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A B S T R A C T   

Perivascular spaces (PVS) are believed to be involved in brain waste disposal. PVS are associated with cerebral 
small vessel disease. At higher field strengths more PVS can be observed, challenging manual assessment. We 
developed a method to automatically detect and quantify PVS. 

A machine learning approach identified PVS in an automatically positioned ROI in the centrum semiovale 
(CSO), based on -resolution T2-weighted TSE scans. Next, 3D PVS tracking was performed in 50 subjects (mean 
age 62.9 years (range 27–78), 19 male), and quantitative measures were extracted. Maps of PVS density, length, 
and tortuosity were created. Manual PVS annotations were available to train and validate the automatic method. 

Good correlation was found between the automatic and manual PVS count: ICC (absolute/consistency) is 
0.64/0.75, and Dice similarity coefficient (DSC) is 0.61. The automatic method counts fewer PVS than the 
manual count, because it ignores the smallest PVS (length <2 mm). For 20 subjects manual PVS annotations of a 
second observer were available. Compared with the correlation between the automatic and manual PVS, higher 
inter-observer ICC was observed (0.85/0.88), but DSC was lower (0.49 in 4 persons). Longer PVS are observed 
posterior in the CSO compared with anterior in the CSO. Higher PVS tortuosity are observed in the center of the 
CSO compared with the periphery of the CSO. 

Our fully automatic method can detect PVS in a 2D slab in the CSO, and extract quantitative PVS parameters 
by performing 3D tracking. This method enables automated quantitative analysis of PVS.   

1. Introduction 

Perivascular spaces (PVS) are fluid-filled spaces around the brain- 
perforating blood vessels [1], and are connected to the cerebrospinal 
fluid (CSF) in the subarachnoidal space. PVS can be observed on MR 
images, where they appear with a (visually) similar signal intensity as 
CSF [1]. PVS are believed to be involved in the clearance of waste 
products from the brain [2,3]. Furthermore, the appearance of more 
and/or larger perivascular spaces has been linked to aging [4–6] and is a 
feature of cerebral small vessel disease (SVD) [6–8]. Therefore, peri-
vascular spaces are highly relevant when investigating the healthy and 
diseased brain. 

Currently, PVS are mostly evaluated visually, using qualitative 
measures such as a rating scale for PVS counts in brain regions like the 

basal ganglia (BG) and the centrum semiovale (CSO) [9–11]. Actual PVS 
count could offer a more precise method to determine PVS load, since 
this results in a continuous scale rather than an ordinal scale, thereby 
eliminating discretization and ceiling effects. However, manual anno-
tation is highly labor intensive, especially at higher field strengths where 
high numbers of PVS are observed [12]. Also, inter-rater differences 
remain, since for example (very) small PVS can easily be confused with 
motion or noise. It is illustrative that in a recent 7 T MRI study on 
average more than 70 PVS could be counted in a single slice from one 
hemisphere, making their manual assessment very labor intensive. This 
limits further evaluation of PVS in high resolution scans, regarding e.g. 
PVS asymmetry [13]. Still, even if manual PVS annotation would be 
feasible, it still lacks additional quantitative information. An automatic 
method would be easier to apply and eliminates inter-rater variability, 
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and could be used to acquire quantitative PVS measures, such as PVS 
length and tortuosity. 

In this work a method was developed to automatically detect and 
quantify PVS in the centrum semiovale. High-resolution 3D T2-weighted 
TSE scans of 50 subjects (27–78 years) were available. Automatic PVS 
detection was performed in an automatically determined region-of- 
interest (ROI) in the CSO. The method was trained and validated with 
manual PVS annotations that were available in a single slice in the CSO, 
in the right hemisphere [12]. 3D tracking of all automatically detected 
PVS resulted in PVS length and PVS tortuosity measurements in these 
subjects. 

