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In the past decades, medical data mining has become a popular data mining subject. Researchers have proposed several tools and
variousmethodologies for developing effectivemedical expert systems. Diagnosing heart diseases is one of the important topics and
many researchers have tried to develop intelligent medical expert systems to help the physicians. In this paper, we propose the use
of PSO algorithm with a boosting approach to extract rules for recognizing the presence or absence of coronary artery disease in a
patient.Theweight of training examples that are classified properly by the new rules is reduced by a boostingmechanism.Therefore,
in the next rule generation cycle, the focus is on those fuzzy rules that account for the currentlymisclassified or uncovered instances.
We have used coronary artery disease data sets taken fromUniversity of California Irvine, (UCI), to evaluate our new classification
approach. Results show that the proposed method can detect the coronary artery disease with an acceptable accuracy. Also, the
discovered rules have significant interpretability as well.

1. Introduction

Accumulation of atherosclerotic plaques in coronary arteries
leads to the coronary artery disease (CAD) which results in
clogging of the coronary lumen, and, consequently, occlusion,
and then leads to myocardial infarction (MI) or sudden
cardiac death. The CAD is the leading cause of death in
the United States. Understanding the pathophysiology of
coronary artery disease, the prevention of its progression,
the identification and efficient modification of cardiovascular
risk factors, its diagnosis, and remedy in early and reversible
phases is of great significance [1].The “gold standard”method
for the diagnosis of CAD, which is widely used, is coronary
angiography (CA). However, CA is a costly and invasive
procedure and needs technology and high-level technical
experience; therefore, it cannot be used to screen large
populations or close followup of treatment [2]. Hence, in the
clinical setting, for the detection of CAD, other noninvasive
methods are being used.Themost important of those include
exercise electrocardiogram (ECG) [3] testing, single photon
emission computed tomography (SPECT or scintigraphy)

[4], and stress echocardiography (ECHO), while multislice
spiral computerized tomography (MSCT) or electron-beam
computerized tomography (EBCT) and coronary magnetic
resonance angiography (CMRA) are also being now used [2].

While many people with heart disease have symptoms
such as angina, fatigue, and chest pain, many people have
no symptoms until a heart attack happens. According to the
American Heart Association (AHA), CAD is one of the most
important killers of American men and women, reported as
the cause for more than one of every five deaths in 2001 [5].

There are many risk factors related to CAD. Some factors
such as family history, gender, and age cannot be controlled.
However, other risk factors that are associated with lifestyle
can often be controlled [6]. For example, physical inactivity,
high cholesterol, high blood pressure, and smoking are all
considered as risk factors for this disease that can bemodified
and even, in some cases, eliminated by modifying daily life
routines and takingmedication. Early changes in lifestyle can
significantly prevent diabetes and obesity. The large number
of factors that have to be analyzed for diagnosing CAD
makes the physician’s work even more difficult. In general,
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physicians make decisions by evaluating the existing test
results of the patients. The earlier diagnoses made on other
patients with the same condition are also considered by the
physicians. These complicated procedures are not easy to
perform when considering many factors that the physician
has to evaluate. So, the decision about presence or absence of
the disease depends on the physician’s experience and skill to
compare his patient with his previous ones. This procedure
is a challenging task regarding the large number of factors
that has to be considered. In this complex stage, the doctor
may need an accurate tool that lists his earlier decisions about
patient having the same (or close to same) factors [7].

During the past decades, the level of interest in the use
of data mining and artificial intelligent tools in medical fields
and the provision of healthcare has undergone a significant
increase. Several sections of the researches in this area are
related to developing the diagnostic tools that are used to
help physicians in a diagnosis. As an advanced data mining
technique, PSO has been applied to many tasks in medicine.

In PSO, particles are available to be adjusted by the
learning process. In the research area of rule extraction and
pattern recognition, this approach has been widely used.
In this paper, we have applied PSO and fuzzy logic with a
proposed boosting algorithm for the diagnosis of coronary
artery disease.

The boosting mechanism adapts the distribution of
training instances in a way that the previously misclassified
or uncovered instances are further considered by the PSO
algorithm.

The Cleveland, Hungarian, Switzerland, and VA Long
Beach data sets, which are taken from Data Mining Reposi-
tory of University of California, Irvine (UCI), have been used
for testing this method [8].

The results show that this method can classify these data
sets with acceptable accuracy or even better than the results
achieved by previous works. This method is also superior to
other methods in terms of interpretability.

The rest of this paper is organized as follows: a brief
overview on related work, data set description, fuzzy rule-
based classification system, particle swarm optimization, and
ensemble based methods, is presented in the Background
section. The proposed method involving a new boosting
algorithm, fuzzy rule extraction with PSO, and, finally, En-
PSO approach is discussed in Section 3. Experimental results
are reported in Section 4, and the paper ends by some
concluding remarks in Section 5.

2. Background

2.1. A Brief Overview on Related Works. Up to now, vari-
ous researches have been done for the diagnosis of heart
disease. These researches have used different methods for
the detection of heart disease and have achieved relatively
high accuracies, of 77% or higher on UCI machine learning
repository data sets. Some examples are presented here.

Detrano et al. [9] applied a logistic-regression-derived
discriminant function and achieved a correct classification
accuracy of approximately 77%.

