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Abstract

Phenotypes of sessile organisms, such as plants, rely not only on their own genotypes but also on those of neighboring individuals.
Previously, we incorporated such neighbor effects into a single-marker regression using the Ising model of ferromagnetism. However, little
is known regarding how neighbor effects should be incorporated in quantitative trait locus (QTL) mapping. In this study, we propose a new
method for interval QTL mapping of neighbor effects, designated “neighbor QTL,” the algorithm of which includes: (1) obtaining condi-
tional self-genotype probabilities with recombination fraction between flanking markers; (2) calculating conditional neighbor genotypic
identity using the self-genotype probabilities; and (3) estimating additive and dominance deviations for neighbor effects. Our simulation
using F2 and backcross lines showed that the power to detect neighbor effects increased as the effective range decreased. The neighbor
QTL was applied to insect herbivory on Col � Kas recombinant inbred lines of Arabidopsis thaliana. Consistent with previous results, the
pilot experiment detected a self-QTL effect on the herbivory at the GLABRA1 locus. Regarding neighbor QTL effects on herbivory, we ob-
served a weak QTL on the top of chromosome 4, at which a weak self-bolting QTL was also identified. The neighbor QTL method is avail-
able as an R package (https://cran.r-project.org/package¼rNeighborQTL), providing a novel tool to investigate neighbor effects in QTL
studies.
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Introduction
Sessile organisms, such as land plants, lack the active mobility
required to withdraw from neighboring individuals. Field studies
have shown that the phenotypes of an individual plants depend
not only on their own genotypes but also on those of neighboring
plants (Barbosa et al. 2009). Such neighbor effects are mediated
by direct (e.g., competition and volatile communication) and indi-
rect (e.g., herbivore and pollinator movements) interactions that
modulate complex traits throughout a plant life cycle, including
growth (Subrahmaniam et al. 2018), defense (Schuman et al. 2015;
Sato 2018; Tamura et al. 2020), and reproduction (Underwood
et al. 2020). Moreover, increasing evidence suggests that plant–
plant interactions within a species may increase population bio-
mass and pest resistance (Zeller et al. 2012; Wuest and Niklaus
2018; Yang et al. 2019). However, it remains unclear how to best
analyze the quantitative trait locus (QTL) underlying key traits
that lead to plant neighborhood effects.

QTL mapping is a well-established approach for the analy-
sis of loci responsible for complex traits (Broman et al. 2003,

2019; Broman and Sen 2009). Although genome-wide associa-
tion studies (GWAS) have now been developed, there are sev-
eral limitations associated with this approach, including the
occurrence of false positive signals due to the population
structure (Hayes 2013), as well as the omission of rare small-
effect variants in a sample population (Korte and Farlow
2013). While recombination events are limited in experimen-
tal crosses, QTL mapping can compensate for GWAS disad-
vantages in population structure and rare variant detection
among unrelated individuals. Once GWAS identifies a pair of
target accessions, its biparental population is then subject to
QTL mapping (Sonah et al. 2015; Crowell et al. 2016; Han et al.
2018). For example, the joint approach using GWAS and QTL
mapping has thus far enabled plant researchers to validate
loci controlling traits of ecological or agricultural interest in
Arabidopsis thaliana (Brachi et al. 2010), maize (Crowell et al.
2016), soya bean (Sonah et al. 2015), and peppers (Han et al.
2018). Therefore, QTL mapping provides a complementary
analysis for GWAS to further dissect complex traits in plant
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genetics and breeding (Sonah et al. 2015; Rishmawi et al. 2017;
Han et al. 2018; Marchadier et al. 2019).

Regarding QTL mapping of plant neighborhood effects, Wuest
and Niklaus (2018) have recently conducted mixed planting stud-
ies with various combinations of near-isogenic lines in A. thaliana
and uncovered that a single QTL increased the biomass when a
pair of lines having different alleles at the QTL marker were culti-
vated together. Although the first discovery of neighbor QTL is in-
triguing, it is not yet possible to detect neighbor QTLs in the
absence of exhaustive pairwise experiments comprising combi-
nations of many accessions. In this context, our previous study
proposed “neighbor GWAS” that screened neighbor effects from
random spatial arrangements of multiple genotypes (Sato et al.
2021). The core concept of neighbor GWAS was to consider the
Ising model of statistical physics as an inverse problem of single-
marker regression, thereby estimating the effects of neighbor ge-
notypic identity on a trait. However, QTL mapping of neighbor
effects is more complicated than single-marker analysis as QTL
studies employ the maximum likelihood method for interval
mapping between flanking markers (Haley and Knott 1992;
Jansen 1993; Broman and Sen 2009). Such interval mapping
requires a stepwise inference from genotype imputation to phe-
notype prediction. First, conditional genotype probabilities are
obtained from the observed marker genotypes and recombina-
tion fractions between flanking markers. Second, phenotypes are
inferred using the conditional genotype probabilities and marker
effects (Haley and Knott 1992). To adopt interval mapping for
neighbor effects, it is necessary to define the effects of neighbor
genotypic identity on a quantitative trait.

In this study, we developed an interval mapping method for
detecting QTLs that led to neighbor effects. The primary aim of
the developed method was to detect such neighbor QTLs from
spatial variation in phenotypes rather than partialing out the
spatial heterogeneity as a nuisance. The proposed method,
“neighbor QTL,” was applied to simulated data and recombinant
inbred lines (RILs) of A. thaliana. Furthermore, the new QTL
method was built into an R package.

Materials and methods
Model
First, we developed a basic regression model and subsequently
defined QTL effects for interval mapping. To combine neighbor
effects and a linear model, we focused on a well-known statistical
physics model, Ising model (McCoy and Maillard 2012). The Ising
model defines the magnetic energy arising from physical interac-
tions among neighboring magnets. By analogy, we regarded an
individual as a magnet, genotypes as dipoles, and a trait as en-
ergy. Given the observed traits (or energy), we estimated the in-
teraction coefficients of the Ising model to infer neighbor effects.