2. Methods 

2.1. Data 

Scans of 50 subjects (mean age 62.9 years (range 27–78), 19 male) 
from two earlier studies with identical 7 T MRI protocols were used. 
Scans of 30 participants of the PREDICT-MR study [14], and scans of 20 
participants of the second Utrecht Diabetic Encephalopathy Study 
(UDES2) were available [15]. PREDICT-MR and UDES2 were approved 
by the medical ethics committee of the University Medical Center 
Utrecht (UMCU), and all subjects gave written informed consent. The 
guidelines of the Declaration of Helsinki of 1975 were followed. The 
PREDICT subjects were randomly recruited in waiting rooms of general 
practices and had no cognitive impairment. The UDES2 subjects were 
recruited through their general practitioners, and had no cognitive 
impairment. Of the 20 UDES2 subjects included in this study, 8 subjects 
had diabetes mellitus. The used data is described in detail by Bouvy et al. 
[12]. Briefly, for all subjects a 3D T2-weighted TSE scan acquired at 7 T 
was available, with 0.7 mm isotropic resolution, reconstructed to 0.35 
mm isotropic. TR/TE were 3158/301 ms. Also, for all subjects a 
T1-weighted TFE scan acquired at 7 T was available, with 1 mm acquired 
isotropic resolution, reconstructed to 0.66 × 0.66 × 0.5 mm3. TR/TE 
were 4.8/2.2 ms. For all subjects PVS markers from an expert observer 
were available in the centrum semiovale, in the right hemisphere [12] of 
a predefined slice. This slice was located in the CSO, 1 cm above the most 
cranial slice where the lateral ventricles were visible. For subjects of the 
UDES2 study also PVS markers of a second observer were available. 

2.2. Semiautomatic PVS detection and tracking 

The T1-weighted scans were used for segmentation of white matter 
(WM) using SPM12 [16]. The WM mask was registered to the 
T2-weighted scans using rigid registration with elastix [17]. To enhance 
all vessel-like structures, the T2-weighted scans were filtered with a 
vesselness filter. We used a multi-scale 3D vesselness implementation as 
proposed by Sato et al. [18]. Specifically, we computed 10 scales with 
uniform distributed sigma ranging from 0.30 to 1.00 mm (inclusive) as 
implemented in MeVisLab [18–20]. Subsequently, a plane was auto-
matically positioned in the CSO, parallel to the line connecting the genu 
and splenium of the corpus callosum, perpendicular to the midsagittal 
plane, and 10 mm above the lateral ventricles. The genu and splenium, 
and the midsagittal plane were automatically detected as described 
elsewhere [21–23]. The CSO-plane was extended to a slab of 7 slices, 
and the CSO region-of interest (CSO-ROI) was defined as the WM in this 
slab. Fig. 1 shows an example of the automatically positioned CSO-plane 
for a subject. 

For the automatic PVS detection, PVS probability maps were created 
based on a binary kNN (k nearest neighbor1) classifier [24] trained using 
the T1 and T2 signal intensities, and the vesselness values. A kNN clas-
sifier first builds a multidimensional feature space trained on labelled 

data that contains examples of the ‘foreground (i.e. PVS) and the 
‘background’ (i.e. white matter). A leave-one-out approach was used: for 
each subject, the classifier was trained on the data of all other subjects. 
The training data included all manually annotated PVS points dilated by 
one voxel in all directions (resulting in a 3 × 3 × 3 window), and a 
random sample of 10% of all white matter voxels within the slab as 
background class. When provided with new data, the kNN classifier 
projects the new data into the trained feature space and looks up the k 
nearest neighbor example data points. K was set at 51 and the nearest 
neighbors were weighted by the inverse of their distance. All other pa-
rameters were kept at default settings. The final label of the new data is 
the distance-weighted average of the example data: either PVS or white 
matter, in this application. The labeling process is repeated for all pixels 
in the CSO-ROI to obtain their label. Next, local non-maximum sup-
pression was applied to reduce multiple neighboring PVS pixels into a 
single seedpoint. All locations having a PVS probability above 0.50 were 
used in a bidirectional 3D tubular tracking algorithm (radius range: 
0.15–0.70 mm; search depth: 3 steps, 2 angles, pruning threshold of 5; 
and a termination threshold of 10) [25]. PVS tracking was performed 
within the WM in the entire CSO. The length and other parameters of 
each PVS track were determined using the skeleton of each individually 
tracked PVS. The resulting PVS tracks shorter than 2 mm were consid-
ered false positives and tracks longer than 50 mm were considered to be 
physiologically unfeasible, and were therefore excluded. 

For each subject the PVS count was determined. Furthermore, for 
each tracked PVS the PVS length and tortuosity τ (τ = L/C, with L the 
PVS length, and C the shortest distance between the begin- and end-
points of the PVS) were determined. 

