
����������
�������

Citation: Ma, X.; Zhao, F.; Zhou, B.

The Characters of Non-Coding RNAs

and Their Biological Roles in Plant

Development and Abiotic Stress

Response. Int. J. Mol. Sci. 2022, 23,

4124. https://doi.org/10.3390/

ijms23084124

Academic Editor: Karen Skriver

Received: 3 March 2022

Accepted: 6 April 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

 International Journal of 

Molecular Sciences

Review

The Characters of Non-Coding RNAs and Their Biological
Roles in Plant Development and Abiotic Stress Response
Xu Ma 1,2, Fei Zhao 3,* and Bo Zhou 1,2,*

1 Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of
Education, Harbin 150040, China; maxu990620@nefu.edu.cn

2 College of Life Science, Northeast Forestry University, Harbin 150040, China
3 Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
* Correspondence: fly@sdau.edu.cn (F.Z.); zhoubo@nefu.edu.cn (B.Z.); Tel.: +86-0538-8243-965 (F.Z.);

+86-0451-8219-1738 (B.Z.)

Abstract: Plant growth and development are greatly affected by the environment. Many genes
have been identified to be involved in regulating plant development and adaption of abiotic stress.
Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncR-
NAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and
stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the
transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Cur-
rently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development
and abiotic response are being deeply explored. In this review, we summarize the recent research
progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters,
targets functions, and interplay network of ncRNAs and their targets in plant development and
abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs,
and targets in plants are also discussed. Understanding molecular mechanisms and functional
implications of ncRNAs in various abiotic stress responses and development will benefit us in regard
to the use of ncRNAs as potential character-determining factors in molecular plant breeding.

Keywords: miRNA; lncRNA; development; environmental regulation; abiotic stress; regulatory network

1. Introduction

Plants are sessile organisms, and they have evolved sophisticated regulatory mecha-
nisms to maintain their development and overcome environmental stress, such as high and
low temperatures, UV (Ultraviolet) radiation, drought, and salinity [1,2]. The functional
genes determine the plants’ growth, development, and adaption to abiotic stresses. During
the process of gene expression, only approximately 2% of transcribed RNA in the eukaryotic
genome encodes functional proteins [3]. With the development of functional genomics and
transcriptome sequencing by RNA-seq, a large number of RNAs that do not code functional
proteins, known as non-coding RNAs (ncRNAs) (rRNA, tRNA, and snRNA in spliceosome;
and regulatory ncRNAs), have been identified to be involved in various developmental
and stress responses [4–6]. The regulatory ncRNAs are classified as microRNAs (miRNAs),
small interfering RNAs (siRNAs), and long ncRNAs (lncRNAs, >200 nt long) in plants [7].
MiRNAs can target lncRNAs to produce phased small interfering RNAs (phasiRNAs).
Conversely, lncRNAs can also serve as the origin of miRNAs or regulate the expression of
miRNAs [8].

Recently, thousands of ncRNAs have been identified in plants such as Arabidopsis [9,10],
Brachypodium [11], Ginseng rusty root symptom [12], sugar beet [13,14], rice [15,16], maize [17,18],
wheat [19,20], soybean [21,22], tomato [23,24], and Brassica [25,26]. In Arabidopsis, tasiRNA-
ARF (Trans-acting short-interfering RNA-auxin response factor) maintains the normal
morphogenesis of flowers under drought and high-salinity stress conditions [27]. In
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Brassica rapa, two lncRNAs target miR160 and function in pollen development [25]. In
pigeonpea, Csa-lncRNA_1231 targets Csa-miRNA-156b and regulate the expression of
SPL-12 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 12), which is involved in
flower development regulation [28]. In Prunus mume, lncRNA XR_514690.2 downregulates
ppe-miR172d, and it upregulates AP2 (APETALA2), which is related to flower develop-
ment [29]. In addition, the expression of lncRNA973 in cotton increases under salt-stress
conditions, and in lncRNA973-overexpressed Arabidopsis, the tolerance of salt stress is also
enhanced [30]. Moreover, miR393a, miR156d, and miR172b regulating HvTIR1/HvAFB2
(TRANSPORT INHIBITOR RESPONSE 1/AUXIN SIGNALING F-BOX 2), UGTs (UDP-
SUGAR GLYCOSYLTRANSFERASES), and HvAP2 are responsible for salt tolerance in
the roots of barley, and miR319a/miR396e module, miR159a and miR172b regulating GRFs
(GROWTH-REGULATING FACTORS), MYB33, and HvAP2 might also contribute to salt
tolerance in the shoots of barley [31]. Thus, the ncRNAs, acting as important regulators,
are involved in the interplay of molecular regulatory pathway of plant development and
abiotic stress responses.

With the development of molecular biology and high-throughput sequencing technol-
ogy, numerous functional genes involved in plant development and abiotic stress responses
have been identified, and the mysterious veil of ncRNAs is also being gradually uncov-
ered. Many ncRNAs have been the focus of several review articles published in recent
years [4,32–36]. Understanding ncRNA-guided development and stress regulatory net-
works can provide new insights to improve plant tolerance to environmental stresses.
However, the plant ncRNA regulatory pathways are complex interaction networks and the
identical ncRNA may serve as important regulator in both plant development and various
abiotic stress responses. The molecular mechanisms and the various regulatory roles of
ncRNAs and their targets remain to be deciphered. Recent studies have revealed that the
genetic transformation of ncRNAs and their target genes can change the phenotypes and
tolerance of abiotic stresses in plants. In this review, we summarize the current advances on
ncRNAs, with a focus on classification, molecular regulation mechanism, and the regulatory
network in the development and abiotic stress response in plants.

2. Classification and Action of Plant ncRNAs

Plant ncRNAs originate in the intergenic or intronic regions of chromosomal DNA
and regulate the expression of growth and development; and biotic- and abiotic-stress-
response-related genes at the transcriptional, posttranscriptional, and epigenetic level in
plants [5,37]. According to the molecular structure, plant ncRNAs are classified into linear
ncRNAs and circular ncRNAs. Linear ncRNAs can be divided into housekeeping ncRNAs,
which include ribosomal RNA (rRNA), transfer RNA (tRNA), small nuclear RNA (snRNA),
and small nucleolar RNA (snoRNA) and regulatory ncRNAs, which comprise small RNAs
(sRNAs) and long ncRNAs (lncRNAs) according to molecular function [37]. In plants,
sRNAs comprise miRNAs, natural antisense transcript-derived small interfering RNAs
(nat-siRNAs), heterochromatic small interfering RNAs (hc-siRNAs), trans-acting siRNAs
(tasiRNAs), and repeat-associated siRNAs (rasi-RNAs) [38,39]. Based on the genomic
location relative to protein-coding genes, lncRNAs consist of long intergenic ncRNAs,
intron ncRNAs, antisense ncRNAs (ancRNAs), and sense ncRNAs (slncRNAs), which
are potent cis-/trans-regulators to influence the transcriptional activity of their target
loci [24,40]. Meanwhile, circRNAs can be divided into exonic circRNAs, intronic circRNAs,
UTR circRNAs, intergenic circRNAs, and other circRNAs deriving from two or more
genes [37] (Table 1).
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Table 1. Classification and composition of non-coding RNAs.