Joint regression for self and neighbor effects
To incorporate neighbor effects into linear regression, we devel-
oped a joint model following the single-marker regression of
neighbor GWAS (Sato et al. 2021). We considered a situation
where a number of inbred lines occupied finite sites in a two-
dimensional space and assumed that an individual is represented
by a magnet, whereby two homozygotes at each marker, AA or
BB, correspond to the north or south dipole (Figure 1). We defined
xi or xj as the genotype at a focal marker for i-th focal individual
or j-th neighbor, respectively, where xiðjÞ 2fAA, BBg ¼ f1, �1g. We
then used multiple regression to model the effects of self-

genotype and neighbor genotypic identity on a trait of i-th indi-
vidual yi as

yi ¼ b0 þ b1xi þ
b2

L

XL

< i;j>

xix
ðsÞ
j þ ei; (1)

where b0, b1, and b2 indicated intercept, self-genotype effects, and
neighbor effects, respectively. The residual for a trait value of the
focal individual i was denoted as ei. The neighbor genotypic iden-
tity was represented by

PL
< i;j> xix

ðsÞ
j , which indicated the sum of

products for all combinations between the i-th focal individual
and the j-th neighbor at the s-th scale of spatial distance from the
focal individual i (Figure 1). The total number of neighbors L var-
ied in response to the spatial scale s to be referred. The coefficient
of neighbor effects b2 was scaled by L. If two individuals shared
the same genotype at a given locus, the product xixj became posi-
tive, whereas the product xixj became negative if two individuals
had different genotypes. Thus, the effects of neighbor genotypic
identity on a trait yi was dependent on the neighbor effect coeffi-
cient b2 and the number of two genotypes in a neighborhood.

Notably, the multiple regression model Equation (1) was posed
as an inverse problem of the Ising model. When summing yi for
all individuals and substituting coefficients as E ¼ �b2=L; H ¼
�b1 and �I ¼

P
ðyi � b0Þ, Equation (1) could be transformed into

the total magnetic energy of a two-dimensional Ising model as
�I ¼ �E

PL
< i;j> xix

ðsÞ
j � H

P
xi (McCoy and Maillard 2012). In such a

case, the neighbor effect b2 and self-genotype effect b1 could be
interpreted as the interaction coefficient E and external magnetic
force H, respectively.

QTL effects of neighbor genotypic identity
To convert a linear regression into a QTL model, we defined QTL
effects for self-genotypes and neighbor genotypic identity. With
heterozygosity incorporated, we redefined xi and xj by a marker
genotype for an i-th focal individual and j-th neighbor as gi and gj,
respectively. Self-QTL effects expected from these genotypes
were denoted as giðjÞ 2fAA, AB, BBg ¼ fa1, d1, �a1g, where a1 and
d1 indicated additive and dominance deviation for self-QTL
effects, respectively. We then assumed that neighbor QTL effects
were not prominent until the two alleles interacted at an

Figure 1 Assumption regarding neighbor effects in a two-dimensional
space. A white or black point indicates an individual having AA or BB
genotype, respectively. A gray circle represents an effective area of
neighbor effects at the spatial distance s from the focal individual i.
Neighbor effects then occur depending on genotype similarity between
the focal individual i and the j-th neighbors within the spatial distance s.
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individual level and accordingly defined different coefficients of
the additive and dominance deviation a2 and d2 for neighbor QTL
effects. The neighbor QTL effects caused by neighbor genotypic
identity between the individual i and j were defined by its product
among nine genotype combinations (Table 1). Given the QTL
effects of self-genotype and neighbor genotypic identity, we
decomposed a trait of i-th individual yi as,

yi ¼ y þ gi þ
PL

< i;j> gig
ðsÞ
j

L
þ ei; (2)

where y and ei indicate a population mean of traits and a residual
for the focal individual i, respectively. If QTL effects were
completely additive (i.e., a1 ¼ a2 ¼ 1 and d1 ¼ d2 ¼ 0), the QTL
model Equation (2) had the same structure as the linear regres-
sion (Equation 1). In such an additive model, the coefficients b1

and 6
ffiffiffiffiffi
b2

p
represent additive QTL effects. Notably, the 6

ffiffiffiffiffi
b2

p
sign

indicates positive or negative effects of sharing the same alleles
on a trait.

Interval mapping for conditional neighbor genotypic identity
Finally, we extended the single-marker QTL model Equation (2) to
interval mapping. In particular, we modified the Haley-Knott re-
gression that approximated the maximum likelihood method by
a simple regression (Haley and Knott 1992; Broman and Sen
2009). The proposed algorithm consisted of three steps: (1)
obtaining conditional self-genotype probabilities, (2) calculating
conditional neighbor genotypic identity from the conditional self-
genotype probabilities, and (3) regressing trait values on the con-
ditional self-genotype probabilities and neighbor genotypic iden-
tity.

The first step to obtain conditional self-genotype probabilities
was the same as that of standard QTL mapping. Let piðjÞ be the
probability for the focal individual i or neighbor j to have a certain
genotype at an interval pseudo-marker. We defined the condi-
tional self-genotype probability for the individual i as pi ¼ Pr(gi ¼
fAA, AB, BBgjM) and obtained pi from the number of observed
markers � n individuals matrix M and its recombination fraction
following hidden Markov models (Lander and Green 1987;
Broman et al. 2003). Based on the products of the conditional self-
genotype probabilities, we further calculated the conditional
neighbor genotypic identity

PL
< i;j> pip

ðsÞ
j =L. We then defined gigj

as the combination of marker genotypes generating neighbor
QTL effects; and pipj as the expected probability for two geno-
types to interact. The expected neighbor QTL combination was
accordingly designated as pipjgigj. These probabilities were
summed for all possible combinations of the genotypes asP3

v

P3
w½ðpi;vpðsÞj;wÞ � ðgi;vgðsÞj;wÞ�, where the subscript v and w indicate

the three genotype states AA, AB, and BB.
Similar to Haley-Knott regression, we finally estimated the

QTL effects gi and gigj by regressing the trait values yi on pi andPL
< i;j> pip

ðsÞ
j =L, respectively. The additive and dominance

deviations for the self-QTL effects a1 and d1 were considered as
average differences in trait values among AA, AB, or BB geno-
types, such that a1 ¼ ðyAA � yBBÞ=2 and d1 ¼ yAB � ðyAA þ yBBÞ=2
(Broman and Sen 2009). In such a case, the regression coefficient
b1 gave 2â1 when -1, 0, and 1 dummy groups were assigned for
the AA, AB, and BB genotypes, respectively, or gave d̂1 when 0, 1,
and 0 were assigned for the AA, AB, and BB genotypes, respec-
tively (Broman et al. 2003).