Fig. 1.. Automatically determined CSO plane (yellow) in a subject (T2- 
weighted TSE scan), in sagittal (TOP) and coronal (BOTTOM) view. The CSO 
plane is located 1 cm above the ventricles, and is oriented parallel to the line 
connecting the bottom of the genu and splenium of the corpus callosum, and 
perpendicular to the midsagittal plane. 

1 Source: https://scikit-learn.org/stable/modules/generated/sklearn.neighbo 
rs.KNeighborsClassifier.html 
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2.3. Validation metrics 

To validate the automatic PVS detection method, the Intraclass 
Correlation Coefficient (ICC) and the Dice Similarity Coefficient (DSC) 
metrics were used. The data used in this work was acquired with 7 T 
MRI, which results in a much larger number of visible PVS compared 
with data acquired with e.g. 3 T MRI. This introduces a bias in the ICC, 
with higher ICC for a larger PVS count, as the ICC is a data-dependent 
metric [26]. The DSC takes also the PVS location into account, addi-
tionally to the PVS count, and is therefore regarded as a more reliable 
metric. However, the DSC value is generally (much) lower than the ICC 
value for rating highly-frequent noisy objects [26]. 

To compare the performance of the automatic method with manual 
PVS counting, PVS detection was performed in the exact same slice as 
manually selected by Bouvy et al. [12], in the right hemisphere. The 
automatically tracked PVS and the available manual PVS annotations in 
this slice were compared based on count and location, using the ICC and 

the DSC. This was compared with the available inter-observer ICC and 
DSC for the UDES2 data, between the first and second observer [12]. 
Furthermore the ICC between the automatically detected PVS in the slice 
used by the first observer and the automatically positioned plane was 
determined, as a measure of the dependency of the PVS count on the 
chosen scan section. 

2.4. Additional quantitative PVS features 

The subject images were registered with the MNI-152 brain template 
[27,28]. The registration method is described by Biesbroek et al. [29], 
and is also effective for scans of older subjects. The resulting trans-
formation was applied to the 3D tracked PVS. The PVS density, length, 
and tortuosity distributions were plotted on top of the MNI-152 brain 
template. PVS density is computed as the average number of 3D tracked 
PVS points (resulting from the tubular tracking algorithm) within a 2 
mm radius around each voxel in the MNI-152 brain template. Each 

Fig. 2.. The automatically determined CSO plane from the 3D T2-weighted TSE volume (A), the vesselness filtered scan (B), the PVS probability map (C), and the 
detected PVS relative to the T2-weighted TSE image (D). The PVS detection was performed by thresholding the probability map (threshold = 50%). 
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individual transformed PVS skeleton in MNI-152 space was dilated by 2 
mm, and its length and tortuosity were averaged with all other PVS 
tracks of all subjects in that area. 

3. Results 

Fig. 1 shows the automatically positioned CSO plane for one subject, 
relative to the T2-weighted TSE scan. The CSO-plane is located 1 cm 
above the ventricles, parallel to the line connecting the bottom of the 
genu and splenium of the corpus callosum and perpendicular to the 
midsagittal plane. 

Fig. 2 AB shows the T2-weighted TSE image of one subject in the 
middle slice of the CSO-slab, and the same image after vesselness 
filtering. Fig. 2 CD shows the PVS probability map resulting from the 
kNN classifier, and the detected PVS relative to the original T2-weighted 
TSE image. 

For the same subject the 3D tracked PVS are shown relative to a 
maximum intensity projection (MIP) of a sagittal slab of the T2-weighted 
TSE scan (Fig. 3). 

Total computation time was approximately three hours per subject 
on a standard workstation. 

3.1. Validation of automatic PVS detection 

To assess the performance of the automatic PVS detection method, 
the correlation between the number of automatically detected and 
manually annotated PVS was determined for all 50 subjects. This was 
done in the exact same slice that was used by the human observer, in the 
right hemisphere (the left hemisphere was not taken into account by 
Bouvy et al. [12]). Fig. 4 shows a scatter plot and a Bland-Altman plot of 
the PVS count detected by the automatic method and the human 
observer. Overall, a smaller PVS count was found by the automatic 
method compared with the human observer. This can be partially 

contributed to the fact that the automatic method ignores the smallest 
PVS (length < 2 mm). The Intraclass Correlation Coefficient (ICC) 
(absolute/consistency) was 0.64/0.75, and the Dice Similarity Coeffi-
cient (DSC) was 0.61 between the automatically determined PVS and the 
manually annotated PVS. In the scans of two subjects artifacts were 
observed. Despite the artifacts, the method performed relatively well, 
although the correlation with the visual observers was below average for 
these two subjects. 

