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ABSTRACT

Chronic wounds represent a significant global burden, afflicting millions with debilitating complications.
Despite standard care, impaired healing persists due to factors like persistent inflammation and impaired
tissue regeneration. Mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) offer an innova-
tive regenerative medicine approach, delivering stem cell-derived therapeutic cargo in engineered
nanoscale delivery systems. This review examines pioneering bioengineering strategies to engineer MSC-
EVs into precision nanotherapeutics for chronic wounds. Emerging technologies like CRISPR gene editing,
microfluidic manufacturing, and biomimetic delivery systems are highlighted for their potential to
enhance MSC-EV targeting, optimize therapeutic cargo enrichment, and ensure consistent clinical-grade
production. However, key hurdles remain, including batch variability, rigorous safety assessment for
potential tumorigenicity, immunogenicity, and biodistribution profiling. Crucially, collaborative frame-
works harmonizing regulatory science with bioengineering and patient advocacy hold the key to
expediting global clinical translation. By overcoming these challenges, engineered MSC-EVs could
catalyze a new era of off-the-shelf regenerative therapies, restoring hope and healing for millions

afflicted by non-healing wounds.
© 2024 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative
Medicine. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/lice
nses/by-nc-nd/4.0/).

Contents
T BacKErOUNA ...ttt e e . 261
11.  The unique advantages of MSC-EVs for regenerative mediCine .............couiuiieuiuiniiiiines ceieie et iieineinennenneen...262
1.2.  Quality attributes and translational challenges of MSC-EV therapies .............uueninirinunriiiiiiin et iinenennenneen....262
2. Genomic optimization and stability of MSC-EV-based therapies for wound healing .................c.iiiiiiiin ittt iieieenn.... 263
2.1.  Engineering strategies for enhancing MSC-EV . ... ... . ittt e ettt ottt et e et e e ..., 263
2.1.1.  Genetic modification of Parent MSCS .. ... ...ttt et ettt e et ettt e e e 263
2.1.2.  Loading of therapeutic cargo iNt0 EVS . .......c.iuiniiiti ittt ettt ettt et ettt ...263
2.1.3. Surface modification of EVs .................c.oooael. ..263
2.14. Exosome surface engineering and targetilNg ... ........cueuentereueneneneneneneaeaues ceumeneeneaeeieennenneeneennen....263

Abbreviations: CD, cluster of differentiation; EVs, extracellular vesicles; GMP, good manufacturing practice; IL, interleukin; MMP, matrix metalloproteinase; MSCs,
mesenchymal stem cells; TGF-p, transforming growth factor B; VEGF, vascular endothelial growth factor; Wnt, wingless/integrated-1.
* Corresponding author. Department of Plastic and Reconstructive Surgery, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.

E-mail address: yyssprs@gmail.com (Y. Shimizu).

Peer review under responsibility of the Japanese Society for Regenerative Medicine.

https://doi.org/10.1016/j.reth.2024.06.001

2352-3204/© 2024 The Author(s). Published by Elsevier BV on behalf of The Japanese Society for Regenerative Medicine. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).


http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yyssprs@gmail.com
http://crossmark.crossref.org/dialog/?doi=10.1016/j.reth.2024.06.001&domain=pdf
www.sciencedirect.com/science/journal/23523204
http://www.elsevier.com/locate/reth
https://doi.org/10.1016/j.reth.2024.06.001
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.reth.2024.06.001
https://doi.org/10.1016/j.reth.2024.06.001

Y. Shimizu, E.H. Ntege, Y. Inoue et al.

Regenerative Therapy 26 (2024) 260—274

2.2.  Advanced gene-editing technologies for MSC-EV development .. ....264
2.2.1.  Enhancing MSC-EV efficacy through gene editing . ....264

2.3.  Optimizing genomic stability of MSCs ......... ....265
2.4. Enhancing MSC-EV therapies for wound healmg ..265
24.1.  Genetic engineering Of EV CaI0 .. ......uiuiniinie ettt ittt ittt et et et e e e e 265