The accuracy achieved by John Gennari’s CLASSIT con-
ceptual clustering systemwas 78.9% on the Cleveland data set
[10].

Gamboa et al. [11] proposed a fuzzy support vector
clustering system to diagnose heart disease. In this method,
a kernel induced metric was used to assign each piece of
data. Experimental results were achieved with a well-known
benchmark of heart disease.

Using SAS base software 9.1.3, an ensemble method with
three neural networks was introduced by Das et al. [12]. The
classification accuracy obtained by this method was 89.01%
on Cleveland well-known data set.

Chau et al. [13] proposed the use of decision tree C4.5
algorithm, bagging with decision tree C4.5 algorithm, and
bagging with Näıve Bayes algorithm to identify the heart
disease of a patient and compare the effectiveness and
correction rate among them. Results showed that bagging
algorithms, especially baggingwithNäıve Bayes, have the best
performance among the tested methods.

In Rani’s study [14], heart diseases data set is analyzed
using neural network approach. To increase the efficiency
of the classification process, the parallel approach is also
adopted in the training phase. The experimental results
showed that neural networks technique provides satisfactory
results for the classification task.

A data set which has been called Z-Alizadeh Sani is
introduced in [15]. This data set contains 303 patients and 54
features and introduces several effective features.

Acharya et al. [16] employed grayscale features from left
ventricle echocardiographic images to classify patients with
coronary artery disease.
Data Set Description. Coronary artery disease data sets are
taken from Data Mining Repository of University of Califor-
nia, Irvine (UCI). The CAD data sets contain 920 instances
collected from Cleveland, Hungarian, VA Long Beach, and
Switzerland. Coronary angiography determines the result of
CAD diagnosis. These data sets have 14 attributes of CAD
data. These attributes are listed in Table 1. Following is a brief
description of each of these data sets.
Cleveland Data. Cleveland data set was collected by Robert
Detrano, M.D. and Ph.D. degrees holder at V.A. Medical
Centre. All the papers are related to the use of a subset of 14 of
the 76 features that are presented in the processed Cleveland
Heart Disease data set. The “end” field indicates the existence
of coronary artery disease in the patients. This field includes
an integer constant that can take any value from 0 to 4.
Value 0 is for nonexistence and values 1, 2, 3, and 4 are for
disease existence. In fact, these values indicate the number
of blocked vessels. Six of the examples have missing values.
Class distributions are 54% heart disease absent and 46%
heart disease present.

2.1.1. Hungarian Data. Andras Janosi, M.D. degree holder,
collected this data set at the Hungarian Institute of Cardiol-
ogy, Budapest.The format of this data set is the same as that of
the Cleveland data. Class distributions are 37.5% heart disease
present and 62.5% heart disease absent.
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Table 1: Summary of attributes (UCI heart disease data base).

Attribute Description Value description
age Age Numerical
sex Sex 1: if male; 0: if female

cp Chest pain type

1: typical angina
2: atypical angina
3: nonanginal pain
4: asymptomatic

trestbps Resting systolic blood pressure on admission to the
hospital (mmHg) Numerical

chol Serum cholesterol (mg/dL) Numerical

fbs Fasting blood sugar over 120mg/dL? 1: if yes
0: if no

restecg Resting electrocardiographic results
0; normal

1: having ST-T wave abnormality
2: having LV hypertrophy

thalach Maximum heart rate achieved Numerical

exang Exercise induced angina? 1: if yes
0: if no

oldpeak ST depression induced by exercise relative to rest Numerical

slope The slope of the peak exercise ST segment
1: upsloping

2: flat
3: downsloping

ca Number of major vessels colored by fluoroscopy Numerical

thal Exercise thallium scintigraphic defects
3: normal

6: fixed defect
7: reversible defect

num Diagnosis of heart disease (angiographic disease
status/presence of coronary artery disease (CAD))

0: if less than 50% diameter narrowing in any major
vessel (CAD, no)

1: if more than 50% (CAD, yes)

2.1.2. SwitzerlandData. Thisdata setwas collected at theUni-
versity Hospital, Zurich, Switzerland, byWilliam Steinbrunn,
M.D. degree holder. Among four data sets related to CAD, the
maximum number of missing value is related to Switzerland
data set. It has 123 instances and class distributions in it are
6.5% heart disease absent and 93.5% with heart disease.

2.1.3. VA Long Beach. VA Long Beach data set which has 200
instances was collected by Matthias Pfisterer, M.D. degree
holder, at the University Hospital, Basel, Switzerland. This
data set is in second rank in terms of the number of missing
values. Class distributions in it are 25.5% heart disease absent
and 74.5% heart disease present.

2.2. Fuzzy Rule-Based Classification System. Assume that
we have a classification problem with 𝑐 classes in the 𝑛-
dimensional space with continuous attributes. Also, assume
that 𝑀 real vectors 𝑥𝑝 = (𝑥𝑝1, 𝑥𝑝2, . . . , 𝑥𝑝𝑛), 𝑝 = 1, 2, . . . , 𝑚,
are given as training samples from the 𝑐 classes (𝑐 ≪ 𝑀).