To compare the performance of the automatic method with the 
performance of manual PVS annotation, correlation of the manually 
annotated PVS with a second human observer was determined. For 20 
subjects manually annotated PVS of the second observer were available 
[12]. Inter-observer ICC (absolute/consistency) between the original 
observer and the second observer was 0.85/0.88. However, in 16/20 
subjects DSC could not be determined, as different slices were selected 
by both observers: on average, the distance between the slices was 1.33 
± 0.98 mm (range: 0.34–4.17 mm). In four subjects both observers 
actually annotated the exact same slice. In these four subjects, the DSC 
was 0.49 (range 0.32–0.73) for the manual PVS annotations between the 
first and second observer. In these same four subjects, higher DSC was 
found for the automatic method, compared with both human observers: 
between the automatically detected PVS and the manually annotated 
PVS by the first/second observer for these four subjects, DSC was 
0.64/0.62 (range 0.59–0.75 / 0.55–0.73). 

Finally, as a measure of the dependency of the PVS count on the 
chosen scan section, the number of automatically detected PVS was 
compared between the slice that was used by the human observer and 
the automatically positioned plane. This resulted in ICC (absolute/ 
consistency) of 0.74/0.74. 

3.2. Additional quantitative PVS features 

Fig. 5 shows the average distribution of PVS density relative to the 
MNI-152 atlas. In each hemisphere two foci of high PVS density can be 
observed, anterior and posterior in the CSO-slab. Fig. 6 shows the 
average distribution of PVS length in MNI space, the color indicates the 
PVS length, and transparency indicates the number of subjects. Longer 
PVS can be observed posterior in the CSO, and shorter PVS can be 
observed anterior in the CSO. Anterior in the CSO, higher PVS length are 
plotted in the most caudal slices compared with more cranial slices: only 
the longest PVS that were detected in the CSO-ROI, are located in the 
most caudal slices, whereas more cranially also the shorter PVS are 
found. Fig. 7 shows the average distribution of PVS tortuosity relative to 
the MNI atlas, the color indicates the PVS tortuosity, and transparency 
indicates the number of subjects. Higher PVS tortuosity can be observed 
in the center of the CSO, and smallest PVS tortuosity can be observed at 
the periphery of the CSO. Fig. 8 shows the average and 95% confidence 
interval (95% CI) distributions of PVS length and tortuosity, for the 
tracked PVS of all subjects. 

4. Discussion 

In this work a method was developed to automatically detect and 
quantify PVS in the centrum semiovale. 3D T2-weighted TSE images 
acquired at 7 T were used as input for the method. The method yields 
PVS measurements in an automatically detected ROI in the CSO, 
including count, length, and tortuosity. 

A key strength of this fully-automatic method is that it is determin-
istic, meaning that rerunning the method yields exactly the same results. 
This increases repeatability and reproducibility compared with manual 
PVS assessment. Also, the vesselness filter that was used in this method 
is independent of possible signal inhomogeneities [18,19]. Therefore, 
possible variations in signal intensities (and thus SNR) between regions 
only have a limited effect on the performance of the method. 

Furthermore, additionally to the PVS count, quantitative parameters 
(length and tortuosity) could be acquired for each PVS by performing 3D 

Fig. 3.. Sagittal view of the tracked PVS (green markers), relative to a MIP of a 
sagittal slab (thickness 4 slices) of the 3D T2-weighted TSE images of a subject. 
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tracking of the detected PVS. Also, the large dataset enabled mapping of 
the quantitative parameters (PVS density, length, and tortuosity) to MNI 
space. 

Finally, a large dataset of high-resolution scans acquired at 7 T of 50 
subjects with manually annotated PVS was available for this work. This 
dataset enabled good validation of the automatic PVS detection method. 