Classification Composition

Circular ncRNAs Exonic
circRNAs Intronic circRNAs UTR

circRNAs
Intergenic
circRNAs Other circRNAs

Linear
ncRNAs

Housekeeping ncRNAs
Ribosomal

RNA
(rRNA)

Transfer RNA
(tRNA)

Small nuclear
RNA

(snRNA)
Small nucleolar RNA (snoRNA)

Regulatory
ncRNAs

sRNAs MicroRNAs
(miRNAs)

Natural antisense
transcript-derived
small interfering

RNAs
(nat-siRNAs)

Trans-acting
siRNAs

(tasiRNAs)

Repeat-
associated

siRNAs
(rasi-RNAs)

Heterochromatic
small interfering

RNAs
(hc-siRNAs)

Long
ncRNAs

Intergenic
ncRNAs Intron ncRNAs

Sense
ncRNAs

(slncRNAs)
Antisense ncRNAs (ancRNAs)

2.1. The Expression and Targeting Action Mode of Small Non-Coding RNAs

In plants, MIR genes transcribe to primary miRNAs by RNA polymerase II and
form special hairpin structures [41]. Then the single-strand hairpin pri-miRNAs are
cleaved in two steps to generate a stem–loop intermediate (precursor miRNAs) and the
miRNA/miRNA* duplex by Dicer-like 1(DCL1) and Hyponastic Leaves 1 (HYL1) protein
in the nucleus [42,43]. Next, the miRNA/miRNA* duplex is methylated by HUA EN-
HANCER 1 (HEN1) and transported to the cytoplasm by HASTY (HST) protein. Within
the cytoplasm, the miRNA duplex is unwound, and the miRNA, but not miRNA*, is
incorporated in the RNA-induced silencing complex (RISC). Then miRNA interacts with
the complementary target mRNA and activates the catalytic RISC with the assistance of
Argonaute 1 (AGO1) [44]. AGO proteins consist of PAZ (Piwi Argonaut and Zwille), MID
(Middle), and PIWI (P-element-induced wimpy testis) domains to bind sRNA [45,46]. The
PAZ domain can attach to the 3′ nucleotide of the guide strand [47], and the PIWI domain
with RNaseH-like activity can cleave the target RNA, while the MID domain can sense the
identity of the 5′ nucleotide of sRNA [48,49] (Figure 1).
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Figure 1. Transcription of miRNA and its regulatory role in plant cell. miRNAs are transcribed
by RNA PolyII to produce pri-miRNAs (hairpin structures) in the nucleus that are processed to
methylated miRNA/miRNA* duplex and are then transported to the cytoplasm to form the RISC
complex. The complex can either inhibit the translation or degrade the mRNA target, depending on
incomplete or complete complementarity to the target mRNA sequence.
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Plant miRNA target sites have been found within ORFs (open reading frames), 5′UTRs
(5′ Untranslated Regions), and 3′UTRs, as well as noncoding transcripts [50]. MiRNAs
mainly inhibit gene expression at the post-transcriptional level through directing cleavage
of mRNA targets for cleavage or repress translation with the participation of VARICOSE
(VCS), AGO1, and AGO10 protein [51,52]. The transcription of miRs is determined by
Cis-regulatory elements and trans-acting regulators or by epigenetic modification. In
Arabidopsis, AGL15 and AGL18 (AGAMOUS-like proteins) form heterodimer and bind to
the CArG (CC (A+T-rich) 6 GG) motifs of the MIR156 promoter to activate the MIR156
expression [53]. Moreover, SPL9 and SPL15 which are regulated by miR156 directly
promote the transcription of miR172 [54]. Moreover, in Arabidopsis, the null mutants
of HESO1 (HEN1 SUPPRESSOR1), which can uridylate the unmethylated miRNAs, in-
creased the transcription of miR166/165, miR169, miR171/170, and miR172 [55]. Numerous
miRNA-targets, such as miR156/SPL [56,57], miR172/IDS1 [58], miR393/(TIR1/AFB2) [59],
miR160/(ARF10/ARF16/ARF17) [60], and miR159/(MYB33/MYB65) [61], have been iden-
tified to affect plant growth, development, and abiotic stress responses through directly
regulating their targeting mRNA level. Furthermore, miRNA172 targets the APETALA2
transcription factor SlAP2a to control the fruit development in tomato (Solanum lycoper-
sicum) [62].

MiRNAs regulate plant development and abiotic-stress response through targeting
functional genes transcript cleavage and translation repression [63,64]. In plants, miRNA
recognizes target binding sites of mRNA through exact or nearly exact sequence comple-
mentarity that results in the cleavage at the tenth nucleotide of miRNA complementary
sites [65] or translational inhibition [66]. MiRNAs also inhibit the translation of target
mRNAs through partially mismatched sequences in their 3′ UTR without degrading the
mRNA. Moreover, miRNAs control translation initiation by inhibiting eukaryotic initiation
factor 4E/cap and poly(A) tail function [67]. The functions of miRNAs are determined by
their binding regulatory targets, and the miRNA complementary sites within the mRNA
targets for miRNA binding are relatively conserved and important [68]. Due to the nature
of miRNA:mRNA base pairing in plants, many of the targets are members of the same gene
families; however, the fraction of the gene family members with miRNA complementary
sites varies considerably. In Arabidopsis, 10 of the 16 Squamosa-promoter Binding Protein
(SBP)-like genes have miR156 complementary sites, while only 5 of over 100 MYB and
NAC (NAM, ATAF1/2, and CUC2) family genes have sites complementary to miR159 or
miR164, respectively [69]. Furthermore, the targets of the same miRNA can be different
gene family members; conversely, different unrelated miRNAs can be complementary
to different members of the same gene family. For example, miR319 can target not only
the MYB family member, but also the TCP (Teosinte branched1/Cycloidea/proliferating cell
factors) genes [70], while miR160, miR167, and miR390 can target different members of
the Auxin Response Factor family [60,71,72]. The specific binding sites’ recognition and
regulation cause miRNAs to be involved in multi-metabolic pathways. In rice, miR319
can positively regulate cold tolerance by targeting OsPCF6 (Proliferating cell factor 6) and
OsTCP21 [73], and miR319-targeted OsTCP21 and OsGAMYB also regulate the tillering
and grain yield [70]. In addition, miR319 targets TCPs to regulate leaf development in
Arabidopsis [74] and promotes the transition from cell elongation to wall thickening in cotton
fiber [75]. Moreover, miR319a-targeted PtoTCP20 can regulate secondary growth via inter-
actions with PtoWOX4 (WUSCHEL-related homeobox 4) and PtoWND6 (wood-associated
NAC domain 6) in Populus tomentosa [76]. It is noteworthy that the specific binding site
of target mRNA is not the only factor for miRNA to bind and splice in regulating the
abundance of the target mRNAs. For instance, almost 100 potential miR159 targets with
four or fewer mismatches can be obtained by using the standard target prediction program,
psRNATarget, in Arabidopsis [77], but among the top twenty targets, which include eight
MYB genes with highly conserved miR159 binding sites, only MYB33 and MYB65 are
strongly downregulated by miR159-mediated cleavage [78]. Similarly, in Brassica rapa, only
4 of 13 SPL candidate targets with highly conserved binding sites of miR156/157 were
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cleaved [79], and three of seven candidate targets of miR828 were proved to be spliced
by RLM-5′RACE [80]. Furthermore, the differential miR159-mediated silencing has been
proved to be correlated with the differential RNA secondary structure of miR159 targets and
physically spatial and/or temporal separation of miR159 and targets in plant tissues [78].
Then dynamic RNA secondary structures in vivo may be operating as a riboswitch, with
certain formations facilitating silencing of specific miRNA targets [78].

Except for directly regulating the expression of targets, primary miRNAs of miR171b
in Medicago truncatula and miR165a in Arabidopsis thaliana have been reported to produce
the peptides miPEP171b and miPEP165a, which increase the transcription of pri-miRNA
and the accumulation of miR171b and miR165a in a positive feedback loop and lead to
the reduction of lateral root development and stimulation of main root growth, respec-
tively. The pri-miRNAs possess both protein-coding and non-coding roles [81]. In soybean
(Glycine max), miPEP172c also takes a positive role in miR172c accumulation, resulting in
an increase in nodule formation [82]. In addition, miPEP858a in Arabidopsis regulated the
expression of pri-miR858a and associated target genes to control plant development and
the phenylpropanoid pathway [83].