The pattern space is [0, 1]
𝑛 and attribute values of each

pattern are 𝑥𝑝𝑖 ∈ [0, 1] for 𝑝 = 1, 2, . . . , 𝑚 and 𝑖 = 1, 2, . . . , 𝑛.
All the attribute values of each sample are in [0, 1].

Fuzzy if-then rules, in thismethod, are expressed with the
following form:

rule𝑅𝑗: if𝑥1 is𝐴𝑗1 and ⋅ ⋅ ⋅ and𝑥𝑛 is𝐴𝑗𝑛, then class 𝐶𝑗

with CF = CF𝑗.

Here, 𝑅𝑗 is the label of the 𝑗th fuzzy if-then rule,
𝐴𝑗1, . . . , 𝐴𝑗𝑛 are antecedent fuzzy sets in the range of [0, 1],
𝐶𝑗 is the result class (i.e., one of the given 𝑐 classes), and CF𝑗
is the degree of confidence of the fuzzy if-then rule 𝑅𝑗.

In previous work [18], we used one uniform fuzzy par-
tition for all attributes, while we know that these attributes
may be of different kinds (e.g., continues, ordinal, and ratio).
Therefore, it is more appropriate to apply several fuzzy
partitions for various types of attributes. For example, in a
binary attribute, only two fuzzy amounts are required, while,
for a continuous attribute, more fuzzy amounts (like small,
medium small, medium, medium large, and large) must be
used.

In computer implementations, we have used four fuzzy
partitions evenly separated with symmetric triangular fuzzy
sets in Figure 1.
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Figure 1: Four fuzzy partitions used in computer implementations. The superscript of each part shows the granularity of the fuzzy partition.

To illustrate the high performance of our fuzzy classifier
system, we use such simple specification in computer imple-
mentations.

However, we can use any adapted membership functions
in our fuzzy classifier system for a specific pattern classi-
fication problem. When a rule is extracted with PSO, the
following steps are applied to calculate the level of confidence
of each fuzzy if-then rule.

Step 1. The compatibility of the fuzzy if-then rule 𝑅𝑗 with
each training instance 𝑥𝑝 = (𝑥𝑝1, 𝑥𝑝2, . . . , 𝑥𝑝𝑛) is obtained as
follows:

𝜇𝑗 (𝑥𝑝) = 𝜇𝑗 (𝑥𝑝1) × ⋅ ⋅ ⋅ × 𝜇𝑗𝑛 (𝑥𝑝𝑛) , 𝑝 = 1, 2, . . . , 𝑚, (1)

where 𝜇𝑗𝑖(𝑥𝑝𝑖) is the membership function of 𝑖th attribute of
𝑝th instance and “𝑚” indicates the total number of instances.

Step 2. For each of the classes, calculate the relative sumof the
compatibility grades of the training instances with the fuzzy
if-then rule 𝑅𝑗:

𝛽Class ℎ (𝑅𝑗) = ∑

𝑥𝑝∈Class ℎ

𝜇𝑗 (𝑥𝑝)

𝑁Class ℎ
, ℎ = 1, 2, . . . , 𝑐, (2)

where 𝛽Class ℎ(𝑅𝑗) denotes the sum of the compatibility grades
of the training instances in Class ℎ with the fuzzy if-then rule
𝑅𝑗 and 𝑁Class ℎ is the number of training instances whose
corresponding class is Class ℎ.

Step 3. The certainty factor CF𝑗 is calculated as follows:

CF𝑗 =
[𝛽Class ́ℎ𝑗

(𝑅𝑗) − (∑
ℎ ̸= ́ℎ𝑗

𝛽Class ℎ (𝑅𝑗) / (𝑐 − 1))]

∑
𝑐

ℎ=1
𝛽Class ℎ (𝑅𝑗)

. (3)

Rule base

Learning

Testing Testing resultsFuzzy reasoning

Knowledge 
extraction

 process
Training 

data

data

Figure 2: The basic model of rule-based fuzzy classifiers [17].

Now, we can determine the certainty factor for all combi-
nations of antecedent fuzzy sets.

A fuzzy classification system (FCS) includes two basic
steps [17]: (1) knowledge extraction which contains a set of
fuzzy rules as extracted knowledge and (2) inference engine
which classifies the input samples according to fuzzy rule set
and reasoning method. Figure 2 presents the basic model of
rule-based fuzzy classification systems.

The goal of our fuzzy classification system (FCS) is to
produce combinations of antecedent fuzzy sets for extracting



Computational Intelligence and Neuroscience 5

a rule set S with more power to classify. With a rule set S, an
input instance 𝑥𝑝 = (𝑥𝑝1, 𝑥𝑝2, . . . , 𝑥𝑝𝑛) is classified by a single
winner rule 𝑅𝑗 in S, which is determined by the following
equation:

𝜇𝑗 (𝑥𝑝) ⋅ CF𝑗 = max {𝜇𝑗 (𝑥𝑝) ⋅ CF𝑗𝑅𝑗} . (4)

Thus, the winner rule has the maximum product of the
compatibility and the certainty factor CF𝑗.