For neighbor QTL effects, the additive and dominance devia-
tion a2 and d2 were also considered as the average differences in
trait values among the nine possible combinations (Table 1) as
a2 ¼ ½ðyAA=AA þ yBB=BBÞ � ðyAA=BB þ yBB=AAÞ�=4 and d2 ¼ yAB=AB � ðyAB=AA

þyAB=BB þ yAA=AB þ yBB=ABÞ=4� ðyAA=AA þ yBB=BB þ yAA=BB þ yBB=AAÞ=4. In
this case, trait values yi could be fitted by a quadratic regression
on the group of nine genotype combinations (Figure 2). Suppose
that yi ¼ b0 þ b1pi þ b2ð

PL
< i;j> pip

ðsÞ
j =LÞ þ b2

3ð
PL

< i;j> pip
ðsÞ
j =LÞ2 repre-

sents such a quadratic regression, where the linear or quadratic
coefficient b2 or b2

3 provides estimates for the additive or domi-
nance deviation 62â2

2 or d̂
2
2, respectively. Practically, we could es-

timate a2 and d2 by the quadratic regression of the trait values yi

on the conditional neighbor genotypic identity
PL

< i;j> pip
ðsÞ
j =L,

with nine genotype combinations encoded as AA/AA, BB/BB, AA/
AB, AB/AA, AB/AB, AB/BB, BB/AB, AA/BB, BB/AA ¼ f1, 1, 0.25, 0.25,
0.0, �0.25, �0.25, �1, �1g. The estimated sign of 6a2

2 inferred pos-
itive or negative effects of sharing same alleles on a trait.

Based on the linear and quadratic regression, we decomposed
a trait yi into self and neighbor QTL effects. Notably, the self and
neighbor QTL effects are inevitably correlated because the self-
QTL component gi appears in the second and third term in
Equation (2). Specifically, when the effective scale s was large,
less spatial variation occurred in the neighbor condition

P
gðsÞj ,

and stronger correlations arose between self and neighbor QTL
effects. If a1 and a2 are simultaneously estimated by a one-step
regression, there is a risk that the neighbor QTL effects a2 may be
overrepresented when fitted to correlated components. In addi-
tion, given that this study aimed to test neighbor effects, it was
important to avoid type I errors against neighbor QTL effects.
Thus, neighbor QTL effects were tested in comparison with the
residuals of self-QTL effects. We estimated a1, d1, a2, and d2 by fol-
lowing the six-step iterations.

1) Estimate a1 by a linear regression on self-genotype probabil-
ities, with �1, 0, and 1 encoded for the AA, AB, and BB geno-
types, respectively.

2) Estimate d1 by a linear regression on self-genotype probabil-
ities, with 0, 1, and 0 encoded for the AA, AB, and BB geno-
types, respectively.

3) Calculate self-QTL effects with â1 and d̂1.
4) Include the self-QTL effect as a covariate at a focal marker.
5) Estimate 6a2 and d2 by a quadratic regression on the condi-

tional neighbor genotypic identity, with [�1, 1] dummy
groups assigned for nine genotype combinations.

6) Calculate joint QTL effects with â1; d̂1; â2 and d̂2.

Based on â1; â2; d̂1 and d̂2, we inferred ŷi and derived loge -
likelihood (LL) using model deviance. LOD score for the self or
neighbor QTL effects were designated as LODself ¼ log10

[exp(LLself � LLnull)] or LODnei ¼ log10 [exp(LLnei � LLself)], which
could be obtained in steps 3 and 6, respectively.

When there were only two genotypes, the quadratic regression
was replaced by a linear regression to estimate the additive
neighbor QTL effects. For the case of inbred lines lacking AB het-
erozygotes, we estimated the additive deviation a2 by a linear

Table 1 QTL effects expected by genotypic identity between the
individuals i and j with AA, AB, or BB genotypes

gi/gj AA AB BB

AA a2
2 a2d2 �a2

2
AB a2d2 d2

2 �a2d2

BB �a2
2 �a2d2 a2

2

The additive and dominance deviation for the neighbor QTL effects is denoted
by a2 and d2, respectively.
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regression of trait values yi on the conditional neighbor genotypic
identity

PL
< i;j> pip

ðsÞ
j =L, with the 1 and �1 dummy groups assigned

for the AA and BB genotypes, respectively. In the case of back-
cross lines lacking BB homozygotes, the additive deviation corre-
sponded to the dominance deviation so that d2 ¼ �a2. The
additive deviation a2 could be estimated by a linear regression
with the AA and AB genotypes encoded as -1 and 0, respectively.
These two linear models were equivalent as both the inbred and
backcross lines had two genotypes with additive effects.

Variation partitioning with the QTL model
Prior to the genome scan, we estimated the effective spatial scale
s by calculating the proportion of phenotypic variation explained
(PVE) by neighbor effects. Incorporating two random effects into
a linear mixed model, we could partition the phenotypic variation
into PVE by polygenic self-effects, polygenic neighbor effects, and
residuals (Sato et al. 2021). According to previous studies
(Henderson et al. 1959; Kang et al. 2008), the linear mixed model
can be expressed as:

y ¼ Xbþ Zuþ e ; (3)

where y indicates a phenotype vector as yi 2 y; Xb indicates fixed
effects with a matrix including a unit vector and all covariates X
and a coefficient vector b; Zu indicates random effects with ui 2 u
and a design matrix Z; and e indicates residuals where ei 2 e. The
random effects and residuals were further decomposed as Var(u)
¼ r2

1K1 þ r2
2K2 and Var(e) ¼ r2

e I, where the n� n individual similar-
ity matrix for self-genotype or neighbor identity was scaled by
the number of markers q as K1 ¼ PT