Moreover, plant miRNAs can act as transmitters to transport from cell to cell and
between distant organs via the long-distance to communicate with environments for
metabolism, growth, reproduction, and defense reactions [84,85]. The exogenous miR-
NAs miR156 and miR399 have been demonstrated to repress the mRNA level of their
targets via an RNAi mechanism when transferring between neighboring plants [86]. The
root-derived Nb-miR164 can modify the scion trait via long-distance movement in Arabidop-
sis/Nicotiana interfamilial heterograft [87]. Moreover, miRNAs have also been shown to
play a crucial role in extracellular vesicles to fungal pathogen to silence virulence genes and
in shoot meristems and root vascular systems [88–90]. Additionally, miRNAs can realize
communication crossing species to mediate co-evolution between species. For example,
plant miRNAs enriched in beebread but not in royal jelly lead to delayed development
and decreased body and ovary size in honeybees, preventing larval differentiation into
queens [91]. Moreover, miR2911, identified in Traditional Chinese Medicine honeysuckle
(HS), can directly target Influenza A viruses (IAVs) with a broad spectrum to suppress viral
infection [92]. Furthermore, plant miRNAs have also been reported to reduce cancer-cell
proliferation by targeting MALAT1 (Metastasis-associated lung adenocarcinoma transcript 1)
and NEAT1 (Nuclear-enriched abundant transcript 1) [93]. Therefore, the “mobile” role of
miRNAs from different origins under specific environments and cross-species transmission
to produce “amplified” secondary siRNAs enhance the potential effect on their targets and
downstream developmental pathways.

Similar to the biogenesis pathway of miRNAs, siRNAs are derived from perfectly
double-stranded RNAs, which are transcribed from inverted repeats, natural cis-antisense
transcript pairs, and single-stranded RNA through the action of RNA-dependent RNA
polymerases (RDRs). The DCLs proteins cleave dsRNAs into 21-to-24 nt siRNAs, which
are loaded into AGO protein to form RISC that guides target regulation at the posttran-
scriptional level or the transcriptional level through RNA-directed DNA methylation
(RdDM) [39]. In plants, DICER-LIKE PROTEIN 3 (DCL3) produces 24-nucleotide (nt)
small interfering RNAs (siRNAs) that determine the specificity of the RNA-directed DNA
methylation pathway [94]. While the endogenous 22-nucleotide siRNAs are generated by
the DCL2 protein. The 22 nt siRNAs derived from NIA1/2 (nitrate reductases) can mediate
translational repression, inhibiting plant growth and enhancing stress responses [95]. More-
over, DCL4 generates 21 nt siRNAs from double-stranded RNAs responsible for degrading
TE (transposable element) mRNAs in the somatic plant body, and the siRNAs have specifi-
cally been shown to participate in cell-to-cell silencing [96,97]. Not only can siRNA mediate
transcriptional gene silencing through RNA-directed DNA methylation, but they can also
perform post-transcriptional gene silencing through cleavage and translational inhibition
without changing the DNA sequence [98,99]. While the biogenesis and regulatory role of
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siRNAs have been reported and reviewed in detail [33,39,98–101], the function of siRNAs
involved in plant development and abiotic stress response still needs to be explored.

2.2. Types of Long Non-Coding RNA and Their Actions in Gene Expression

In eukaryotes, almost 90% of the genome was found to be transcribed by using high-
throughput sequencing technology, but only approximately 2% corresponds to protein-
coding mRNAs [3,102]. Plant lncRNAs are transcribed by RNA polymerases PolII, PolIV,
and PolV, which are involved in the regulation of gene expression [6]. LncRNAs may
be transcribed in a stand-alone unit from enhancers, promoters, and introns of genes;
from pseudogenes; or from antisense to other genes with varying degrees of overlap [102].
According to the location relative to protein-coding genes in the genome, lncRNAs can be
defined as natural antisense transcripts (lncNATs), intronic lncRNAs, intergenic lncRNAs
(lincRNAs), and sense lncRNAs. LncNATs initiate inside or 3′ to a protein-coding gene and
show either in concordance with the sense strand transcripts or in a discordant manner,
which can mediate the transcriptional or post-transcriptional regulation of genes transcribed
from sense strand [103]. Intronic lncRNAs are transcribed in either direction from an intron
of a protein-coding gene, without overlapping with an exon, while sense lncRNAs share
the same promoter with the protein-coding gene and transcribe from a region overlapping
an exon [104]. Intergenic lncRNAs are independent transcriptional units and are located
outside protein-coding genes [105]. Compared with mRNAs, lncRNA transcripts are
shorter and lack many motifs, such as ORFs and Kozak consensus sequences [106]. Similar
to mRNA, lncRNAs have a 5′ m7G cap and a 3′ poly(A) tail and are processed as mRNA
mimics [107] (Figure 2A). However, lncRNAs have shown low conservation in sequences
among species and have low expression levels with tissue-specific expression patterns
responding to various stresses in plants [108].
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In Arabidopsis, over 40,000 candidate lncRNAs have been identified [109], and among
them, about 75% are lncNATs [103], the lincRNAs are about 15% [110], and only 2708 lincRNAs
(less than 50%) were detected in transcription level by RNA-seq experiments [6]. The
increasing evidence indicates that the transcription levels of lncRNAs are correlated with
plant growth, development, and abiotic- and biological-stress response [111–114]. Func-
tional analyses of lncRNAs have revealed that they act as scaffolds, guides, and decoys
in cis or trans to regulate gene expression through transcription, epigenetic modification,
and post-transcriptional gene regulatory mechanisms [3,115,116] (Figure 2B). As scaffolds,
lncRNAs with sequences complementary to RNA or DNA can be recognized via spe-
cific sequence motifs or secondary/tertiary structures [116]. LncRNAs can also bind to
histone-modifying complexes and DNA-binding proteins (including transcription factors)
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and control gene expression by modifying chromatin accessibility, transcription, splicing,
and translation levels. In Arabidopsis, lncRNA HID1 (HIDDEN TREASURE 1) binds to
the promoter of the PIF3 gene to downregulate its expression and affect the photomor-
phogenic process [117]. In addition, the guiding lncRNAs interact with transcriptional
co-regulators or chromatin regulatory protein complexes and recruit them to a specific
DNA region to modulate transcription. For instance, in the early vernalization process of
plants, lncRNA COLDAIR recruits PRC2 (Polycomb Repressive Complex 2) in the first
intron region of FLC (FLOWERING LOCUS C) and leads to the H3K27me3 modification of
histones [118]. Moreover, as decoys, lncRNAs bind miRNAs, such as ceRNAs (competing
endogenous RNAs), or proteins in the nuclei to mimic and compete with their consensus
DNA-binding motifs to control the functions of regulatory miRNAs or proteins [119]. For
example, in the tomato, lncRNAs have been identified as ceRNAs and predicted to decoy
46 miRNAs, and among them, lncRNA42705 and lncRNA08711 show a negative correlation
with the expression of miR159 and a positive correlation with the expression levels of
MYB genes upon Phytophthora infestans infection [120]. Similarly, in maize, the lncRNA
PILNCR1 (Pi-deficiency-induced long-noncoding RNA1) also serves as mimic to sponge
miR399 and releases the PHO2 (Phosphate 2) mRNA, which negatively regulates phosphate
transporters [121].