Each fuzzy rule is encoded into a specific string. Fifteen
symbols are used for representing the 14 antecedent fuzzy sets
in Figure 1 plus don’t care.These symbols are as follows:

0= do not care (DC), 1 = small (S2), 2 = large (L2), 3 =
small (S3), 4 = medium (M3), 5 = large (L3), 6 = small (S4),
7 = medium small (MS4), 8 = medium large (ML4), 9 = large
(L4), a = small (S5), b = medium small (MS5), c = medium
(M5), d = medium large (ML5), and e = large (L5).

For example, fuzzy rule “0150b0 󳨀→ 0” denotes that the
fuzzy rule “If 𝑥2 is S

2 and 𝑥3 is L
3and 𝑥5 is MS5, then class is

0.”

2.3. Particle Swarm Optimization

2.3.1. RAM Concept. At first, the RAM concept, which has
been used in PSO algorithm, must be explained. RAM term
in this work is the same as what is defined in [19] by Saniee et
al. Here, we describe it briefly.

If 𝑅𝐴 is a fuzzy rule with 𝑛 antecedents, then 𝑅𝐴 is as
follows:

𝑅𝐴 = (𝑎𝑖) , 𝑖 = 1, 2, . . . , 𝑛. (5)

Rule antecedent modification (RAM) operator or
RAM(𝑘, 𝐴𝑗) is defined as follows.

RAM operator stands for substitution of the existing
linguistic value of the rule 𝑘th precondition with the 𝑗th
linguistic value.Thus, by applying RAMoperator, a new fuzzy
rule is made according to the following equation:

𝑅
󸀠

𝐴
= 𝑅𝐴 + RAM (𝑘, 𝐴𝑗) . (6)

So, the symbol “+” in (6) has a new concept. For example,
if we have a classification problem with five inputs, a fuzzy
rule for this problem is like the following equation:

𝑅𝐴 = (S5,ML4, L2,M3,DC) . (7)

Suppose that the RAMoperator is RAM(3, 𝐴1).The result
of applying this operator is shown in the following equation:

𝑅
󸀠

𝐴
= 𝑅𝐴 + RAM (3, 𝐴1) = (S5,ML4, S2,M3,DC) . (8)

Rule antecedent modification sequence (RAMS) is built
with more than one RAM operators which are applied,
respectively, as follows:

RAMS = (RAM1,RAM2, . . . ,RAM𝑛) . (9)

Note that the order of RAM operators in RAMS is very
important.

When it is said that one RAMS acts on a solution, itmeans
that all the RAM operators of it act on the solution in order.

Operator ⊕ is defined for merging two RAM sequences
into a new RAM sequence.

Consider that RAMS1 and RAMS2 are two RAM
sequences that operate on 𝑅𝐴, respectively. With this act, a
new rule 𝑅

󸀠

𝐴
is obtained. Now, suppose that there is another

RAMS sequence RAMS󸀠 operating on solution 𝑅𝐴 with
the same result, 𝑅󸀠

𝐴
. Under these circumstances, RAMS󸀠 is

described as follows:

RAMS󸀠 = RAMS1 ⊕ RAMS2. (10)

RAMS1⊕RAMS2 and RAMS󸀠 are in the same equivalent set.
In an equivalent set, the RAMS having the lowest number

of RAM operators is called basic RAM sequence (BRAMS).
Consider that 𝑅𝑁 and 𝑅𝑀 are two solutions. Next defini-

tion is about BRAMS𝑀→𝑁; that is,

BRAMS𝑀→𝑁 = 𝑅𝑁 − 𝑅𝑀. (11)

BRAMS𝑀→𝑁 in previous equation is a basic RAM sequence
which acts on 𝑅𝑀 to obtain the solution 𝑅𝑁.

2.3.2. PSO Algorithm. Particle swarm optimization (PSO) is
an evolutionary computation method for optimization that
was developed by Kennedy and Eberhart in 1995 [20]. It is
inspired by social behaviour of bird flocking or fish schooling
and swarm theory.

This algorithm works by simultaneously maintaining a
number of candidate solutions in the search space. Each
candidate solution is considered as a particle “flying” in the 𝑛-
dimensional search space to find the best solution. In all of the
iterations of algorithm, each candidate solution, or, in other
words, each particle, is appraised by the objective function,
and the fitness of that solution is calculated. At first, like the
GA, the PSO algorithm is initialized with a population of
random solutions in the search space. PSO also needs only
the information about the fitness values of the particles in
the population. This algorithm simply calculates the fitness
values of the individuals by applying the objective function. In
comparison with genetic algorithm, individuals in PSO have
memory so that the information of the particles with better
solutions is maintained by all individuals. In other words, it
creates a constructive cooperation between the individuals,
and the individuals share information between themselves.

All the individuals have a location vector 𝑥𝑖 and a velocity
vector 𝑉𝑖. Location of each individual is updated at each
iteration considering its personal best position (𝑃𝑖) and the
best position among all individuals (𝑃𝑔) at each iteration.

The PSO algorithm only consists of three steps which are
repeated until some stopping condition is met [21].

(1) Calculate the fitness value of each particle.