1P1=ðq� 1Þ or
K2 ¼ PT

2P2=ðq� 1Þ, respectively. Given that one of two alleles is
similar between heterozygotes and homozygotes, here, we de-
fined the additive polygenic effects for self-QTLs as gi 2fAA, AB,
BBg ¼ f�1, 0, 1g and for neighbor QTLs as gigj 2fAA/AA, BB/BB,
AA/AB, AB/AA, AB/AB, AB/BB, BB/AB, AA/BB, BB/AAg ¼ f1, 1, 0.5,
0.5, 0.0, �0.5, �0.5, �1, �1g. In these cases, the q� n matrix P1 in-
cluded expected self-genotype values as elements P1 ¼ ð

P3
v pigiÞ,

and K1 represented a kinship matrix that was calculated from all

the pseudo-markers (Broman et al. 2019). Similarly, the q� n ma-
trix P2 included the conditional neighbor genotypic identities as
elements P2 ¼ ð

PL
< i;j>

P3
v

P3
w½ðpi;vpðsÞj;wÞ � ðgig

ðsÞ
j Þ�Þ, and K2 repre-

sented a genome-wide structure of conditional neighbor geno-
typic identity. Based on the three variance component
parameters, we calculated PVE by polygenic self or neighbor
effects as PVEself ¼ r2

1=ðr2
1 þ r2

2 þ r2
e Þ or PVEnei ¼ r2

2=ðr2
1 þ r2

2 þ r2
e Þ.

In addition, a marker heritability that represented additive ge-
netic variance was defined as h2 ¼ r2

1=ðr2
1 þ r2

e Þ when r2
2 and s

were set at 0 in Equation (3).
Using the linear mixed model (Equation 3), our previous simu-

lations revealed that increasing patterns of PVEnei from s¼ 0 to a
large s (Sato et al. 2021) could inform the effective spatial scale of
neighbor effects. If the effective range was narrow, PVEnei

approached a plateau at a small value of s. In contrast, PVEnei lin-
early increased with s if the effective range was broad. To gener-
alize these results for a continuous two-dimensional space, here
we introduced DPVE metric as differences in PVE from s to sþ 1
such that DPVE ¼ PVEnei,s þ 1 - PVEnei,s. Using such differential
metrics, we quantified how PVEnei approached to a plateau across
s as follows:

1) Categorize spatial scales as s 2 S based on the percentiles
for pairwise Euclidean distance between individuals.

2) Calculate PVEnei from s ¼ 1 to the maximum elements of S.
3) Calculate DPVEnei and determine s ¼ argmaxDPVEnei

The proposed algorithm using a differential PVE is referred to
as “DPVE method” hereafter.

An R package, “rNeighborQTL”
In addition, the neighbor QTL method was built into an R pack-
age, “rNeighborQTL.” The rNeighborQTL inherited input objects
from the R/qtl package (Broman et al. 2003), allowing us to save
phenotype and genotype data as common “cross” objects.
Because of the stepwise testing, the self-QTL effects yielded the
same results as standard QTL mapping. For the DPVE method,
the mixed models Equation (3) were solved using the algorithm of
average information restricted maximum likelihood (AI-REML)
(Gilmour et al. 1995) implemented in the Gaston package (Perdry
and Dandine-Roulland 2020). An additional but necessary input
file was a spatial map describing the positions of individuals at
the x- and y-axes. The rNeighborQTL package is available via the
Comprehensive R Archive Network (CRAN) at https://cran.r-proj
ect.org/package¼rNeighborQTL.

The rNeighborQTL package included several options to ana-
lyze a variety of QTL data. Instead of linear (mixed) models
(Equations 1 and 3), logistic (mixed) models could also be selected
to handle a binary phenotype (Chen et al. 2016; Faraway 2016).
Because the logistic mixed model did not provide r̂2

e (Chen et al.
2016; Perdry and Dandine-Roulland 2020), PVEnei was substituted
by the ratio of phenotypic variation explained (RVE) to polygenic
neighbor effects as RVEnei ¼ r̂2

2=r̂
2
1 when a binary trait was sub-

ject to the DPVE method. In addition, the neighbor QTL allowed
additional covariates when conducting a genome scan. This op-
tion enabled composite interval mapping (Jansen 1993) if genetic
markers other than a focal locus were considered covariates.
When a significant marker was detected by the single-QTL analy-
sis, it was also possible to test two-way interactions, namely epis-
tasis, between the neighbor QTL effects across a genome.

Simulation
Furthermore, we performed a benchmark test using simulated
data on F2 and backcross lines. With a random spatial map

Figure 2 A scheme explaining approximation of neighbor QTL effects by
quadratic regression. Trait values yi are regressed on nine possible
combinations of genotype identity between a focal individual i and its
neighbor j (Table 1). The additive or dominance deviation a or d is
represented by the linear or quadratic term, respectively. A negative
linear coefficient indicates that sharing of the same alleles (i.e., AA/AA or
BB/BB combinations) had negative effects on traits.
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generated, we simulated neighbor effects based on “fake.f2” and

“fake.bc” autosome genotypes implemented in the R/qtl package

(Broman et al. 2003). The spatial positions were sampled from a

uniform distribution Unif(1, 100) across a continuous two-

dimensional space. We estimated a1 for self-phenotypes of

“fake.f2” and “fake.bc” data after the trait values were scaled to

have a mean of zero and variance of 1 and assigned maxâ1 to a

randomly selected marker. In contrast to the major-effect

marker, small coefficients, i.e., 10�3 �max â1, were assigned to

the other markers to simulate polygenic effects. Additive

(a2 ¼max â1 and d2 ¼ 0:25�max â1), dominant

(a2 ¼ d2 ¼max â1), and overdominant (a2 ¼max â1 and

d2 ¼ 1:25�max â1) scenarios were analyzed for the F2 lines,

while only additive scenario (a2 ¼maxâ1 and d2 ¼ �max â1) was

applicable for the backcross lines. In total, 30 traits were simu-

lated for true effective distances given at 10-th to 50-th percen-

tiles of pairwise Euclidean distance among individuals. The trait

values of simulated neighbor effects were added to the self-

phenotypes of “fake.f2” or “fake.bc” data set, with 50% of pheno-

typic variation being attributable to the neighbor effects. The

conditional self-genotype probabilities and conditional neighbor

genotypic identity at each marker were standardized to have

mean of zero and variance of 1. We then applied the DPVE

method and a genome scan for the joint traits and calculated

LODnei at s ¼ argmaxDPVEnei to evaluate the power to detect

neighbor effects.
To further examine the model performance, we compared the

proportion of PVE by a model including polygenic self-effects

alone and a joint model including both the polygenic self and

neighbor effects. In addition, we calculated the marker heritabil-

ity h2 ¼ r2
1=ðr2

1 þ r2
e Þ by setting r2

2 and s at 0 in Equation (3).