Our results support the hypothesis that automatic PVS detection is 
less sensitive to noise and/or motion compared with manual PVS 
annotation. Our automatic method detects the larger, well-visible PVS 
and ignores the smallest PVS close to the noise-level, by taking the signal 
intensity into account along with the vesselness value, and by applying a 
length restriction on the detected and tracked PVS (PVS must be at least 

Fig. 4.. Scatterplot (A) and Bland-Altman plot (B) of the PVS count detected by the automatic method and annotated by the human observer, in the slice that was 
used by the human observer, in the right hemisphere. Overall, the automatic method detected less PVS than the human observer. 

Fig. 5.. Average distribution of PVS density of all subjects, plotted in MNI space. Very similar PVS densities can be observed in both hemispheres, with two foci with 
high PVS density anterior and posterior in the CSO. 
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2 mm in length). These conditions decreased the sensitivity for noise 
and/or motion in the scan, and therefore resulted in a lower automati-
cally detected PVS count compared with the manual annotated PVS. 
Furthermore, the manual annotations, that were available from a pre-
vious study [12], included as many PVS as possible, including the 
smallest PVS. As a result, the automatic method systematically detected 
a smaller number of PVS compared with the original manual segmen-
tation (Fig. 4). This is also likely to contribute to the lower absolute 
versus consistency ICC between the automatically detected PVS count 
and the manually annotated PVS. On the other hand, in the four subjects 
where inter-observer DSC could be determined, DSC was higher for the 
automatic method compared with the human observer. 

The performance of the automatic PVS detection method is on par 
with what can be expected for this specific task, i.e. counting highly- 
frequent and inherently noisy objects on 7 T images. Only a fraction 
of all PVS is sufficiently large to be distinguishable above the noise level 
[6,12]. This yields an inherently ill-defined difference between detect-
able and non-detectable PVS. Visual (and automatic) PVS rating is still 
possible, but a consistent method to annotate the PVS is necessary. In-
dividual human observers have different intrinsic cut-offs for annotating 
an object as PVS or ignoring it as noise. Training of observers can 

decrease the difference between these intrinsic cut-offs, but 
inter-observer differences remain. Paradoxically, these inter-observer 
differences are amplified in 7 T scans, because of the significantly 
higher visibility of PVS on 7 T MRI compared to 1.5 T or 3 T. If fewer and 
larger PVS are visible (e.g. on 3 T MR images), the likelihood that both 
observers will identify the same objects is higher. On 7 T MR images, 
much more and smaller PVS (and PVS-like objects) are visible, which 
decreases the inter-observer agreement. This is not related to the per-
formance of the observers (human or machine), but can be fully 
attributed to the increased difficulty of rating 7 T MR images. This was 
demonstrated earlier for rating cerebral microbleeds by Kuijf et al. [26]: 
in this work it was shown that the difference between the ICC and DSC 
increases for increasing object counts. 

Our human observers had an inter-observer ICC of 0.85/0.88 for the 
PVS count, which can be qualified as “good”. However, when consid-
ering the overlap between the annotations, the DSC is only 0.49. Thus, 
the human observers agreed on the PVS count, but did not necessarily 
identify the same PVS. This demonstrates the difficulty in rating highly- 
frequent noisy objects on 7 T MR images: it is hard to consistently 
identify the same object in an image. The DSC between the automatic 
method and the human observers was larger than the inter-observer 

Fig. 6.. Distribution of PVS length of all subjects, plotted in MNI space. The markers were dilated to a diameter of 2 mm. The marker color indicates the PVS length, 
marker transparency indicates the number of PVS markers. Largest PVS lengths can be observed posterior in the CSO, shorter PVS lengths can be observed anterior in 
the CSO. 
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Fig. 7.. Distribution of PVS tortuosity of all subjects, plotted in MNI space. The markers were dilated to a diameter of 2 mm. The marker color indicates the PVS 
tortuosity, marker transparency indicates the number of PVS markers. Higher PVS tortuosity can be observed in the center of the CSO, and smallest PVS tortuosity can 
be observed at the periphery of the CSO and posterior in the CSO. 

Fig. 8.. The PVS length (A) and tortuosity distribution (B) for the tracked PVS of all subjects. The line represents the average distribution, the transparent band 
represents the 95% confidence interval. Median PVS length is 12.1 mm (range: 2–48 mm), the median of PVS tortuosity is 1.05 (range: 1.00–1.54). 
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DSC. This illustrates that the agreement between the method and either 
observer is larger than the inter-observer agreement. 