(2) Update local and global best positions and fitness.
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(3) Calculate the new velocity and position of each
particle with regard to

𝑉𝑖 (𝑡 + 1) = 𝜔𝑉𝑖 (𝑡) + 𝑐1 × (𝑃𝑖 (𝑡) − 𝑥𝑖 (𝑡))

+ 𝑐2 × (𝑃𝑔 (𝑡) − 𝑥𝑖 (𝑡)) ,

𝑥𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝑉𝑖 (𝑡 + 1) ,

(12)

where 𝜔 is the inertia weight that is applied to control the
influence of the previous history of the velocities on the new
velocity.

𝑐1 and 𝑐2 are acceleration coefficients; 𝑟1 ∼ 𝑈(0, 1) and
𝑟2 ∼ 𝑈(0, 1) are random constants in the range [0, 1] and are
uniformly distributed. This velocity-updating method allows
the particles to search around their individual best position
𝑃𝑖 and the global best position 𝑃𝑔.

2.4. Ensemble Based Methods. Machine learning is a set of
nonparametric statisticalmethods. By simulating human idea
process, it gives a smart structure. In comparison to other
statistical models, in the field of machine learning, a model is
made without any assumption. The most important concept
in this field is the generalization ability. It confirms how well
the result learned by a training data set can be applied to the
unsighted test data set. Ensemble learning is a class model in
the field of machine learning. Due to its stable and accurate
performance, this method is popular for prediction and
classification. In contrast with ordinary methods, in machine
learning, which tries to construct only one learner from the
training data, ensemble methods try to construct several
learners and to combine them. In general, the generalization
ability of an ensemble learner is better than a single learner.

In fact, ensemble techniques are more popular because of
their ability to strengthen weak learners [22].

Bagging, Adaboost, Logitboost, Random Forest, and so
forth are various ensemble techniques, whereas Random
Forest and bagging act in parallel and the rest act in sequential
act in parallel are boosting acts in sequential.

An ensemble technique has two steps: (1) generating
individual members and (2) right combining individual
members’ outputs to find a new output [12].

3. The Proposed Methodology and
Implementation

3.1. Boosting Algorithm. Boosting algorithm was offered by
Freund and Schapire [23, 24]. It is a method of producing
very accurate prediction rules by combining several “weak”
learners that can only be moderately accurate. Boosting
algorithm obviously modifies the distribution of the training
data that has been given to each single classifier by theweights
of training samples. At first, all training samples are given
the same weight. During the boosting process, those weights
are changed based on the error that current classifier has
on the training data. The weights of those samples that are
correctly classified are reduced, while the weights of those
that are misclassified or not covered by the classifier remain
unchanged.Theweight𝑤𝑘 indicates the importance of the 𝑘th

instance in current training data set. When a weak classifier
is run, the weights 𝑤𝑘 of the correctly classified instances are
decreased; thus, the next weak classifier pays more attention
to the misclassified or not covered instances due to their
higher weights.

The initial weights of all examples are the same and are
equal to value 1. The PSO algorithm is repeatedly called on
the current training data by the boosting algorithm. The
error ER𝑅𝑇 of the fuzzy rule 𝑅𝑇, produced by PSO algorithm
in 𝑇th run, is calculated by the boosting algorithm. The
parameter ER𝑅𝑇 is evaluated bymeasurementmatching𝜇(𝑥𝑘)

which determines the measure of matching between the 𝐾th
training instance and the fuzzy rule R𝑇 antecedent as well as
its weight 𝑤𝑘. Consider

ER𝑅𝑇 =

∑𝑘|𝑐𝑘 ̸= 𝐶𝑖
𝑤𝑘𝜇 (𝑥𝑘)

∑𝑘 𝑤𝑘𝜇 (𝑥𝑘)

. (13)

The goal of this intelligent system is to find classification
rules that classify accurately the current distribution of the
training data.

In normal form of Adaboost algorithm, only for the
correctly classified instances, the weights are reduced. The
weight of a correctly classified instance is decreased by factor
𝛼
𝑘. Consider

𝑤𝑘 (𝑡 + 1) = {

𝑤𝑘 (𝑡) , 𝐶𝑖 ̸= 𝐶𝑘

𝑤𝑘 (𝑡) × 𝛼
𝑘
, 𝐶𝑖 = 𝐶𝑘,

(14)

𝛼
𝑘
= (

1

1 + EXP(𝜇(𝑥𝑘)/(ER𝑅𝑇 + 𝑤𝑘))

)

𝜇(𝑥𝑘)

. (15)

The factor 𝛼
𝑘 is obtained based on three parameters 𝜇(𝑥𝑘),

ER𝑅𝑇 , and the weight 𝑤𝑘. According to (14) and (15), as
the instance and the rule antecedent are more matched, the
weight of the instance is more reduced. Also, the weights
of the instances, which are correctly classified by a rule
with less error or are better known in previous iteration, are
more reduced. The weights of the misclassified or uncovered
instances have been left unchanged.

3.2. Fuzzy Rule Extraction with PSO Algorithm. PSO algo-
rithm has been used in various data mining problems
such as clustering and classification [25–27]. In this paper,
PSO algorithm extracts appropriate rules for a classification
problem.

Population 𝑃 with 𝐿 particles is defined as follows [28]:

𝑃 =

[

[

[

[

[

[

[

[

[

[

𝑝1

𝑝2

...
𝑝ℎ

...
𝑝𝐿

]

]

]

]

]

]

]

]

]

]

=

[

[

[

[

[

[

[

[

[

[

𝑟1 𝑔1

𝑟2 𝑔2

...
...