LncRNAs are usually long, and their sequences are not fully complementary to the
target sequences that are involved in splicing, gene inactivation, and translation [122,123]
through interactions with proteins, DNA, or other RNA molecules [124]. LncRNAs take
advantage of intermolecular interaction-controlling gene expression and protein activity to
regulate plant resistance to biotic and abiotic stresses, flowering, and lateral root develop-
ment [125]. First, lncRNAs participate in forming ribonucleoprotein complexes to modulate
the subcellular localization and the molecular activity of their protein partners [126]. For
example, the lncRNA ELF18-INDUCED LONG-NONCODING RNA1 (ELENA1) can re-
cruit the transcriptional coactivator Mediator subunit 19a to activate the transcription
of the PATHOGENESIS-RELATED 1 gene to enhance the resistance against pathogenic
bacteria in Arabidopsis [127]. Moreover, lncRNA HIDDEN TREASURE 1 (HID1) can also
interact with ribonucleoprotein to bind the first intron of PHYTOCHROME-INTERACTING
FACTOR 3 and repress its transcription, promoting photomorphogenesis in continuous
red light [117]. Another two lncRNAs, COLDAIR and AG-intron-4, also interact with the
Polycomb repressive complex-2 (PRC2) in Arabidopsis to inhibit the transcription of FLC
(FLOWERING LOCUS C) and AGAMOUS, which are involved in the regulation of flower-
ing [118,128]. Second, lncRNAs participate in forming RNA–DNA hybrids to control the
expression of neighbor genes in cis/trans or to influence chromatin conformation of target
regions [126]. In Arabidopsis, lncRNA APOLO was identified to recognize multiple spatially
unrelated loci in the genome via sequence complementarity and R-loop formation, and
most of the targets are auxin-responsive genes involved in lateral root development [129].
Third, lncRNAs participate in forming RNA–RNA duplexes to regulate gene expression
at the post-transcriptional level. LncNATs (natural antisense transcripts) can pair with
target RNAs at specific regions of complementarity to control their stability or their transla-
tion [126]. For instance, 70% of annotated mRNAs were found to associate with detectable
lncNATs in Arabidopsis [103]. In Petunia hybrida, a cis-lncNAT (the antisense transcript of
the SHO gene) triggers the production of double-stranded RNA-derived small interfering
RNAs (siRNAs), leading to the degradation of the SHO (Shooting, Cytokinins-producing gene)
RNA in a tissue-specific manner in cytokinin regulation [130]. In Arabidopsis, the lncRNA
INDUCED BY PHOSPHATE STARVATION 1 (IPS1) was also identified to act as target
mimics for miR399 by forming a lncRNA-miRNA duplex with a mismatched loop at the
miRNA cleavage site, leading to the non-cleavage of IPS1 as a miRNA sponge [131]. Thus,
plant lncRNAs participate in forming ribonucleoprotein complexes, RNA–DNA hybrids,
or RNA–RNA duplexes to exercise their regulation function.
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3. Regulation Role of ncRNAs in Plant Development
3.1. miRNAs Involved in Plant Development

Plant development is composed of growth and differentiation, which include all
changes that an organism goes through during its life cycle, from the germination of
the seed to senescence. Plant development processes are determined by many proteins
and phytohormones, whose expression levels could be directly or indirectly regulated by
some non-coding RNAs (ncRNAs) [132]. MiRNAs are key regulators and play important
roles in plant development, such as seed development and germination, shoot apical
meristem (SAM) maintenance, floral organ identity, leaf morphogenesis, root initiation,
and development.

3.1.1. miRNAs in Seed Development and Germination

Germination depends on the seed’s physiological state (dormancy), which is deter-
mined by the balance of the ABA/GA (abscisic acid/gibberellins) ratio [133]. In Arabidopsis,
the overexpression of miR160 caused hyposensitivity to abscisic acid (ABA) during the seed
germination process [134]. ARF10 and ARF16, two of the miR160 targets, regulate ABI3
expression to induce seed dormancy [135]. In cotton, the miR160/ARF axis also influences
seed size by directly or indirectly regulating seed development-associated genes [136].
Additionally, miR159 is involved in the regulation of seed dormancy and germination
because the overexpression of MIR159 renders seeds hyposensitive to ABA and consis-
tently suppresses transcript levels of MYB33 and MYB101, which are positive regulators
of ABA responses and targeted by miR159 [137]. Then there is crosstalk between ABA
and auxin in seeds’ germination, and the downregulation of a component for auxin signal
transduction by miR160 may be a regulatory step to decrease ABA sensitivity in mature
seeds and to switch to the germination mode [138]. Moreover, miR393 can affect seed
development by targeting two genes encoding the auxin receptors TIR1/AFBs in barley.
Overexpression and target mimic (MIM393)-mediated inhibition of miR393 both affect
the development of seeds [139]. Furthermore, mir156 mutations enhance seed dormancy
by suppressing the gibberellin (GA) pathway through de-repression of the miR156 target
gene Ideal Plant Architecture 1 (IPA1), which directly regulates multiple genes in the GA
pathway [140]. The miR156-targeted SPL9 was also reported to directly activate the ex-
pression of ABA-responsive genes through binding to their promoters and to physically
interact with ABSCISIC ACID INSENSITIVE 5 (ABI5) [141]. Then miR156, miR159, miR160,
and miR393 are involved in the regulation of seed development and germination through
the auxin, ABA, and GA pathway. Moreover, a miR164-dependent regulatory pathway,
miR164-NAC32/NAC40-EXPB14/EXPB15, has also been characterized to participate in
maize seed expansion [142] (Figure 3).

3.1.2. miRNAs in Shoot Development and Apical Meristem (SAM) Maintenance

The shoot apical meristem (SAM) is the main plant meristem and consists of a group
of dividing cells that develops to plant lateral organs, such as leaves. WUSHEL (WUS)
and CLAVATA3 (CLV3) are essential regulators of meristem maintenance and differen-
tiation, and miR394 can target and downregulate the expression of the LEAF CURLING
RESPONSIVENESS (LCR) gene, which affects the WUS–CLV3 pathway in Arabidopsis [90].
In addition, miR394 can function as a mobile signal to move from the outer cell layer
L1 (protoderm) to L3 (organizing center) layer, where WUS protein is located, restrict-
ing the expression of the target LCR and maintaining the shoot stem-cell niche in the
SAM region [90,143]. Two other miRNAs, miR165 and miR166, are characterized to tar-
get class III HOMEODOMAINLEUCINE ZIPPER (HD-ZIP III) family genes, including
PHABULOSA (PHB)/ATHB14, PHAVOLUTA (PHV)/ATHB9, INTERFASCICULAR FIBER-
LESS/REVOLUTA (IFL1/REV), INCURVATA4/CORONA/ATHB15, and ATHB8, which
are involved in SAM-related development [144]. However, AGO10 can act as a decoy
for miR165 and miR166 to compete with AGO1 and prevent their repressive function on
HD-ZIP III genes and maintain the SAM development [144,145].
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3.1.3. miRNAs in Floral Development

A number of miRNAs and their target genes have been identified to be involved in
the transition from the vegetative to reproductive phase, namely plant floral transition.
In Arabidopsis, the overexpression of miR172 accelerates flowering through translational
inhibition of floral homeotic gene APETALA2 (AP2) [66,146], whereas ectopic expression
of a MIM172 mimicry constructs delays flowering [147]. MiR172 has been identified to
be regulated by several members of the SQUAMOSA PROMOTER BINDING PROTEIN-
LIKE (SPL) TF family [54] that are targeted by miR156 and contribute to juvenile to adult
vegetative phase transition and the age-dependent pathway to flowering [148,149]. SPL9,
a transcriptional activator of MIR172 [150], also directly regulates the expression of AP1,
FUL, AGL24, and SOC1 through binding to their respective promoters [148]. Thus, miR172
and miR156 always display some degree of opposite correlation in expression patterns and
regulatory functions. The research on the miR172 family demonstrated that, in Arabidopsis
leaves, miR172A and miR172B are the major mediators that promote flowering under
long days, while, in the SAM, miR172D takes a major role in promoting flowering under
short days [146,149,151]. In contrast, the transcription level of MIR156 gradually decreases
from the seedling stage to the adult stage, and the overexpression of miR156 results in
delayed floral transition [152]. In addition, miR390 represses flowering by inhibiting the
activity of ARF3 and ARF4, which results in prolonging the juvenile phase [153]. MiR172-
targeted AP2 represses the ARF3 expression by directly binding to its promoter [154], while
ARF3/4 regulates the expression of miR156-targeted SPL3 [153]. Then a crosslink among
miR156, miR172, and miR390 is involved in the regulation of the juvenile-to-floral transition.
Moreover, miR159 targets GA-specific transcriptional regulator GAMYB-related proteins
(MYB33, MYB65, and MYB101), which are involved in the GA-promoted activation of
LEAFY. The overexpression of miR159 causes reduced expression of LEAFY (LFY) and de-
lays flowering time [14]. In Arabidopsis and rice, miR159 is highly expressed in anthers, and
its overexpression can cause male sterility, resulting from the failure of pollen release [155].
Another miRNA involved in flowering time is miR169, and the main target of miR169
is the NUCLEAR FACTORY, SUBUNIT A (NF-YA) TF gene family, which can bind to the
promoter of FLC to induce its expression [156]. The miR169d overexpression in Arabidopsis
exhibits early flowering, and, in contrast, the overexpression of the rNF-YA2 accounts for
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late flowering [157]. Furthermore, miR399 plays a crucial role in regulating flowering time
by downregulating the expression levels of PHOSPHATE 2 (PHO2). Both miR399 overex-
pression and loss-of-function pho2 mutants show early flowering phenotypes [158]. Besides
miR156-SPL, miR172-AP2, miR159-MYB, miR390-ARF, miR169-NF-YA, and miR399-PHO2
participating in flowering time control, miR164-CUC1/2 (CUP-SHAPED COTYLEDON)
and miR319-TCP (TEOSINTE BRANCHED1, CYCLOIDEA, AND PCF) also function in the
establishment of organ boundaries during floral development [159–161]. The overexpres-
sion of miR164 or loss of function of its target CUC1/2 leads to fused sepals and stamens
and the loss of petals [162]. Meanwhile, the overexpression of miR319 in Arabidopsis causes
stamen and male sterility defects, whereas the miR319 loss-of-function mutant shows
narrower petals and defective anther development [163]. These miRNA-target pathways
indicate that a complex network mediated by different plant hormones and development
transcription factors is involved in the plant floral development (Figure 4).
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3.1.4. miRNAs in Leaf Development