Several automatic methods for (semi-)automatic PVS segmentation 
have been proposed by different groups currently working on automatic 
PVS detection [30–36]. For the automatic PVS detection and tracking 
method that was proposed in this work a low-resolution T1-weighted 
scan (to determine the WM mask) and a high-resolution T2-weighted 
TSE scan (for PVS segmentation) were used as input, with a total scan 
time of approximately 12 min. This scan time is relatively short 
compared with other automatic PVS detection methods. For example, 
Park et al. [31] used two high-resolution (T1- and T2-weighted) scans 
acquired at 7 T, with a total scan time of approximately 22 min. Our 
automatic PVS detection method resulted in similar or higher correla-
tion with human observers, compared with other automatic detection 
methods. Boespflug et al. [33] used a PVS detection method based on 
signal intensities in T1-weighted, fluid-attenuated inversion recovery, 
T2-weighted, and proton density data (acquired at 3 T), and filtered the 
detected PVS based on multiple morphological features (width, volume, 
and linearity). In contrast, in our method included a morphological 
feature (vesselness) in the detection step, thereby eliminating the need 
for extensive filtering after PVS detection. Boespflug et al. tested their 
method in a dataset of 14 subjects (age ranging between 70 and 101 
years), and achieved correlation R of 0.54–0.69, relative to three raters. 
In our study R was 0.76 compared with the manually annotated PVS. 
Park et al. used a learning-approach method for PVS detection, and Lian 
et al. [32] used a fully convolutional neural network approach. Both 
methods used extensive image filtering: Park et al. used randomized 3D 
Haar features, and Lian et al. incorporated enhancement of the used MRI 
images using a non-local Haar-transform-based method, which was 
introduced by Hou et al. [37]. In contrast, in our work a more simple 
method based on vesselness value and signal intensity was used. Both 
Park et al. and Lian et al. compared their automatic methods with a 
ground truth that was determined semi-automatically, in subsets of 11 
and 14 subjects, respectively. Both methods resulted in relatively high 
correlation relative to the ground truth, with DSC slightly above 0.7. 
This is higher than the DSC of 0.61 found in our work, which was 
derived from a dataset of 50 subjects. However, in our work the auto-
matic method was compared with manually annotated PVS, including 
very small PVS, which were excluded from the ground truths used by 
Park et al. and Lian et al.. Also, Park et al. used young, healthy volun-
teers (age ranging between 25 and 37 years) and detected on average 
298 PVS in the whole brain, whereas in this study also elderly subjects 
were included with higher PVS density (on average 106 PVS were 
detected in only one slice). Furthermore, the scans used in our work 
occasionally showed motion, which potentially decreased the overall 
correlation with the manually counted PVS. 

In work by Hou et al. [37] 7 T MRI scans were enhanced using a 
method based on the Haar transform, which increased the distinguish-
ability of PVS. Hou et al. showed that PVS detection by thresholding the 
scans after vesselness filtering was significantly improved by using the 
enhanced and denoised scans. In our work a combination of the ves-
selness filter with signal intensities in the T2-weighted scan was used for 
PVS detection. Incorporating Hou’s scan enhancement in our automatic 
method may offer possibilities to further improve both detection and 
tracking of PVS. However, in our method only larger PVS were included 
(PVS shorter than 2 mm are excluded), and therefore the scan 
enhancement by Hou et al. is expected to offer only minor improvements 
for our PVS detection method. 

Future methods could consider the use of (convolutional) neural 
networks, to replace the kNN method for detection of the PVS. For 
example the nnDetection framework [38] has shown promising results 
in detecting small objects [39]. A downside is that neural network 
methods usually require larger example training data sets. An alterna-
tive approach is to use convolutional neural networks to completely 
segment PVS at once, which was one of the tasks in the “Where is 
VALDO” challenge [40]. 