𝑟ℎ 𝑔ℎ

...
...

𝑟𝐿 𝑔𝑙

]

]

]

]

]

]

]

]

]

]

, (16)

where 𝑝ℎ = [𝑟ℎ 𝑔ℎ] is a particle of population that
defines a set of fuzzy rules. 𝑟ℎ = [𝑟

ℎ

1
𝑟
ℎ

2
𝑟
ℎ

3
⋅ ⋅ ⋅ 𝑟
ℎ

𝑗
⋅ ⋅ ⋅ 𝑟
ℎ

𝐵]
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While (∑for all training instances 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒) > 𝑘) {

(1) Run the PSO algorithm
(2) For each rule exist in best solution in PSO algorithm do {

Reweight (instances) according to new rule has acquired by PSO algorithm:
(a) Calculate the error ERRT of the current Fuzzy Rule according to (14).
(b) Calculate factor 𝛼𝑘 according to (16).
(c) For each of training instances in heart data set calculate new weight
(d) 𝑤𝑘(𝑇 + 1) according to (15).

}// end of For

}// end of while loop

Pseudocode 1: The pseudocode of En-PSO2 approach.

includes a set of candidate fuzzy rules. It defines the
position of a particle where 𝐵 is a positive integer vari-
able to set the maximum number of fuzzy rules that
can be produced. The velocity vector defines as 𝑉ℎ =

[Vℎ1 Vℎ
2

Vℎ
3

⋅ ⋅ ⋅ Vℎ
𝑗

⋅ ⋅ ⋅ Vℎ
𝐵] that V

ℎ

𝑗
is a BRAMS. The param-

eter vector 𝑔ℎ = [𝑔
ℎ

1
𝑔
ℎ

2
⋅ ⋅ ⋅ 𝑔
ℎ

𝑗
⋅ ⋅ ⋅ 𝑔
ℎ

𝐵] is used in order
to reduce the number of fuzzy rules. If the parameter 𝑔

ℎ

𝑗
is

less than or equal to a user-defined maximum threshold, the
rule 𝑟

ℎ

𝑗
remains in fuzzy rule set; otherwise, it is eliminated.

In initialization step, this parameter is random in [0, 1]; then,
it is calculated according to (17) in each iteration. Consider

𝑔
ℎ

𝑗
=

NMP𝑟ℎ
𝑗
(𝑤)

NCP𝑟ℎ
𝑗
(𝑤)

, (17)

NMP𝑟ℎ
𝑗
(𝑤) = ∑

𝑘|𝑐𝑘 ̸= 𝐶𝑗

𝑤𝑘, (18)

NCP𝑟ℎ
𝑗
(𝑤) = ∑

𝑘|𝑐𝑘=𝐶𝑗

𝑤𝑘. (19)

In fact, NMP𝑟ℎ
𝑗
(𝑤) is the total weight of the instances that have

been incorrectly diagnosed and NCP𝑟ℎ
𝑗
(𝑤) is the total weight

of the instances that have been correctly diagnosed by the rule
𝑟
ℎ

𝑗
.
Suppose that 𝑟ℎ is the number of acceptable fuzzy rules;

then, index of these rules is 𝐼𝑟 ∈ {1, 2 . . . 𝐵}, 𝑟 = 1, 2, . . . , 𝑟ℎ,
and the acceptable fuzzy rule set is as {𝑟ℎ

𝐼1
, 𝑟
ℎ

𝐼2
, . . . , 𝑟

ℎ

𝐼𝑟
, . . . , 𝑟

ℎ

𝐼𝑟ℎ
}.

The position of a particle in iteration 𝑇 is considered
as 𝑟ℎ(𝑇); in this case, its next position will be as follows:

𝑟ℎ (𝑇 + 1) = 𝑟ℎ (𝑇) + 𝑉ℎ (𝑇)

= [𝑟
ℎ

𝐼1
+ Vℎ
𝐼1
, 𝑟
ℎ

𝐼2
+ Vℎ
𝐼2

⋅ ⋅ ⋅ 𝑟
ℎ

𝐼𝑟
+ Vℎ
𝐼𝑟
⋅ ⋅ ⋅ 𝑟
ℎ

𝐼𝑟ℎ
+ Vℎ
𝐼𝑟ℎ

] .

(20)

The next velocity of each particle is calculated by the
following equation:

𝑉ℎ (𝑇 + 1) = 𝜔 × 𝑉ℎ (𝑇) ⊕ 𝛼 × (𝐿ℎ (𝑇) − 𝑟ℎ (𝑇))

⊕ 𝛽 × (𝐿𝑔 (𝑇) − 𝑟ℎ (𝑇)) .

(21)

𝐿ℎ(𝑇) is the best ever existing position experienced by the
particle and is called local best position. Also, 𝐿𝑔(𝑇) is called
global best position and is the best position ever experienced
by all the particles.