Plant leaf initiated from an undifferentiated cell in SAM peripheral region is the major
photosynthetic organ and plays a dominant role in plant biomass production. MiR164 and
their targets CUC1 and CUC2 have been demonstrated to regulate organ boundaries in
leaf development in Arabidopsis [153]. In strawberries, FveCUC2a targeted by FvemiR164a
regulates leaf serrations, because the overexpression of FveMIR164A produces simple
leaves with smooth margins, resembling the leaf phenotype of fvecuc2a [164]. Additionally,
single mutations in the MIR319A or MIR319B gene inhibit the formation of leaf serrations
in Arabidopsis, and double mutations of MIR319A and MIR319B increase the extent of
this inhibition and result in the formation of smooth leaves. However, gain-of-function
mutations in the TCP4 gene can impair the cotyledon boundary and leaf serration forma-
tion [165]. Moreover, miR396-targeted AtGRF transcription factors regulate cell division
and differentiation during leaf development in Arabidopsis [166]. In lettuce, smaller leaves
were also observed in LsamiR396a overexpression lines, in which LsaGRF5 was downreg-
ulated, while overexpressing LsaGRF5 exhibited larger leaves [167]. For another, miR393
regulates the expression of the TIR1/AFB2 auxin receptor involved in auxin-related de-
velopment of Arabidopsis leaves [168]. In rice, overexpression of miR393 also leads to
an enlarged flag leaf, which is related to the auxin signaling regulated by target TIR1
homolog [169]. Furthermore, in Arabidopsis, miR165/166 negatively regulates HD-ZIP
IIIs (Class-III homeodomain-leucine zipper) to maintain the abaxial–adaxial polarity of the
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leaf [170,171]. Moreover, SlymiR208 is identified as a positive regulator in leaf senescence
through negatively regulating CK (Cytokinin) biosynthesis via targeting SlIPT2 and SlIPT4
(Isopentenyltransferases) in tomato [172].

3.1.5. miRNAs in Root Development

Roots are essential for plant fixation, nutrient, and water uptake, and several miRNAs
have been identified to regulate root growth and patterning by targeting different transcrip-
tion factors or genes [173]. NAC1 targeted by miR164 has been demonstrated to provide
a homeostatic mechanism to a downregulated auxin signal for lateral root development
in Arabidopsis [174]. Nevertheless, the formation of adventitious roots is also regulated
by auxin-related miRNAs through various ARF transcription factors [175]. Thus, ARF6
and ARF8 transcripts targeted by miR167 serve as negative regulators of adventitious
root development in Arabidopsis [176]. In addition, crown root development in rice is
regulated by CRD1 (Crown Root Defect 1) via the CRD1-miR156-SPL pathway [177]. In
MIR156OE Arabidopsis plants, SPL10 is significantly downregulated, and the expression
of AGL79 (AGAMOUS-like MADS-box protein 79), which is directly regulated by SPL10, is
also reduced to repress lateral root growth. This suggests a role for the miR156-SPL10-
AGL79 module in plant lateral root growth [178]. Moreover, the NF-YA2 TF (transcription
factor) targeted by miR169 has been recognized to control the root architecture, and loss-
of-function miR169 can lead to improper root initiation [179]. Furthermore, in tomatoes,
the miR171-GRAS module participates in a series of developmental processes, including
root length, through modulating gibberellin and auxin signaling [180]. In grapevine (Vitis
vinifera), the small peptide vvi-miPEP171d1 encoded by primary-miR171d can increase the
transcription of vvi-MIR171d and promote adventitious root development. Similarly, in
Arabidopsis, ath-miPEP171c inhibits the growth of primary roots and induced the early initi-
ation of lateral and adventitious roots, but the exogenous application of vvi-miPEP171d1
cannot result in any phenotypic changes in Arabidopsis, and ath-miPEP171c has no effect
on grape root development [181]. Thus, miPEP171d1 regulates root development by pro-
moting vvi-MIR171d expression in a species-specific manner [181]. Additionally, in apples,
mdm-MIR393b is involved in mediating auxin signaling and inducing adventitious root
formation by targeted regulation of MdTIR1A expression in apple rootstock [182]. In rice,
miR393 has also been identified to negatively regulate the miR390-mediated growth of lat-
eral roots under stress [183]. Another miRNA that regulates auxin-related pathways in root
development is miR847, and miR847 targets IAA28 (an IAA/ARF transcriptional repressor),
which can interact with ARF proteins and promote lateral root formation [184,185]. Then
miRNAs involved in multi-signaling pathways regulate plant root development (Figure 5).

3.1.6. miRNAs in Shaping the Fruit/Grain Size and Maturation

Fruits and seeds are important productions for plants to propagate offspring, and
they also supply crop yields for global creatures. Phytohormones take important roles in
shaping the fruit/grain size and maturation. NcRNAs have been reported to be involved
in the regulation of the phytohormones-mediated pathways. For instance, auxin-GA
crosstalk via ARFs can be regulated by miR160 and miR167 to influence the duration of
fruit development by affecting ABA accumulation [186]. For fruit ripening, ethylene plays
a clear role in climacteric fruits, such as the tomato, whereas non-climacteric ripening fruits,
such as the strawberry, are generally associated with ABA. Moreover, NAC transcription
factors respond to ABA and ethylene [187,188] and can be targeted by miR164 to control
the ripening of the strawberry [189] and kiwifruit [190]. Additionally, in the tomato,
SlymiR157 has been reported to affect LeSPL-CNR (SQUAMOSA Promoter Binding Protein-
like) expression and influence fruit ripening [191]. The level of the intact messenger of
AP2a (APETALA2a) is also actively modulated by miR172 during the fruit ripening of the
tomato [192]. Furthermore, the overexpression of miRNA172p reduces the fruit size of
apple “Royal Gala”, while reduced expression of miRNA172 by a transposon insertion
associates with large fruit. The expression patterns of miRNA172p and AP2 genes in fruit
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and the target site of miRNA172 in AP2 genes indicate that miRNA172p could modulate
levels of AP2 proteins to influence apple fruit development [193]. In strawberry, miR159 is
also identified to target and regulate the expression of Fa-GAMYB during berry receptacle
development and cooperatively changed GA endogenous levels [194]. Another miRNA,
miR397, could increase grain size and promote panicle branching when OsmiR397 is
overexpressed and downregulates its target OsLAC, which is involved in the sensitivity
of rice plants to brassinosteroids [195]. Additionally, in rice, OsPIL15 (phytochrome-
interacting factor-like 15) also activates the expression of OsMIR530, which targets OsPL3
(PLUS3 domain-containing protein) to regulate grain yield. Overexpressed OsMIR530
or knocking out OsPL3 decreases the rice yield by altering the grain size and panicle
architecture, whereas blocking OsmiR530 increases grain yield [196]. Then miR160, miR167,
miR164, miR157, miR172, miR159, and miR397 are all involved in the regulation of the
fruit/grain size and maturation through the phytohormone pathway; however, OsmiR530
has not been identified to be related to phytohormones.
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3.2. LncRNAs Involved in Plant Development