Moreover, the total PVE by the full model was defined by PVEself þ
PVEnei ¼ ðr2

1 þ r2
2Þ=ðr2

1 þ r2
2 þ r2

e Þ. The PVE unexplained by the her-

itability but explained by the full model, namely (PVEself þ PVEnei)

�h2, could be considered a net contribution of polygenic neighbor

effects to phenotypic variation. In addition, to test whether

neighbor phenotypes rather than neighbor genotypes explained

greater phenotypic variation, we ran the same simulation, with

the neighbor genotype gðsÞj replaced by the neighbor phenotype

yðsÞj in Equation (3). To assess false positive detection of neighbor

genotypic effects due to neighbor phenotypic effects, we also sim-

ulated traits involving the neighbor phenotypic effects, the trait

values of which were added to the self-phenotypes of “fake.f2” or

“fake.bc” data set, with 50% of phenotypic variation attributed to

the neighbor phenotypic effects. The simulated traits were then

fitted by the neighbor QTL model (i.e., model incorporating neigh-

bor genetic effects).

Data
To apply the neighbor QTL on real data, we conducted a pilot

QTL experiment using the yellow-striped flea beetle Phyllotreta

striolata and RILs of A. thaliana (Supplementary Figure S1A).

Adults of flea beetles access host plants by jumping like a “flea.”

The adults have a small mouthpart and make small holes on

leaves when eating. The number of leaf holes can be used as an

indicator of herbivory by flea beetles. These flea beetles are

known to prefer glabrous A. thaliana to hairy accessions (Sato

et al. 2019). We selected RILs derived from hairy and glabrous

accessions in this study to observe large phenotypic variation in

leaf holes.

Plants and insects
We used 130 accessions, including parental lines and RILs be-
tween Col(gl1) and Kas-1 accession (Wilson et al. 2001). Col(gl1)
plants produce no trichomes, while Kas has sparse trichomes on
leaves and stems. The RILs are known to vary in the trichome
production, disease resistance (Wilson et al. 2001), and flowering
time (Li et al. 2006). We used the marker data based on simple se-
quence length polymorphism and cleaved amplified polymorphic
sequences (Wilson et al. 2001). Although SNP markers are avail-
able from Li et al. (2006), Li et al. (2006) analyzed 96 out of the 130
accessions. Furthermore, subsampling of individuals or acces-
sions proved more problematic for neighbor QTL than for stan-
dard QTL mapping, as neighbor effects, if any, caused
nonindependence of individual data points, and thus, the real in-
fluence of neighboring plants on observed traits could not be
eliminated from an experiment by subsampling. Therefore, to as-
sess interval mapping capability, we applied the sparse marker
data provided by Wilson et al. (2001) on the complete set of RIL
accessions. The set of RILs was obtained through the Arabidopsis
Biological Resource Center (Stock ID, CS84999: https://abrc.osu.
edu/).

Flea beetles were maintained under a long-day condition
(16:8 h light: dark cycles with a 22

�
C constant air temperature) in

an environmental chamber (Biotron LH-241PFD-SP, NK system,
Osaka, Japan). To establish the experimental population, we col-
lected ca. 200 adults from Brassica cultivars grown in the field
within Otsu City, Shiga Prefecture, Japan (35

�
010N 135

�
510E) dur-

ing November 2018 and May 2019. Adults of P. striolata consume
shoots and especially prefer to young glabrous leaves, whereas
larvae consume below-ground tissue of Brassica plants; therefore,
we reared adults and larvae on leaves and swollen hypocotyls, re-
spectively. Young leaves of Boc choy Brassica rapa var. chinensis or
Chinese cabbage B. rapa var. pekinensis were supplied for the
adults. The larvae were allowed to feed on swollen hypocotyls of
the radish Raphanus sativus var. longipinnatus or the turnip B. rapa
subsp. rapa buried in moisten vermiculite. Adult females laid
eggs in the moisten vermiculite, and it took a month (28–32 days)
for eggs to become adults.

Experimental procedure
To investigate neighbor effects in herbivory, we allowed adult
beetles to feed on RIL seedlings grown in a plastic cell tray. Three
seeds for each accession were sown on each compartment of the
cell tray (13� 10 cells composed of 20� 20 mm2 compartment)
with the accessions randomized. The seeds were acclimated un-
der a constant dark condition with 4

�
C for 7 days, and then

allowed to germinate under a long-day condition (16:8 h light:
dark cycles with a 20

�
C constant air temperature). The seedlings

were grown under the long-day condition for 24 days, with 2000-
fold diluted liquid fertilizer (N:P:K¼ 6:10:5; Hyponex, Hyponex
Japan, Osaka) supplied once. On day 14 post-germination, the
seedlings were thinned out to leave one seedling per compart-
ment. Prior to the feeding experiment, we recorded the presence
or absence of leaf trichomes and the occurrence of bolting by di-
rect observation and determined the rosette diameter (mm) by
analyzing seedling images using the Image J software (Abràmoff
et al. 2004). The cell tray was enclosed by a white mesh cage
(length 29.2 cm � width 41.0 cm � height 27.0 cm: Supplementary
Figure S1B). Thereafter, 30 adult beetles were released into the
cage and allowed to feed on plants for 72 h. We counted leaf holes
as a measure of herbivory for each plant as flea beetles left small
holes when they fed on leaves (Supplementary Figure S1C). The
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final sample size was 126 individuals; out of 130 accessions, 4
accessions (CS84877, CS84873, CS84950, and CS84894) were not
germinated, CS84898 lacked genotype data, and CS84958 had two
replicates of individuals.