3.3. The En-PSO2 Approach. In a number of researches,
combinations of nature-inspired algorithms and ensemble
methods have been used for rule extraction. For example,
Ant-Miner method can be expressed. In Ant-Miner, a series
covering method is followed to find a set of classification
rules covering all, or approximately all, the training instances
[29]. Another example is the study that is referred to in
[30] in which a boosting algorithm is combined with genetic
algorithm to extract classification rules.

In this section, we will describe the details of En-PSO2
approach for generating the classification fuzzy rules for
detecting coronary artery disease.

In this method, the PSO algorithm that has been
described in Sections 2 and 3.2 runs several times. In previous
works, in En-PSO algorithm, each time that PSO algorithm
was run, only one fuzzy rule was added to the rule set,
but, in En-PSO2, each time that PSO is run, several fuzzy
classification rules are extracted and added to the fuzzy
rule set. Maximum number of the fuzzy rules that may be
extracted in each run is equal to parameter B (defined in
previous section). The new boosting method, described in
Section 3.1, considers the collaboration between the fuzzy
classification rules that are extracted from PSO algorithm.
After a rule is added to rule set, the weights of those instances
that have been correctly classified with a recently extracted
rule are reduced by boosting algorithmand, for the remaining
instances, the weight will not be changed to increase their
chances in next runs. Thus, the En-PSO2 is biased to find
those fuzzy classification rules that complete the existing
fuzzy rule set and rectify its shortages. The pseudocode
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Table 2: Parameter setting for the proposed En-PSO2.

Parameter Value
Swarm size 25

Number of iteration Until the global best does not change after 5
iterations

𝜔 1/iteration number
c1 Random (between 0 and 1)
𝑐2 Random (between 0 and 1)
𝐾 12
𝐵 20

of En-PSO approach is shown in Pseudocode 1. In this
pseudocode, 𝐾 is the allowable amount for total weights of
training examples. Figure 3 presents a flowchart showing how
En-PSO2 algorithm works.

4. Experimental Result

In this research, we had two classes: 1 and 0; 1 refers to the
healthy people and 0 is for patients who are subject to possible
CAD. To test this method, we used UCI coronary artery data
set which was described in Section 2.

This data set has 920 instances: 509 instances with
coronary artery disease and 411 instances without coronary
artery disease.

We have run En-PSO2 method with various parameters
and at last we set them as in Table 2.

To achieve more reliable results, in partitioning training
and test sets, 𝐾-fold cross-validation technique was used.
In the mentioned method, the main data set is randomly
divided into 𝐾 partitions. Here, the classification method is
run ten times. Each time, the next subset is considered as
the validation and the remaining 𝑘 − 1 partitions are used as
training data. In fact, in 𝐾-fold cross-validation, each of the
𝐾 partitions is used once as validation data.The𝐾 results are
averaged to a single estimation. Different tests on various data
sets have shown that 10 is almost the best number of folds to
get the best approximation of error [31].

Different evaluation criteria have been used in data
mining and machine learning to test methods performances.
The classification accuracy is the most common evaluation
criterion used in data mining field. We have considered five
criteria to evaluate the performance of the proposed method:
accuracy, specificity, sensitivity, precision, and 𝐹-measure.

To calculate these measures, a well-known matrix called
confusion matrix (contingency table) is formed. This matrix
represents the classification results.

When the confusion matrix was constructed, the accu-
racy, specificity, sensitivity, precision, and 𝐹-measure can be
easily calculated as the following [15]:

accuracy =

(TP + TN)

(TP + FP + TN + FN)

,

specificity =

TN
(TN + FP)

,

Table 3: The obtained confusion matrix.

Actual result
Patient Healthy
90 419 Healthy Classifier result
370 41 Patient

sensitivity = recall = TP
(TP + FN)

,

precision =

TP
(TP + FP)

,

𝐹-measure =

2 ∗ precision ∗ recall
(precision + recall)

.

(22)

True Positive (TP). It is the number of correct predictionswith
CAD that is diagnosed as patient by the angiography.
True Negative (TN). It is the number of correct predictions
as normal with CAD that is labelled as healthy by the
angiography.
False Negative (FN). It is the number of incorrect predictions
as normal with CAD that is diagnosed as patient by the
angiography.
False Positive (FP). It is the number of incorrect predictions
as a patient that is labelled as a healthy person by the
angiography.

Classification accuracy is calculated by the ratio of the
number of the instances correctly classified to the total
number of samples.

Precision measures the percentage of the actual patients
(i.e., true positive) between the patients that got declared
CAD; recall measures the percentage of the actual patients
that were discovered; 𝐹-measure balances between precision
and recall. Specificity measures the percentage of patients
without disease that can be correctly eliminated.

Table 3 shows the confusion matrix obtained by the
proposed system. We achieved accuracy of 85.76 on UCI
data set of coronary artery disease. All the five performance
measures, accuracy, sensitivity, specificity, precision, and F-
measure, for En-PSO2 have been shown in Table 4. This
method has generated in average 21.2 rules. The comparison
between rule-basedmethods is presented inTable 5.As can be
seen among all the rule-basedmethods for detection of CAD,
the minimum number of rules is allocated to En-PSO2. Also,
the accuracy of this method is in second place after En-PSO.
In addition, the average length of rules is 3.01. These results
suggest that the interpretability of the proposed method is
very high since the comprehensibility of a rule-based expert
system with a few if-then rules is much more than a system
with large number of rules.