2.4.2. Direct drug encapsulation iNt0 EVS ... ...ttt ittt e e et et e et e, 265

2.4.3. Integrating EVs with biomaterial scaffolds ...............oiiiiiiriii i i i e ... 265

2.5.  Overcoming challenges in gene editing of MSC-EVs ........... .. ..266
2.6. Futuredlrectlonsandc0n51derat10nsforMSCEVtherapydevelopment..................,..,..,..,..,...,,.........,,.............266
3. Manufacturing systems and quality control for MSC-derived EVS ... ... ..ottt ittt it et et et et e i eiaeieeinaenaa... 266
4,  Toxicity risk assessment and preclinical profiling of MSC-EV therapies ...........c.ouviiritiiiiiiiiiiies cieeie et iieeieineeenneen... 267
4.1. MSC-EV heterogeneity and complementary platforms ......... ....267

4.2. Refined animal models and biodistribution assessment of MSC- EVs ....267

43. Comprehensive toxicological evaluation of MSC-EVs . . . ..268
44. TranslatlonalchallengesandglobalharmomzatlonofMSCEVtheraples.........,..,..,..,.........................................268

5.  Clinical translation and the regulatory landscape for engineered EV therapies ..............ciiiiiiiiiiiiii it et iieeieinenna.... 269
5.1. Lessons from cell therapies and advantages of EV-based approaches ..............coiiiiiiiiiiiiiir tii it e i e i eie .. ..269
5.2. Navigating the global regulatory landscape and harmonization efforts ..............cccoiiiiiiiiiiiiiii i it iieieeeenn....269
5.3. Advancing preclinical and clinical development of EV therapies ..........ouuuvrininiiiiiiiiiiiei s vttt et e eieeiaeeneen....269
5.4. Future directions and collaborative efforts for clinical translation ............ ...t i i e e . 269

6.  Conclusion and future direCtions ............c.ouviuiuiininiini i ieiieaenennenns .. 269
Funding .. .. 270
Ethlcsapprovalandconsenttopartmpate e e e e e el 270
Declaratlonofcompetmgmterest....................................................................................................270
AVl 1 To AT T 14 1<) Y 270
3E] (] (<) 1 Lo/ X {0

1. Background

Chronic nonhealing wounds, such as diabetic foot ulcers, venous
leg ulcers, pressure ulcers, burn injuries, and surgical wounds, pose
significant clinical challenges [1—5]. They are characterized by a
high prevalence, elevated recurrence rates, and significant socio-
economic burdens, with estimated costs of around $50 billion
annually, particularly in countries like the United States of America
[3,6]. Furthermore, up to 30% of chronic wounds do not respond to
standard care involving dressings, skin grafts, and debridement
after 12 weeks, underscoring the urgent need for innovative
treatment options [7—9].

Extracellular vesicles (EVs) are a ubiquitous and diverse class of
phospholipid-enclosed membranous structures, ranging in size
from 30 nm to 5 pm, that are released by various cell types into
extracellular spaces. They play a crucial role in intercellular
communication by facilitating the transfer of bioactive molecular
cargo between cells in both physiological and pathological condi-
tions [10—13]. EVs are broadly categorized into three major sub-
types based on their biogenesis: exosomes, microvesicles, and
apoptotic bodies [10,14,15].

Exosomes, also known as small EVs, typically range from 30 to
150 nm in diameter and are produced through the endolysosomal
pathway, where plasma membrane invaginations lead to the for-
mation of multivesicular bodies containing intraluminal vesicles.
Upon the fusion of multivesicular bodies with the plasma mem-
brane, exosomes are released by the intraluminal vesicles into the
extracellular environment. Conversely, microvesicles, also referred
to as medium EVs, have diameters ranging from 150 nm to 1 pm
and are generated via direct outward budding or blebbing from the
plasma membrane [14,16]. This process is mediated by various
signaling cascades involving proteins like RAB GTPases, ribosylation
factor 6, and regulators of cytoskeletal dynamics, including Rho
GTPases, which orchestrate the reorganization of the cell's struc-
tural framework [17]. Apoptotic bodies, ranging from 500 nm to
2—5 um and falling in the category of large EVs, are released during
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programmed cell death and are characterized by membrane bleb-
bing [10,18].