The method presented in this work was developed for PVS detection 
in a 2D slab, similar to commonly used visual rating scales [9–11], which 
enabled thorough validation using the manually annotated PVS. This is 
contrary to several other published (semi-)automatic methods [30–35] 
where PVS segmentation is performed in the entire brain or within 
certain brain regions (centrum semiovale and basal ganglia). The com-
parison between the PVS count in the automatically determined 
CSO-ROI in this work and the slice used by the first observer in Bouvy 
et al., resulted in ICC of 0.74. This is in line with literature, where lower 
correlation was found between observers when different slices were 
used [35], and relatively low correlation was observed between PVS 
count in a single slice and in the whole brain [30]. Automatic slice se-
lection, as was performed in our method, can reduce PVS count variation 
induced by the selected slice. However, whole-brain PVS segmentation 
or PVS segmentation for 3D brain regions may offer the most reliable 
PVS count. Therefore we aim to extend our method to a full 3D assess-
ment in future work. 

The spatial differences in PVS density, length, and tortuosity 
observed in this work may be related to the relatively high age of sub-
jects in this study. Contrary to our results, Park et al. [31], found similar 
PVS lengths in the parietal-occipital lobe and the frontal lobe, and 
slightly shorter PVS in the temporal lobe, in younger subjects (25 – 37 
years). Also, Park et al. found shorter PVS, up to 18 mm, compared with 
the PVS lengths acquired in our work. This may suggest that, in aging 
subjects, PVS posterior in the CSO increase in length before PVS in other 
regions of the CSO. It would be very interesting to further investigate 
such regional differences in PVS properties in relation to age and be-
tween different diseases. Furthermore, Feldman et al. have recently 
found asymmetry in PVS count in epilepsy patients [13]; possibly also 
asymmetry in PVS length and/or tortuosity can be found in diseases such 
as epilepsy. 

In contrast to Park et al. [31], Boespflug et al. [33], Ramirez et al. 
[30], and Cai et al. [34], PVS diameter and volume were not determined 
in this work, which could be regarded as a limitation. However, the 
measured PVS diameter can be expected to depend strongly on the ac-
quired resolution. Moreover, reliable diameter estimates require more 
than a single voxel within the PVS, limiting measurements to only the 
largest diameters > 1 mm [41]. Because of the small PVS diameter 
(normally less than 2 mm in healthy subjects) relative to the acquired 
isotropic resolution of 0.7 mm, estimates of PVS diameter and volume 
will certainly suffer from considerable errors and partial volume effects. 

The main limitation of this work is that the method is currently not 
able to perform 3D detection. However, using a 2D slab enabled good 
validation with manual PVS assessment. In future work our automatic 
PVS detection method can be extended to a full-brain PVS detection 
method. 

Also, manual PVS markers were used to train the method. These 
markers included the very small PVS, which may not be reproducible, 
and is expected to increase the risk of selecting false positives. To 
minimize the number of false positive detected PVS, a minimum PVS 
length of 2 mm after tracking was used, but false positive detected PVS 
cannot be prevented entirely. 

Furthermore, occasionally a (long) in-plane perivascular space was 
detected more than once. Tracking of these detected points can result in 
multiple short PVS, rather than one long PVS track, thereby resulting in 
underestimated (average) PVS length. In the slices used for PVS detec-
tion in this work (almost) all PVS were almost perpendicular to the 
plane. Therefore the effect of in-plane PVS was very limited. Merging of 
the identified PVS pixels may resolve this issue for extending our method 
to whole-brain PVS detection. 

The method was developed and evaluated on a single 7 T system, so 
future work is needed to evaluate its performance on other systems and 
on other field strengths. Most components in the method have already 
demonstrated robust performance on other scanners (e.g. vesselness and 
tubular tracking), but especially the kNN classifier might need to be 
retrained to operate with other data sets. The high spatial resolution of a 
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7 T system provides advantages for detecting and tracking PVS, but 
performance on lower field strength is therefore unknown. Initiatives 
like the “Where is VALDO” challenge [40] will likely provide valuable 
insights in PVS detection performance on more common field strength 
systems. 

Finally, despite the high resolution of the scans used in this work, 
many small PVS cannot be detected due to their small size. Therefore, 
quantitative PVS measurements could only be performed for larger PVS. 
As PVS diameters range down to the micrometer scale [42], this will 
remain a challenge for all PVS detection methods that are based on 
anatomical images. 

5. Conclusions 

In conclusion, in this work we present a fully automatic method to 
detect PVS in a 2D slab in the CSO, and to extract quantitative PVS 
parameters by performing 3D tracking of the detected PVS. Our method 
shows good correlation with manual PVS assessment and has the po-
tential to quantitatively study PVS characteristics such as density, length 
and tortuosity in aging and disease. 
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