Data analysis
We used R version 3.6.0 (R Core Team 2019) for all statistical
analyses. A genetic map for the Col � Kas RILs was estimated
using the est.map() function in the R/qtl package (Broman et al.
2003). Self-genotype probabilities were calculated using the
calc.genoprob() function implemented in the R/qtl package
(Broman et al. 2003). The number of leaf holes was log-
transformed and analyzed using linear models. The presence
of trichomes and bolting was analyzed using logistic models.
When analyzing the number of leaf holes, we incorporated the
presence or absence of bolting, the rosette diameter, and the
edge (or not) of the cell tray into covariates. The neighbor QTL
was performed using the rNeighborQTL package developed in
this study. A genome-wide significance level was determined
by empirical percentiles of the maximum LOD score among 999
permuted traits. We considered p< 0.1 and p< 0.05 a suggestive
and significant level, respectively. In addition, we set an arbi-
trary threshold at LOD score of 1.5 when discussing the
results. To determine whether neighbor phenotypic effects
more accurately explained the leaf holes compared to neighbor
genotypic effects, we calculated PVE by incorporating the
neighbor phenotype yðsÞj instead of neighbor genotype gðsÞj in
Equation (3).

Data availability
R source codes and Arabidopsis RIL data set are available in the
rNeighborQTL package (https://cran.r-project.org/package¼
rNeighborQTL). The Arabidopsis RIL data include both the marker
and phenotype information. Detailed usage of each function and
argument is described in the documentation of the rNeighborQTL
package. Simulation examples and the analysis of Arabidopsis
data set are shown in the vignette of the rNeighborQTL package.
Photographs of study plants and insects are shown in
Supplementary Figure S1. Additional results of the simulation
are shown in Supplementary Figure S2. Self-QTL results of
Arabidopsis RIL data analyzed by the R/qtl package are available
in Supplementary Figure S3 as well as in the vignette of the
rNeighborQTL package. Additional epistasis analysis of neighbor
QTL effects on the leaf holes is shown in Supplementary Figure
S4. All the supplementary figures are available at figshare:
https://doi.org/10.25387/g3.13395617

Results and discussion
Simulation using F2 and backcross lines
We simulated neighbor effects based on “fake.f2” and “fake.bc”
data implemented in the R/qtl package (Broman et al. 2003). The
maximum additive deviation of self-QTL effects, maxâ1, was 0.56
and 0.28 for F2 and backcross lines, respectively. These values
were assigned for neighbor QTL effects to achieve a similar signal
strength between self and neighbor effects, while minor effects
were allocated to other loci. Considering the polygenic self and
neighbor effects as random effects, we applied the DPVE method
for simulated traits. The estimated distance given by
s ¼ argmaxDPVE increased as the true distance increased
(Figure 3), indicating that the DPVE method was effective. Even
when neighbor phenotypes were incorporated instead of neigh-
bor genotypes in the model fitting, PVEnei did not increase but

decreased in all the four scenarios (mean of the difference in
PVEnei ¼ �0.4 for the additive scenario, �0.20 for the dominant
scenario, �0.19 for the overdominant scenario, and �0.46 for the
backcross lines among 30 iterations from 10-th to 50-th percen-
tiles of the spatial distance class). Incorporating neighbor pheno-
types instead of genotypes during the simulation, we applied
neighbor QTL to simulated traits involving neighbor phenotypic
effects. However, the mean LOD score of a major-effect marker
did not exceed 1.60 in any scenario; hence, the neighbor pheno-
typic effects were unlikely to result in false positive detection of
neighbor QTL effects.

When the effective distance of neighbor effects was limited,
such short-range neighbor effects were well detected using DPVE
method and the quadratic approximation (median LODnei > 4 at
the 10-th percentile of pairwise Euclidean distance: Figure 3).
Although the power to detect long-range neighbor effects was
lowered, the LOD score was still larger than the Bonferroni
threshold up to 40-th percentiles of the distance class (median
LODnei > 4: Figure 3). These results indicated that short-range
neighbor effects could be detected in any scenario, although it
was relatively difficult to detect long-range effects. For backcross
lines, both short- and long-range neighbor effects were well
detected (median LODnei > 4 for all s: Figure 3D). The backcross
lines had two genotypes with the additive deviation alone and
were well fitted using linear approximation (Figure 3D), whereas
the additive traits for F2 lines were less likely fitted using the qua-
dratic model assuming three genotypes with additive and domi-
nance deviation (Figure 3A). Given the model structure
underlying F2 lines, it is plausible that the quadratic term was
unnecessary for the additive F2 traits, and it decreased the power
to detect neighbor effects.

Linear mixed models including both polygenic self and neigh-
bor effects accounted for a greater proportion of phenotypic vari-
ation than the marker heritability that considered polygenic self-
effects alone (lower panels in Figure 3). However, the net contri-
bution of polygenic neighbor effects to phenotypic variation,
namely (PVEself þ PVEnei) �h2, decreased as the true distance of
neighbor effects became larger. In contrast, the marker heritabil-
ity of simulated traits increased as the true distance of simulated
neighbor effects became larger (Supplementary Figure S2). These
results were likely due to the correlation between self and neigh-
bor QTL effects, given that the self-QTL component gi appeared
in both the second and third term in Equation (2). Such a correla-
tion became stronger when the effective space broadened and
less variation in neighborhood conditions among individuals
remained. The loss of PVE by neighbor effects made it difficult to
detect long-range neighbor effects as observed in the LOD score
simulation (middle panels in Figure 3). To anticipate the underly-
ing correlation structure, we should note that (1) the significance
of neighbor QTL effects should be tested using an iterative regres-
sion in comparison with the self-QTL model, and (2) PVEnei can be
useful for the DPVE method but does not indicate the model per-
formance over the self-QTL model.