Despite their distinct biogenesis pathways, EVs share common
features in terms of molecular composition. They are enriched in
bioactive molecules such as cytokines, chemokines, growth factors,
lipids, and nucleic acids including deoxyribonucleic acid (DNA),
messenger ribonucleic acid (mRNAs), microRNAs (miRNAs), piwi-
interacting RNAs (piRNAs), long non-coding RNAs (LncRNAs),
small nucleolar RNAs (snRNAs), small nucleolar RNAs (snoRNAs),
mitochondrial RNAs (mtRNAs), and circular RNAs (CircRNAs)
[16,17]. Additionally, EVs display conserved surface markers,
including tetraspanins such as cluster of differentiation (CD) 63,
CD81, CD9, heat shock protein 70, and posttranslationally modified
surface proteins [19,20]. The cargo content of EVs is known to be
sorted via biophysical mechanisms driven by alterations in mem-
brane curvature and the distribution of specific components,
including Bin/Amphiphysin/Rvs domain proteins and key proteins
of the Endosomal Sorting Complex Required for Transport (ESCRT)
machinery, such as ESCRT-I, ESCRT-II, and ESCRT-III complexes
[17,21]. These intrinsic properties of EVs make them essential
players in diverse intercellular communication processes, modu-
lating various physiological and pathological functions based on the
cell of origin.

EVs, with their potential to modulate tissue repair in various
diseases such as cancer, neurodegeneration, and dermatological
disorders (ulcers and injuries) [22,23], have garnered considerable
attention as a novel therapeutic tool, particularly in wound healing.
Previously, cell therapy was considered the promising alternative to
conventional wound healing treatments such as wound dressings,
skin grafts, and surgical debridement [24—26]. Among cell-based
therapies, mesenchymal stem cells (MSCs) have attracted signifi-
cant interest due to their accessibility and crucial role in wound
healing. MSCs can be easily isolated from various sources, including
umbilical cords, bone marrow, and adipose tissue. Additionally,
they interact with various immune cells to maintain immunological
homeostasis in the wound microenvironment and differentiate into
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fibroblasts, chondrocytes, and osteocytes to promote tissue for-
mation [25,26]. Nonetheless, cell transplantation encounters chal-
lenges such as interdonor variability, limited survival, immune
rejection, and potential malignant transformation [27—29]. Using
cell-free derivatives like MSC-EVs, these challenges could be miti-
gated while harnessing the regenerative capacity of their secreted
paracrine factors [30—32]. Tailored via bioengineering techniques,
engineered MSC-EVs (eMSC-EVs) are capable of actively partici-
pating in key stages of tissue healing, such as hemostasis, inflam-
mation, proliferation, and remodeling, offering innovative
biological therapies for tissue regeneration [31,32].

The intrinsic paracrine activity of MSCs can be harnessed by
utilizing their secreted EVs. Importantly, the therapeutic potential
of native MSC-EV strategies can be further enhanced through
bioengineering approaches, including the overexpression of ther-
apeutic factors, knockout/knockdown to eliminate harmful com-
ponents, and stimulation with priming factors. For instance, eMSC-
EVs can be tailored to overexpress anti-inflammatory cytokines
such as interleukin (IL)-10 or tumor necrosis factor-stimulated
gene-6, which are known to modulate inflammatory responses
and promote tissue repair [30—32]. Knockout or knockdown stra-
tegies may involve the suppression of proinflammatory factors such
as Toll-like receptor 4 to mitigate inflammatory signaling pathways
within the wound microenvironment [33]. Furthermore, priming
factors such as hypoxia or cytokine preconditioning can promote
MSCs to release EVs enriched with angiogenic growth factors such
as vascular endothelial growth factor (VEGF) and angiopoietin-1,
thereby enhancing their proangiogenic properties [34,35].