In plants, lncRNAs have been shown to participate in the regulation of developmental
processes (Table 2). The expression of the major flowering repressor FLOWERING LOCUS
C (FLC) involved in vernalization is tightly fine-tuned by lncRNAs, such as COOLAIR,
COLDAIR, ANTISENSE LONG (ASL), and COLDWRAP. COOLAIR is natural antisense
transcript originating from the 3′end of the FLC locus and represses FLC through increasing
the level of histone demethylase FLD, leading to H3K4me2 demethylation of FLC [197,198].
Additionally, COLDAIR transcribed from the second FLC intron can bind PRC2 complex
protein CURLY LEAF (CLF) to recruit PRC2 to the FLC locus allowing deposition of the
repressive H3K27me3 chromatin mark to repress FLC [118,199]. Moreover, COLDWRAP is
associated with the promoter of FLC, which also interacts with CLF to form an intragenic
chromatin loop and to confer FLC repression [128]. However, ASL, a non-polyadenylated
antisense transcript with an unknown function, is also transcribed from the FLC locus [200].
Another natural antisense lncRNA, MAS, originated from the MADS AFFECTING FLOW-
ERING4 (MAF4) locus also involved in vernalization and regulates MAF4 via interacting
with histone-modifying enzyme WDR5a (WD40-REPEAT 5a) [201].
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Table 2. List of plant lncRNAs associated with plant development.

LncRNAs Targeted Gene/Protein Description and Function References

COOLAIR FLD, FLC Leading to H3K4me2 demethylation of FLC involved in
vernalization and flowering. [197,198]

COLDAIR CLF, PRC2, FLC Recruiting PRC2 to the FLC locus to add H3K27me3,
repressing FLC to regulate flowering. [118,199]

ANTISENSE LONG
(ASL) unknown A non-polyadenylated antisense transcript from FLC

locus, with unknown function. [200]

COLDWRAP CLF Forming an intragenic chromatin loop to confer FLC
repression and regulate flowering. [128]

MAS WDR5a Regulating MAF4 involved in vernalization. [201]

LINC-AP2 AP2 Regulating the floral structure of shorter
stamen filaments. [202]

Bra-eTM160-1/2 MiR160 Regulating pollen development and fertilization
through the miR160-ARF pathway. [25]

FLINC FT Regulating flowering. [203]
FLORE CDFs, FT Regulating flowering. [204]

LDMAR unknown Regulating normal pollen development [205]
PMS1T miR2118 Regulating photoperiod-sensitive male sterility. [206]

Ef-cd SDG724, OsSOC1 Increase the H3K36me3 level of the OsSOC1 and
reducing the time-span for plant maturity. [207]

MISSEN HeFP Regulating cytoskeleton polymerization during
endosperm development. [208]

CIRCRNA (SEP3) SEP3 Driving floral homeotic phenotypes through
exon-skipped AS variant of SEP3. [209]

HID1 PIF3 Inhibiting hypocotyl elongation by modulating the
chromatin structure of the promoter of PIF3. [117]

AG-incRNA4 CLF, AG Regulating leaf development through
H3K27me3-mediated repression of AG. [210]

TWISTED LEAF OsMYB60 Regulating leaf blade flattening through chromatin
modifications of OsMYB60. [211]

APOLO PID, WAG2, WRKY42

Regulating lateral root development through polar
auxin transport by controlling chromatin loop dynamics

and leading to low temperature-induced root
hair elongation.

[129,212–214]

LAIR LRK, OsMOF and
OsWDR5

Regulating rice grain yield by chromatin modification
and activating promoters of the LRKs gene. [215]

Apart from regulating vernalization, LncRNAs take important roles in floral organ
identity and flowering time control. Through RNA-seq technology, the long intergenic non-
coding RNAs LINC-AP2 has been identified to regulate the floral structure of shorter stamen
filaments by anti-cis downregulating AP2 gene in TCV-infected Arabidopsis plants [202]. In
addition, bra-eTM160-1 and bra-eTM160-2 are also identified to be functional target mimics
for miR160 through the miR160-ARF pathway regulating pollen development and fertil-
ization in Brassica rapa [25]. Other lncRNAs such as FLOWERING LONG INTERGENIC
NON CODING RNA (FLINC), CDF5 LONG NONCODING RNA (FLORE), LONG-DAY
SPECIFIC MALE-FERTILITY-ASSOCIATED RNA (LDMAR), PHOTOPERIOD-SENSITIVE
GENIC MALE STERILITY 1 (PMS1T), and EARLY FLOWERING-COMPLETELY DOMI-
NANT (Ef-cd) are flowering time-related lncRNAs. FLINC has been reported to regulate FT
(FLOWERING LOCUS T) expression involved in flowering [203]. In addition, FLORE, the
antisense to CDF5 (CYCLING DOF FACTOR 5), can improve photoperiodic flowering by
repressing the transcription of CDFs and increasing FT activity to promote flowering [204].
Whereas in rice, sufficient transcripts of LDMAR are required for normal pollen develop-
ment of plants grown under long-day conditions, but the change of secondary structure
of LDMAR due to a single nucleotide polymorphism (SNP) mutation can increase methy-
lation in the promoter of LDMAR and reduced the transcription of LDMAR, resulting in
photoperiod-sensitive male sterility (PSMS) [205]. Similarly, PMS1T also contributes to
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photoperiod-sensitive male sterility by producing phase-siRNAs in a miR2118-dependent
manner under long-day conditions [206]. However, Ef-cd originated from the antisense
strand of the flowering activator OsSOC1 locus, recruits SDG724 complex to increase the
H3K36me3 level in the OsSOC1 locus, and positively regulates the expression of OsSOC1, re-
ducing the time-span for plant maturity [207]. Besides, in rice, the parent-of-origin lncRNA
MISSEN has also been proved to function by hijacking a helicase family protein (HeFP),
leading to abnormal cytoskeleton polymerization during endosperm development [208].
Moreover, circRNAs derived from exon 6 of the SEPALLATA3 (SEP3) gene increase the
abundance of the cognate exon-skipped AS variant (SEP3.3 which lacks exon 6) through
R-loop formation, in turn driving floral homeotic phenotypes of Arabidopsis [209].

Furthermore, for leaf development, the plant photomorphogenesis-related lncRNA,
HIDDEN TREASURE 1 (HID1), modulates the chromatin structure in the PHYTOCHROME
INTERACTING FACTOR 3 (PIF3) promoter and represses the transcriptional activity of
PIF3, inhibiting hypocotyl elongation of Arabidopsis seedlings [117]. Additionally, the
AG-incRNA4 can associate with CLF to repress AG expression in leaf tissues through
H3K27me3-mediated repression and to autoregulate its expression level [210]. Moreover,
the antisense long noncoding RNA, TWISTED LEAF, maintains leaf-blade flattening by me-
diating chromatin modifications of OsMYB60 and suppressing its expression in rice [211].

Another lncRNA, AUXIN-REGULATED PROMOTER LOOP (APOLO), regulated by
ARF7 participates in the genetic regulatory network governing lateral root development
through polar auxin transport by controlling chromatin loop dynamics [212]. APOLO
regulates two homolog genes, namely serine/threonine protein kinases PINOID (PID) and
WAG2, by affecting local chromatin loop formation [129]. Moreover, APOLO interacts with
the transcription factor WRKY42 and directly recognizes the locus encoding the root hair
(RH) master regulator ROOT HAIR DEFECTIVE 6 (RHD6), modulating its transcriptional
activation and leading to low-temperature-induced RH elongation [213]. Even further,
APOLO and WRKY42 can positively control the expression of several cell wall EXTENSIN
(EXT) encoding genes, including EXT3, regulating RH development and growth [214].

Moreover, a lncRNA LAIR transcribed from the antisense strand of the neighboring
gene LRK (leucine-rich repeat receptor kinase) cluster can regulate the neighboring gene cluster
expression in rice. LAIR overexpression increases rice grain yield and upregulates the
expression of several LRK genes through binding histone modification proteins OsMOF
and OsWDR5 to enrich H3K4me3 and H4K16ac at the activated LRK1 genomic region and
the 5′ and 3′ untranslated regions of LRK1 gene [215].

