function results in enhanced
elongation mixing. The mean residence time shows a significant increase when applying
starve-fed mode for both screw speeds. The cumulative residence time increases signifi-
cantly with both decreasing screw speed and decreasing feeding rate. Especially for very
low feeding rates the residence time increases tremendously.

3.8. Analysis of Melting Performance

Figure 14 shows the melting behavior for various feeding rates.
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Figure 14. Melting performance for screw speeds of 50 and 200 rpm at various feeding rates.

A decrease in feeding rate results in accelerated melting of the material due to higher
residence time and increased SEI to the material. For both screw speeds, we consider the
optimal feeding rate in terms of melting performance to be 50%. For a feeding rate of 25%
the melting performance decreases compared to a feeding rate of 50%. The pressure profile
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(c.f. Figure 6) reveals that at a feeding rate of 25% the screw is pressure-less in the intake
section up to an axial position of approximately 20 D. Thus, a significant proportion of the
screw is not used for melting.

3.9. Analysis of Sample Homogeneity

In Figures 15 and 16, the distributions of VHMWPE in the pellet and in samples
extruded at screw speeds of 50 rpm and 200 rpm at various feeding rates can be seen.
At very low screw speed (50 rpm) and low feeding rates (25% and 50%), the VHMWPE
particles are markedly elongated, which has not been reported elsewhere. At high feeding
rates, no significant influence on the shape of VHMWPE particles is evident.

The different analyzed parameters for 50 rpm and 200 rpm with different feeding rates
can be seen in Tables 9 and 10.

The results clearly show that the extrusion process significantly improves the homo-
geneity of the samples in terms of number of particles, average size of particles and overall
area covered. Further, reducing the feeding rate decreases particle size for screw speeds of
50 rpm. With decreasing feeding rate the overall area covered by particles is reduced.

3.10. Particle Shape

The circularity parameter was used to analyze the shape of the VHMWPE particles. A
value of one indicates a perfect cycle, while lower values reflect elongation of the particle
shape. All particles smaller than 45 µm2 were ignored, and the remaining ones were
classified according to circularity. Tables 11 and 12 list number of particles and mean and
median values of circularity for samples extruded, respectively, at screw speeds of 50 rpm
and 200 rpm at various feeding rates.
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Figure 15. VHMWPE particles in pellet and samples extruded at screw speeds of 50 rpm and 200 rpm at various feeding rates.
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Table 9. Parameters of the particles observed in samples extruded at a screw speed of 50 rpm at
various feeding rates.

Sample Number of
Particles

Mean Particle
Area (µm2)

Median Particle
Size (µm)

Area Covered
by All Particles

(µm2)

Pellet 353 686.6 361.0 73,170
25% Feeding rate 141 532.5 352.0 22,665
50% Feeding rate 148 678.1 390.5 30,297
75% Feeding rate 158 575.2 355.5 27,434

100% Feeding rate 129 686.5 330.0 26,738

Table 10. Parameters of the particles observed in samples extruded at a screw speed of 200 rpm at
various feeding rates.

Sample Number of
Particles

Mean Particle
Area (µm2)

Median Particle
Size (µm)

Area Covered
by All Particles

(µm2)

Pellet 353 686.6 361.0 73,170
25% Feeding rate 84 678.4 426.5 17,202
50% Feeding rate 76 807.7 449.5 18,533
75% Feeding rate 120 659.7 332.5 23,899

100% Feeding rate 162 704.1 356.0 34,433
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Table 11. Parameters of the particles observed in samples extruded at a screw speed of 200 rpm at
various feeding rates.

Sample Number of Particles Mean Value of
Circularity

Median Value of
Circularity

Pellet 353 0.6142 0.66
25% Feeding rate 141 0.2753 0.25
50% Feeding rate 148 0.3219 0.27
75% Feeding rate 158 0.5737 0.59

100% Feeding rate 129 0.6003 0.612

Table 12. Parameters of the particle-shape distribution in samples extruded at a screw speed of
200 rpm at various feeding rates.

Sample Number of Particles Mean Value of
Circularity

Median Value of
Circularity

Pellet 353 0.6142 0.66
25% Feeding rate 84 0.5326 0.55
50% Feeding rate 76 0.6227 0.65
75% Feeding rate 120 0.5934 0.63

100% Feeding rate 162 0.5863 0.61

Figure 17 illustrates the shape distributions of VHMWPE particles in samples extruded
at various screw speeds and feeding rates.
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It can be seen that a reduction in feeding rate results in elongation of the VHMWPE
particles. Since using different extrusion equipment, including high-performance screws
(energy-transfer screw, wave screw) and various mixing elements, showed no influence on
white-spot formation, we conclude that starve-feeding is a promising approach to dealing
with this problem.
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4. Conclusions

In summary, the results clearly show that the behavior of extremely starve-fed ex-
truders differs completely from that of flood-fed extruders. A reduction in feeding rate
gives rise to a significant increase in melt temperature due to higher shear and significantly
longer residence time. In addition, the pressure build-up at constant backpressure is com-
pletely different for highly starve-fed extruders. While flood-fed grooved extruders show
a constant backpressure build-up, starve-fed extruders exhibit no measurable pressure.
This completely different pressure build-up behavior for the starve-fed mode was already
observed [8]. The increases in residence time and melt temperature at lower feeding rates
may result in better mixing and melting behavior of the extruder. The mechanism of the
melting behavior and the different properties were already observed [2–6]. The use of a
starve-fed single-screw extruder as compounder was already discovered by Isherwood [7].
Especially for highly viscous particles in the melt, such as the VHWMPE particles used in
this work, a higher melt temperature results in lower viscosity and thus in particle defor-
mation: at very low screw speed and feeding rate, the VHMWPE particles are significantly
elongated. Since no satisfactory way of extruding PE blends that contain a VHMWPE
fraction has been found to date, these results may unlock the extrusion of such materials. If
significant elongation of the VHMWPE particles can be reached mechanical properties of
the extruded parts can be significantly improved. An equal distribution results in equally
distributed mechanical properties of the extruded parts [27,28]. The elongation of the
VHMWPE particles through starve-fed extrusion has not been observed in literature before.
Since starve-fed extrusion can be carried out rather easily, this is a suitable method for the
extrusion of such materials in science and industries. Additionally, the starve-fed extrusion
of these materials shows the decreasing number and size of VHMWPE particles. This
means that starve-fed extrusion processing of these materials is a suitable way to increase
the homogeneity of these materials.
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