Self-QTL effects in Col 3 Kas RILs
The observed number of leaf holes ranged from 0 to 38 with a
median of 4 (Supplementary Figure S1D). The total variation in
the number of leaf holes was explained at 5% by the trichome
production; 2% by bolting; 10% by the rosette diameter; and 22%
by the edge effects (Analysis-of-Variance, F ¼ 9.1, 3.7, 20.7, and
43.4; p ¼ 0.003, 0.06, 10�4, and 10�8, respectively). With the poly-
genic self-effects considered a single random effect, a linear
mixed model estimated the marker heritability as 5.2% for the
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leaf holes, though it was not significant (Likelihood ratio test,
v2

1 ¼ 1:85; p ¼ 0:17).
To scan self-QTL effects, we conducted standard QTL mapping

of the trichome production, the number of leaf holes, and bolting

(Figure 4; Table 2). For self-QTL effects on the trichome produc-
tion, we detected a strong peak near the GLABRA1 locus (> 20
LODself score: Figure 4B). Considering the rosette diameter and
bolting covariates, we observed a suggestive (0:05 < p < 0:1) but

the largest self-QTL effect on the leaf holes at the GLABRA1 locus
(LODself ¼ 1.97: Figure 4C). For the bolting, we observed the largest
significant peak on the bottom of chromosome 1 (> 4 LODself),
and the second largest and suggestive (0:05 < p < 0:1) peak on

the top of chromosome 4 (LODself ¼ 1.92: Figure 4D). The self-QTL
effects were also analyzed using the R/qtl package. Neighbor QTL
yielded the same results regarding the self-QTL effects as the
Haley-Knott regression implemented in the scanone() function

(Supplementary Figure S3).
Several studies reported the same QTLs or a particular gene

function for the self-effects on trichomes, defense, and flowering.
Remarkably, GLABRA1 gene on chromosome 3 is known to en-
code a myb transcription factor regulating leaf trichome develop-

ments (Ishida et al. 2008). Our previous study showed that gl1
mutants were more likely attacked by the flea beetles than hairy
wild-types in A. thaliana (Sato et al. 2019). Other studies on

Brassica cultivars also documented that leaf trichomes deterred

herbivory by flea beetles (Soroka et al. 2011; Alahakoon et al.

2016). The present finding of the self-QTL effects agrees with the

previous evidence for roles of plant trichomes in resistance to

flea beetles. Furthermore, two self-bolting QTLs on chromosomes

1 and 4 were located near flowering time QTLs in Col � Kas RILs

(Li et al. 2006). Thus, our pilot experiment supports previous evi-

dence for the loci responsible for flowering, trichome production,

and anti-herbivore defense.

Neighbor QTL effects in Col 3 Kas RILs
To estimate the effective distance of neighbor effects, we applied

DPVE method with every 10-th percentile categories for pairwise

Euclidean distance (Figure 5). For the number of leaf holes, the

DPVEnei was peaked at a 7.81 distance scale from a focal individ-

ual (Figure 5A), covering almost all the experimental arena from

the center plant. The adults of flea beetles jump and access host

plants like a flea. Our DPVE method likely reflected such moving

behaviors of flea beetles, suggesting that the experimental cage

used in this pilot study was too small for flea beetles to mediate

neighbor effects among plant individuals. At the estimated dis-

tance, 6.3% of total variation in leaf holes was attributable to

PVEnei (Figure 5A). The sum of PVEself and PVEnei explained 6.5%

of the total variation, although its additional 1.3% fraction com-

pared to 5.2% of the marker heritability was not significant

(Likelihood ratio test, v2
1 ¼ 0:23; p ¼ 0:62). Even when neighbor

Figure 3 Benchmark test using simulated F2 and backcross data sets. Upper panels show the distance estimated by DPVE method. Middle panels show
LODnei of a major-effect marker at the estimated distance. Horizontal solid lines indicate an LOD threshold at p¼ 0.05 after Bonferroni correction.
Lower panels show the net proportion of PVE not by the marker heritability h2 but by polygenic neighbor effects. Horizontal dashed lines indicate no
improvement by the full model that includes both polygenic self and neighbor effects. The x-axis corresponds to 10-th to 50-th percentiles of pairwise
Euclidean distance, and 30 traits were simulated for each distance class. Boxplots represent median by a center line; upper and lower quartiles by box
limits; and 1.5 � interquartile range by whiskers.
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phenotypes were incorporated in place of neighbor genotypes,
the PVE for the number of leaf holes did not increase (PVEnei ¼
0.052, the sum of PVEself and PVEnei ¼ 0.052). Meanwhile, the
DPVE became the largest at the second nearest scale for the bolt-
ing and explained one-third of variation compared to the self-
QTL effects (RVEnei ¼ 0:32 at s¼ 3.16: Figure 5B), suggesting that
the bolting was unlikely to be affected by distant neighbors. For
the trichome production, DPVE method revealed that the slight
variation can be explained using polygenic neighbor effects
(RVEnei � 0 for s from 10-th to 60-th percentiles; or models failed
to converge for s over 70-th percentiles).

A genome scan for neighbor effects was performed using the
estimated spatial distance (Figure 5; Table 2). Regarding the
neighbor QTL effects on the leaf holes, we observed a weak, but
the largest, QTL on the top of chromosome 4 at the nga8 marker
(LODnei ¼ 1.68: Figure 5A; Table 2), which was also the position of
the second largest self-bolting QTL. This neighbor QTL had no
significant epistasis as shown by <1.1 LOD scores for all the two-
way interactions between the nga8 and other markers
(Supplementary Figure S4). Neither the neighbor QTL nor
GLABRA1 locus detected above was overlapped with known self-

QTLs of powdery mildew resistance (Wilson et al. 2001), suggest-
ing independence of the herbivory QTLs on the disease resistance
loci. At the second nearest scale for bolting, we found a very
weak neighbor QTL at the R30025 marker on the chromosome 3
(LODnei ¼ 1.38: Figure 5B); however, we did not detect any neigh-
bor QTLs having an LOD score >1.5.