MSC-EVs engineered through genetic modification, therapeutic
cargo loading, and surface functionalization exhibit enhanced anti-
inflammatory, pro-angiogenic, and tissue regenerative effects. In
the context of chronic nonhealing wounds characterized by sus-
tained inflammation, immune cell accumulation, senescent cell
accrual, and extracellular matrix degradation, locally administered
eMSC-EVs can help mitigate inflammatory responses via various
synergistic mechanisms [31,32,36]. These mechanisms include the
suppression of M1 macrophage activation, inhibition of nuclear
factor kappa B signaling cascades, promotion of anti-inflammatory
M2 macrophages and regulatory T cells, and downregulation of
inflammatory cytokines through surface interactions and delivery
of regulatory miRNA cargoes. For instance, eMSC-EVs may contain
high levels of miR-146a, which can target and suppress nuclear
factor kappa B signaling in immune cells, thereby attenuating in-
flammatory responses [37,38]. MSC-EVs engineered to carry spe-
cific pro-angiogenic miRNAs or growth factors play a crucial role in
enhancing angiogenesis within the wound microenvironment by
stimulating endothelial cell migration and proliferation, upregu-
lating angiogenic growth factors, and activating downstream
regeneration pathways. For example, MSC-EVs are engineered to
carry miR-132, by transfecting parent MSCs with miR-132 mimics,
targeting inhibitors of angiogenic signaling pathways such as Rasal
and Spredl [39,40]. Similarly, MSC-EVs loaded with miR-126
through electroporation have shown enhanced pro-angiogenic ef-
fects [41]. Additionally, MSCs genetically modified to overexpress
fibroblast growth factor (FGF) produce EVs enriched with FGF,
promoting extracellular matrix deposition and granulation tissue
formation at the wound site [42,43]. Recombinant growth factors
like VEGF or PDGF are also loaded into MSC-EVs to enhance their
pro-angiogenic and regenerative properties [39,40].

Recent advancements have been focused on enhancing the
native therapeutic efficacy of MSC-EVs through engineering
strategies that focus on optimizing their molecular cargo and sur-
face properties [44,45]. These strategies involve overexpressing
angiogenic miRNAs, silencing inflammatory mRNAs, displaying
tissue-targeting peptides, and incorporating drug molecules into
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EVs. For instance, eMSC-EVs can be designed to carry specific
miRNAs, such as miR-126 or miR-210, known for their proangio-
genic effects and ability to promote tissue regeneration [40,46]. In
addition, modifying MSC-EV surfaces with tissue-targeting pep-
tides, such as those containing the amino acid sequence arginine-
glycine-aspartic acid that target integrin receptors on endothelial
cells, can enhance their homing to injury sites [45—47]. Neverthe-
less, understanding the unique characteristics of MSC-EVs
compared to EVs derived from other cells remains paramount.

1.1. The unique advantages of MSC-EVs for regenerative medicine

MSCs have emerged as a promising cell source for regenerative
medicine due to their immunomodulatory, differentiation, and
regenerative capabilities. These inherent properties are mirrored in
the EVs they secrete, making MSC-EVs a potential therapeutic tool.
The tissue of origin for MSCs, such as bone marrow, adipose tissue,
or umbilical cord, influences the biological composition of their
derived EVs. This phenomenon allows researchers to tailor treat-
ments to specific clinical needs by selecting the most appropriate
MSC source [28,29,48,49].

Beyond their source, MSC-EVs possess a unique cargo profile
enriched with specific proteins, lipids, and nucleic acids. Notably,
they contain miRNAs such as miR-21 and miR-146a, which play a
crucial role in regulating inflammation and promoting tissue repair.
Additionally, the presence of growth factors like VEGF and TGF-3 in
MSC-EVs further enhances their pro-angiogenic and wound healing
properties, distinguishing them from EVs derived from other cell
types [36,50]. Another strength of MSC-EVs lies in their cargo
selectivity. These EVs can selectively package therapeutic molecules
based on the physiological state and environmental cues of the
MSCs. This cargo selectivity enables MSC-EVs to display specialized
functions that support tissue homeostasis, immunomodulation, and
regeneration more effectively compared to generic EVs [35,48,51].

Researchers are further pushing the boundaries of MSC-EV
therapy by leveraging advancements in bioengineering. Tech-
niques such as CRISPR gene editing and pre-treatment of MSCs
allow for the customization of MSC-EV cargo, ultimately enhancing
their therapeutic potential. This opens doors for designing MSC-EVs
that carry specific cargo molecules targeting defined wound heal-
ing pathways [51—-53].