In Figure 4, two factors, time and accuracy of themethod,
are compared with the increasing amount of initial number
of rules for each particle (𝐵). As can be seen maximum
accuracy is achieved by setting 30 for 𝐵. This negligible
increase in accuracy (approximately 0.03) is obtained with a
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Classify test set
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Renew local and global bests
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Add next rule to rule set

Renew location of particles
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Classify training instances

Reweight training

has more rules

 based on new rule

Renew velocity
of particles

 instances

Σw > K

Figure 3: Total flowchart of the expert system of coronary artery detection.𝐾 is the allowable amount for total weights of training examples.
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Table 4: Performance measures of En-PSO2 according to confusion matrix.

Measure name Accuracy Sensitivity Specificity 𝐹-measure Precision
Amount (%) 85.76 90.02 82.31 86.48 91.08

Table 5: Comparison between rule-based methods.

Rule-based methods Accuracy Number of rules
Decision tree [33] 85.6 83
Support based [33] 84.4 27
Pearson [34] 84.5 27
RST [33] 85.2 27
En-PSO [18] 85.97 25.3
En-PSO2 (this study) 85.76 21.2

90

80

70

60

50

40

30

20

10

0

Time (min)
Accuracy

Initial number of rules for each particle

Figure 4: Time and accuracy changes based on increasing amount
of 𝐵.

time difference of about 6.5 minutes. Therefore, we have set
20 for 𝐵.

Figure 5 illustrates the average accuracy after adding each
rule to rule set. Given that the method which we have chosen
to test the proposedmethod is 10-fold cross-validation, we do
not have a single rule set, and we have 10 rule sets. Therefore,
in Figure 5, we have calculated the average of accuracy. As
can be seen, the average accuracy on the train data set is
always ascending, but the slope of graph is declining. In the
earlier runs, the extracted rules cover the samples easier and
reduce their chances for selection in the next runs. So, with
increasing the number of runs, the rules aremore specific and
cover the less number of samples; thus, increasing accuracy is
less.

Table 6 compares the classification accuracy, sensitivity,
specificity, and number of rules between proposed method
and previous methods. This comparison shows that En-
PSO2, both in terms of performance and the interpretability,
is better.

Table 6: Comparison between classification algorithms according
to accuracy, sensitivity, specificity, and number of rules.

Method Accuracy Sensitivity Specificity Number
of rules

Decision tree [35] 78.91 72.01 84.48 —
LTF-C [36] 81.2 — — —
Bagging [35] 81.41 74.93 86.64 —
𝑘-NN [33] 81.5 — — —
Bayesian model [37] 82 87 — —
Decision tree (C4.5) [37] 82.5 87.17 — —
SVM [37] 82.5 88 — —
RST [33] 85.2 — — 27
ANN [38] 85.53 — — —
Decision tree [33] 85.6 — — 83
NN-Alizadeh [15] 85.43 90.2 73.5 —
En-PSO2 (this study) 85.76 90.02 82.31 21.2

100
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20

0
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Number of rules
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cu
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cy
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Figure 5: Average accuracy obtained on train and test data sets from
adding each rule to the rule set.

It is important to note that the computational complexity
of our method is𝑂(𝑃∗𝑅∗𝐹); 𝑃 denotes number of particles;
𝑅 addresses the number of patients records; and 𝐹 is number
of features. In comparison to other works, it seems that our
algorithm is more complex and needs more time to extract
its knowledge base (fuzzy if-then rule). However, since the
testing time is very fast (𝑂(𝐹)) and the extracted rule set
is very accurate and interpretable, we can accept the final
performance of this complex learning algorithm.

5. Conclusion

In a number of researches, diagnosis of CAD has been con-
sidered.These researches have applied different techniques to
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the given problem and attained high classification accuracies
on the UCI data sets. In a number of these researches, only
determination of patient or normal has been considered
while, in someother, the extraction of appropriate rules is also
considered.

In this research, a fuzzy boosting PSO approach has been
proposed to generate appropriate rules for detection of CAD.
The proposed boosting algorithm helps to produce optimal
rules to cover more instances.

In our previous works [18, 32], in each run, one rule was
extracted and added to rule set. In this work, each individual
in PSO algorithm includes a set of rules.Therefore, each time
the PSO algorithm is run, several rules are added to rule set.
This has two results. (1) Algorithm will be completed faster if
appropriate values for the parameters are set. This is because
each time PSO algorithm is run, several rules can be added to
rule set and this makes the process of the instance covering
faster. (2) There is more coordination between production
rules. In previous method, the extracted rule in each runmay
be optimal in terms of covering instances but may not be
coordinate between existing rules in rule set. Consequently,
the accuracy of the method may be reduced. In En-PSO2, in
each run, several rules are extractedwhich are compatible. So,
in this method, rules are more coordinate.

This method, in addition to being competitive with other
approaches in terms of accuracy, produces an average of 21.2
rules that is the minimum number of rules for the detection
of the mentioned disease. Moreover, the average length of
rules is 3.01.These results show that the interpretability of the
proposed method is very high (in comparison to [18, 33, 34],
whose methods produce more number of if-then rules to
detect CAD).
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