4. Function of ncRNAs in Plant Abiotic Stress Response
4.1. miRNAs Play Important Roles in Heat and Cold Stress

Plants are constantly exposed to various environmental stresses, such as extreme
temperatures, high salinity, and drought. These abiotic stresses significantly affect plant
growth and productivity. Then plant miRNAs involved in a variety of stress responses also
play essential roles in plant development.

Heat is one of the most serious stresses affecting plant growth, development, and
crop yields. Heat shock proteins (HSPs) and heat stress transcription factors (HSFs) have
been identified to be involved in responses to heat stress in plants [216]. In Arabidopsis,
heat stress induces the transcription of miR160, and represses the expression of ARF10, 16,
and 17, regulating the high expression level of HSP genes, resulting in the thermotoler-
ance of plants [217]. MiR393 is also involved in auxin-related development in plants, and
overexpression of osa-miR393a in transgenic creeping bentgrass increases heat tolerance
by repressing its targets AsAFB2 and AsTIR1 and inducing expression of HSPs [218]. Ad-
ditionally, TamiR159-targeted cleavage of TaGAMYB regulates anther development and
heat response possibly through the GAMYB-amylase pathway for starch degradation in
wheat [219]. MiR319, with a high degree of sequence identity to miR159, targeting TCP and
MYB genes, can regulate transcription levels of heat-stress-responsive genes and conferred
heat stress tolerance in miR319-overexpressed Solanum Lycopersicum [220]. Similarly, in
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Arabidopsis, during recovery from heat stress (HS), the miR156-SPL module sustains the
expression of HS-responsive genes (e.g., HSFA2 and HSPs) and mediates the response to
recurring heat stress, and thus may also integrate stress responses with development [221].
Conversely, miR398 is rapidly induced in response to HS, downregulating its target genes
(CSD1/2, copper/zinc superoxide dismutase1/2; CCS, copper chaperone for superoxide dismutase)
and resulting in ROS (reactive oxygen species) accumulation and increased HSF and HSP
levels, which can regulate miR398 with a regulatory loop again [222]. Moreover, miR396
downregulates HaWRKY6 during early responses to high temperature in sunflower, and
heterologous Arabidopsis plants expressing a miR396-resistant HaWRKY6 gene exhibited
sensibility to high-temperature damage [223]. Furthermore, in rice, both miR166 and
miR169 can target SGT1 (the G2 allele of skp1), which could bind to HSP90 and HSP70 and
regulate the rice response to thermal stress during flowering [224]. Another osa-miR5144
has also been identified to be involved in HS tolerance of rice by mediating the expression
of OsPDIL1;1 (protein disulfide isomerase), which regulates the formation of protein disulfide
bonds [225]. For the MIR400 family, a heat-stress-induced alternative splicing in the intron
of MIR400, increasing accumulation of miR400 primary transcripts and reducing the level
of mature miR400, leads to miR400 acting as a negative regulator in plant heat-stress resis-
tance [226]. Therefore, the hormone/development/alternative splicing/ROS/HSPs and
HSFs-related miRNAs are involved in heat stress responses in plants (Figure 6).
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Continuous cold stress affects plant growth and development by altering cell struc-
ture and physiological and biochemical metabolism [227,228]. During cold stress, ICE
(Inducer of CBF expression) is activated by ABA-independent pathway which activates
downstream transcription factor CBF/DREB1 that binds to C-repeat elements (CRT)/low-
temperature-response elements (LTRE) and induces the expression of cold-responsive
(COR) genes [229,230]. Numerous miRNAs have been reported to play an active role during
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cold stress in plants. In rice, the expression of Osa-miR319b is downregulated by cold stress,
but the overexpression of Osa-miR319b causes downregulation of its targets OsPCF6 and
OsTCP21 and upregulating cold stress-responsive genes such as DREB1/CBF (Dehydration
Responsive Element Binding Protein/C-repeat Binding Factor), DREB2A, and TPP1/2 (Trehalose-
6-phosphate phosphatase 1/2), leading to enhanced tolerance to cold stress [73]. Additionally,
genetically downregulating the expression of miR319-targeted genes, OsPCF5 and OsPCF8,
also results in enhanced cold tolerance after chilling acclimation in rice [231]. Moreover,
OsWRKY71 can be positively regulated by the target of OsmiR156, OsSPL3, and OsWRKY71
negatively regulate the transcription factors OsMYB2 and OsMYB3R-2, which counteracts
cold stress by activating the expression of the stress-response genes OsLEA3, OsDREB2A,
OsCTP1, etc. [232]. Furthermore, overexpressing miR394 in Arabidopsis downregulates
the expression of its target LCR (LEAF CURLING RESPONSIVENESS) and activates cold-
responsive genes CBF1, CBF2, and CBF3 to be involved in plant cold tolerance [233,234].
Under cold stress, transcription factors involved in the auxin metabolic pathway play an
important role. The miRNA-target pair miR169/NF-YA module in Arabidopsis have been
identified to function in the Aux/IAA14-mediated cold stress response [235]. Another
miR167 and tasiRNA-ARF in wheat also play roles in regulating the auxin-signaling path-
way and possibly in the developmental response to cold stress [236]. For miR408 and
miR397, they both target different members of laccases involved in low-temperature stress
responses. MiR408 primarily targets the phytocyanin family of proteins and laccases, and
miR408-OE Arabidopsis lines are reported to exhibit enhanced LT tolerance by modulating
ROS homeostasis and lignin biosynthetic pathway [237,238]. Whereas, miR397 targets
three laccases (LAC2, LAC17, and LAC4) and a casein kinase β subunit 3 and miR397-OE
plants have been shown an increased freezing tolerance in Arabidopsis through the lignin
biosynthesis pathway [237,239] (Figure 6).

4.2. miRNAs Mediate Salinity Stress Tolerance

Salinity, as a major environmental stress, affects plant growth and development. The
regulatory roles of plant miRNAs and their target genes under salt stress have been grad-
ually revealed. The expression levels of miRNA are up- or downregulated by salinity
stress. The expression of miR160 and its ARF target gene is induced by salt stress in
peanuts, and the miR160 overexpression mediated ARF18 pathway protects seedling de-
velopment against the effects of ROS under salt stress [240]. In addition, overexpressing
miR156a weakens salt resistance in apples, whereas its target gene, MdSPL13, strength-
ens salt resistance [241]. Moreover, the same miRNA or different miRNA from the same
miRNA family have different promotion or inhibition effects on salt tolerance in different
plants. For instance, overexpressing Osa-miR393 in rice and Arabidopsis reduces toler-
ance to salt [242,243], and the overexpressing miR393-resistant form mTIR1 in Arabidopsis
enhances salt tolerance [244]. Conversely, overexpressing Osa-miR393a in creeping bent-
grass increases the uptake of potassium and improves salt-stress tolerance [218]. Similarly,
overexpressing Osa-miR396c, which targets GRF, decreases salt and alkali stress tolerance
in rice and Arabidopsis [245] but enhances salt tolerance in transgenic creeping bentgrass
through salinity overly sensitive 1 (AsSOS1)-mediated Na+ exclusion [246]. Furthermore,
overexpression of PeNAC070 targeted by miR164 in Arabidopsis increases sensitivity to
salt stresses [247], and so does overexpressing the target gene GmNFYA3 of miR169 [248].
Another miR414c and its target GhFSD1 (Iron Superoxide Dismutase 1) are also involved
in the salt tolerance of cotton. Overexpressing miR414c can decrease the expression of
GhFSD1 and increase sensitivity to salinity stress by regulating reactive oxygen species
metabolism [249]. Likewise, constitutively expressing miRNVL5, which targets GhCHR
(Cys/His-rich DC1/PHD domains), displays hypersensitivity to salt stress by repressing CBF
(C-repeat binding factor), ERF (Ethylene-responsive element binding factor), etc. [250] (Figure 7).
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4.3. miRNAs Are Involved in Drought Stress Response