Ecological studies have shown that plant apparency, which
defines how easily an individual plant can be identified, drives
neighbor effects through visual crypsis against herbivores
(Hambäck et al. 2000; Castagneyrol et al. 2013; Strauss et al. 2015).
In this study, the neighbor QTL involved in the leaf holes was lo-
cated near a self-bolting QTL at the top of chromosome 4, sug-
gesting the potential importance of plant apparency in neighbor
effects in anti-herbivore defense. In addition, the positive sign of
the additive neighbor effects a2 at that marker indicated that the
number of leaf holes decreased when neighbors had different
genotypes (Table 2). This implies that the mixture of flowering
and vegetative plants may acquire population-wide resistance to
flea beetles since the effective distance of neighbor effect was
sufficiently large to encompass almost the entire experimental
arena. These results led us to hypothesize that the self-QTL

Figure 4 Genetic map and LOD scores for self-QTL effects in Col � Kas RILs. (A) Genetic map showing the locations of 26 markers among the five
chromosomes of A. thaliana. LODself score for the trichome production (B), the number of leaf holes (C), bolting (D). Colors correspond to chromosome
numbers, and dots indicate observed markers. A solid and dashed horizontal line indicates a significant (P< 0.05) and suggestive (P< 0.1) LOD threshold
with 999 permutations, respectively.

Table 2 Estimated QTL effects in Col � Kas RILs of A. thaliana

Trait Marker Chr Position (cM) 2a1 LODself 2a2
2 LODnei Distance

Trichome GL1 3 65.24 22.83 22.8 3.92 0.31 7.81
Holes GL1 3 65.24 0.21 1.97 �0.43 0.01 7.81

nga8 4 0 �0.07 0.13 2.43 1.68 7.81
Bolting nga692 1 102.0 21.04 4.15 21.95 0.66 3.16

nga8 4 0 1.05 1.92 1.54 0.15 3.16

Markers with any >1.5 LOD scores (highlighted by bold letters) are shown. Additive effects 2a1 indicate the effect size when Kas alleles are replaced by two Col
alleles, while 2a2

2 indicates the effect size of identical homozygotes over different ones. The sign of 2a2
2 indicates positive or negative effects of sharing same alleles

on a trait. The LODnei score is shown on the spatial distance at which DPVE peaks.
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underlying plant apparency might facilitate population-wide
anti-herbivore defense, called associational resistance (Hambäck
et al. 2000), through its pleiotropy on neighbor effects.

Further applicability and limitation
The theoretical advantage of the Ising model lies in its inference
of spatial arrangements that optimize total magnetic energy.

Once the self and neighbor coefficients are estimated by a
marker-based regression, these coefficients may be able to infer
which genotype distributions can minimize or maximize the
population-sum of trait values (Sato et al. 2021). In the context of
neighbor QTL, additive effects suggest that positive and negative
a2 favors clustered or mixed patterns for maximizing the sum of
trait values, respectively. However, in cases where dominance
effects and epistasis are involved, how such a complex genetic
basis affects the optimal spatial arrangement remains unex-
plored. These potential effects of genetic architecture on a
population-level outcome of neighbor effects would be of theoret-
ical as well as empirical interest for future studies.

Superior to the previous neighbor GWAS that assumes addi-
tive effects alone, the present neighbor QTL offers the flexibility
to deal with heterozygosity. While the neighbor QTL analyzes
crossed progeny, the neighbor GWAS analyzes unrelated individ-
uals with a population structure incorporated into a random ef-
fect of a linear mixed model (Sato et al. 2021). Considering the
complementary usage of GWAS and QTL mapping in plant genet-
ics (Sonah et al. 2015; Crowell et al. 2016; Han et al. 2018), the
neighbor QTL may be useful to analyze crossed progeny of inter-
acting pairs nominated by the neighbor GWAS. However, the use

of neighbor QTL is still restricted to autosomes because the sex-
dependent inheritance of neighbor effects remains unknown.

Standard QTL mapping on sex chromosomes require from one to
three degrees of freedom (Broman et al. 2006), and thus, its exten-
sion to neighbor effects may be more complex than that of self-
QTL effects. In addition, the neighbor QTL approximated the
maximum likelihood method by a quadratic regression, in which
phenotype variance was assumed to be equal among the nine
combinations among three QTL genotypes. Our simulations
revealed that the quadratic approximation could handle over-
dominance but was outperformed by linear approximation if ad-
ditive effects alone governed a trait. We should thus be aware of
statistical models behind the neighbor QTL. Practically, both the
intercross and the inbred models might be utilized if a sample
population is partially inbred.

While this study involved simulations and a laboratory experi-
ment, environmental similarity other than neighbor genotypic
identity might also shape spatial patterns of trait values in large-
scale cultivation under outdoor conditions. Such environmental
autocorrelation matters when genotype distribution and abiotic
conditions (e.g., light and soil nutrients) are clustered together in
space. Although allele frequencies are unlikely biased in QTL popu-
lations, genotypes may be clustered in a large field where complete
randomization is hard. When applying the neighbor QTL to field
data, joint modeling with a random effect of spatial autocorrela-
tion, such as SpATS (Rodrı́guez-Álvarez et al. 2018), would allow us
to distinguish neighbor QTL effects from environmental similarity.

Conclusion
The present neighbor QTL, together with the previous neighbor
GWAS (Sato et al. 2021), provides a novel tool to incorporate
neighbor effects into quantitative genetics. These methods may
provide insights into the genetic architecture underlying neighbor

Figure 5 PVE and LOD score attributed to neighbor effects on the number of leaf holes (A) or the presence of bolting (B) in Col � Kas RILs. Left:
Proportion, or ratio, of PVE by polygenic neighbor effects (PVEnei or RVEnei) plotted against the pairwise distance among individuals. A closed point
indicates the distance at which DPVE peaked. Right: LODnei score for neighbor QTL effects at the distance at which DPVE peaked. Colors correspond to
chromosome numbers, and dots indicate observed markers. A solid and dashed horizontal line indicates a significant (P< 0.05) and suggestive (P< 0.1)
LOD threshold with 999 permutations, respectively.
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effects, as exemplified by the pilot study of insect herbivory on A.
thaliana. Once the neighbor GWAS screens candidate accessions,
their crossed progeny can be inspected by the neighbor QTL. The
line of R packages, “rNeighborQTL” and “rNeighborGWAS,” help
investigate neighbor effects using a complementary set of GWAS
and QTL data.
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