Drought stress is one of the major natural challenges that restricts the growth, develop-
ment, and yield of plants. Many miRNAs participate in drought stress response in plants
via auxin signaling, ABA-mediated regulation, and scavenging of antioxidants [251,252]. In
apple trees, Mdm-miR160 can move from the scion to the rootstock in apples and tomatoes
(Solanum Lycopersicum) to improve root development and drought tolerance of the rootstock.
Additionally, MdARF17 targeted by miR160 can interact with MdHYL1 (HYPONASTIC
LEAVES 1) and bind the promoter of MdHYL1 and MIR160 to activate their expression,
forming a positive feedback loop regulation [253]. However, miR165/166-mediated HD-
ZIP IIIs regulation confers drought tolerance through ABA signaling in Arabidopsis, while
HD-ZIP IIIs activate the expression of ARF, which is targeted by miR160; thus, drought
tolerance is mediated by miR160 and miR165/166 interactions. This interaction also triggers
differential expressions of IAA- and ABA-signaling-related genes to drought tolerance
of Arabidopsis [254]. Moreover, both the STTM166 plants and overexpressing a miR166-
resistant form of OsHB4 (HOMEODOMAIN CONTAINING PROTEIN4) plants show high
drought tolerance in rice, due to reduced stomatal conductance and transpiration rates [255].
Another two rice auxin receptor gene homologs (OsTIR1 and OsAFB2) are downregulated
in OsmiR393-overexpressing rice and reduce tolerance to drought stress and hyposensi-
tivity to auxin [243]. Furthermore, in miR156OE alfalfa plants, the reduced expression
of miR156-targeted SPL13 increases WD40-1 to fine-tune DFR expression for enhanced
anthocyanin biosynthesis, improving drought tolerance [256,257]. Apart from the above
miRNAs and targets, the miR159-MYB module and miR169-NFYA module also participate
in an ABA-dependent pathway to regulate drought responses in plants [258]. In Arabidopsis,
miR159 accumulates and mediates cleavage of MYB33 and MYB101 in response to ABA
and drought during seed germination [137]. Similarly, in the tomato, sly-miR159 targeting
of SlMYB33 transcription factor transcript correlated with the accumulation of the osmopro-
tective compounds proline and putrescine to promote drought tolerance [259]. However,
miR169 is downregulated by drought stress through an ABA-dependent pathway. The
nfya5 knockout and overexpressing miR169a Arabidopsis show sensitivity to drought stress,
while overexpressing NFYA5 displays tolerance to drought stress [260]. Likewise, gma-
miR169c targeted AtNFYA1 and AtNFYA5 in soybean, and miR169n targeted NF-γAδ in
Brassica napus, negatively regulating the drought-stress response by inhibiting the transcript
levels of the stress response genes [261,262] (Figure 8).
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4.4. LncRNAs Are Involved in Plant Abiotic Stress Response

LncRNAs affect the abiotic stress response by recruiting complex mechanisms based
on eTM, antisense transcription-mediated modulation, chromatin modulation, or directly
regulating the transcription of various abiotic-responsive genes. In Brassica rapa, lncRNA
(TCONS_00048391) has been identified to be an eTM of bra-miR164a and could be a
ceRNA for the target gene (NAC1, Bra030820) of miR164a involved in heat tolerance in
Chinese cabbage [263]. Moreover, in cassava, the expression of miR164-targeted NAC
(NAM, ATAF1/2, and CUC2) genes greatly decreases due to the cold-repressive lincRNA159,
which is the miRNA164 target mimics, and upregulates the expression of miR164 under
cold treatment [264]. Conversely, the expression of lincRNA340 is induced by drought
stress, accompanied by an increase of miR169-targeted NUCLEAR FACTOR Y (NF-Y)
genes after drought treatment [264]. Additionally, the lncRNA DROUGHT-INDUCED
LNCRNA (DRIR) in Arabidopsis positively regulates ABA-mediated drought and salt-
stress responses. Plants overexpressing DRIR display enhanced salt and drought tolerance
through functioning at or upstream of the stage of gene transcription in the stress or ABA
signal transduction pathways [265]. Furthermore, in cotton, lncRNA973 affects miR399
and its target PHO2 expression involved in response to salt stress, and lncRNA973 can
also modulate the expression of reactive-oxygen-species-scavenging genes, transcription
factors, and genes involved in salt-stress-related processes [30]. However, lncRNA354
functions as a competing endogenous RNA of miR160b to regulate GhARF17/18 genes,
modulating auxin signaling in response to salt stress in cotton [266]. Another LncRNA
XH123 of cotton is involved in the tolerance of cold stress. The XH123-silenced plants are
sensitive to cold stress, which displays chloroplast damage and increases the endogenous
levels of reactive oxygen species [267]. In addition, transcriptional read-through of the
lncRNA SVALKA results in the expression of a cryptic antisense CBF1 lncRNA (asCBF1),
which suppresses the expression of CBF1 and decreases tolerance to freezing temperatures
of Arabidopsis [268]. Moreover, lncRNA APOLO, which interacts with the TF WRKY42,
activates RHD6 (ROOT HAIR DEFECTIVE 6) transcription by modulating the formation of
a local chromatin loop encompassing its promoter region to induce RH growth in response
to low temperatures [213].

Despite a great number of lncRNAs having been obtained through RNA-seq, the
biological role and mechanisms of action in abiotic stress response remain poorly un-
derstood. With the increasing availability of reference genome sequences and the de-
velopment of molecular biology in plants, the function of various lncRNAs involved in
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abiotic stress response will be explored by comparative genome analysis and genetic
transformation analysis.

5. Conclusions and Perspectives

NcRNAs do not function directly in plant growth and development or in plant re-
sponse to environmental stress. Instead, ncRNAs are involved in plant development and
response to abiotic stresses through regulating key components of complex gene networks,
including various phytohormone signaling pathways, transcription factors (TFs), and
metabolism-related genes. Previous research has indicated that ncRNAs respond to devel-
opment and environmental stresses in an ncRNA-, stress-, tissue-, and genotype-dependent
manner [116,132,269]. Moreover, even to the extent that the same ncRNA displays different
expression trends in different plant species, and the opposite effect on the same abiotic stress
in different plants. The possible reason is related to the multi-targets of ncRNA, resulting in
multi-functions. For instance, miR858 inhibits the expression of MYBL2 and positively reg-
ulates anthocyanin biosynthesis in Arabidopsis seedlings [270], whereas miR858 negatively
regulates anthocyanin biosynthesis by repressing AaMYBC1 expression in kiwifruit [271].
Moreover, different ncRNAs with distinct types of targets can interact and co-participate in
the same or different metabolic pathway regulation, and the expression of these ncRNAs
and their targets is upregulated or downregulated to be involved in positive or negative
regulation in one metabolic pathway. The further research field is how the development
and stress signals are sensed to promote the expression of ncRNAs and transduced to
specially regulate the transcription of target genes in different metabolic pathways. Then
the functions of ncRNAs in various plant species, organs, and tissues, and in response to
different abiotic stress, need to be further explored with functional genomics experiments.

The “C-value paradox” shows the no-obvious correlation between DNA amount [272]
and organism complexity, and the discovery that much of the genome does not encode
protein-coding genes gives the paradox an “explanation”. Moreover, the functional re-
search of non-coding RNA indicates that the termed “junk DNA” of noncoding space in a
genome can be transcribed and has important regulatory roles in plant development and
environmental response. Then the central role of ncRNAs in the plant constitutes a major
characteristic feature of the plant kingdom, although the characteristics and function of
the majority of ncRNAs are currently not known. Unraveling the complexity, biogenesis,
and action of plant ncRNAs remains an important challenge. We must also keep in mind
that the genome of plants has been evolved to be a sophisticated and accurate regulation
system by natural selection, and the unilateral explanation to gene expression regulation
from structure, function, and mechanism is not adequate. Functional proteins, transcription
factors, ncRNAs, small peptides, and epigenetic modification interact to form complex and
fine regulating networks of gene expression during plant development or stress responses.
Therefore, perspective research in the role of ncRNAs in plants needs to focus on functional
analysis and on developing transgenic abiotic-stress-resistant, top-quality, and high-yield
crop plants.
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