Preclinical studies have demonstrated the superior therapeutic
benefits of MSC-EVs in models of chronic wounds compared to EVs
derived from other cell types. These studies highlight the enhanced
angiogenic, anti-inflammatory, and anti-scarring properties of
MSC-EVs, making them a compelling therapeutic option [54,55].
Currently, ongoing clinical trials are evaluating the safety and effi-
cacy of MSC-EV-based therapies in humans, paving the way for
their future clinical applications [29,54,55].

However, significant challenges remain before widespread
clinical implementation. Scalable manufacturing of MSC-EVs with
consistent quality and adherence to stringent regulatory guidelines
pose significant hurdles. Variability in production processes, the
need for robust quality control assays, and the evolving landscape
of regulatory requirements are all aspects that require ongoing
consideration for the successful implementation of engineered EV
therapies.

1.2. Quality attributes and translational challenges of MSC-EV
therapies

Understanding the essential quality attributes of EVs is crucial
for the successful translation of their therapies into clinical appli-
cations. This involves a comprehensive analysis of their physico-
chemical properties, biological markers, and functional properties
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specific to wound healing [29,48,52]. Establishing standardized
preclinical profiling frameworks that align with global regulatory
guidelines and anticipated operational infrastructure requirements
is crucial for ensuring the safety, effectiveness, and quality of EV-
based treatments [29,46,51].

The importance of these quality attributes can be further
emphasized by considering the example of the MRG-110 clinical
trial. The clinical trial of MRG-110, an anti-miR-92 drug, highlights
the potential of miRNA-based therapies in regenerative medicine.
The promising safety profile demonstrated in this trial is particu-
larly relevant to the development of MSC-EV therapies, as engi-
neered EVs often incorporate specific miRNAs to enhance their
therapeutic efficacy [56—58]. However, the successful translation of
miRNA-loaded EVs into clinical applications faces similar chal-
lenges as those encountered in the development of anti-miR drugs,
such as scalability, standardization of potency assays, and mainte-
nance of genomic stability.

The MRG-110 clinical trial experience underscores the impor-
tance of addressing these challenges in the context of MSC-EV
therapies. Achieving scalable production of high-quality, miRNA-
loaded EVs with consistent potency and genomic stability is crucial
for their successful clinical translation. This requires strategic
measures such as the development of standardized manufacturing
processes, the establishment of robust quality control assays, and
the implementation of comprehensive characterization techniques
to assess EV purity, potency, and safety [46,59].

By proactively addressing these challenges and implementing
appropriate strategic measures, researchers and manufacturers can
ensure the timely and responsible clinical advancement of MSC-EV
therapies, ultimately bringing these innovative treatments closer to
patients in need.

In this review, we discuss key advancements in developing and
applying EVs derived from MSCs as a cell-free therapy for chronic
wound healing. We provide a critical analysis of the rapidly
evolving field of MSC-EV engineering, production, and translation,
with a specific focus on clinical applications in wound healing. The
review delves deeply into recent advancements in modulating EV
surface properties and molecular cargo to optimize their regener-
ative and immunomodulatory capabilities. It also highlights the
critical challenges associated with achieving scalable, reproducible,
current good manufacturing practice (cGMP) - compliant bio-
manufacturing of engineered EVs, implementing quality assurance
benchmarks, and navigating regulatory requirements for novel EV
therapeutics. This comprehensive analysis offers valuable insights
into this promising yet intricate field, while also charting critical
future directions to maximize clinical impact.

2. Genomic optimization and stability of MSC-EV-based
therapies for wound healing

MSC-EVs hold significant promise for the treatment of chronic
wounds. However, inherent limitations in the therapeutic efficacy
and cargo capacity of these native EVs have led to recent advances
in bioengineering strategies to enhance their wound-healing
functions.

2.1. Engineering strategies for enhancing MSC-EV

Therapeutic Potential To further enhance the therapeutic po-
tential of MSC-EVs, various engineering approaches have been
developed. These strategies aim to optimize the molecular cargo
and surface properties of MSC-EVs, enabling them to effectively
target specific cell types, deliver therapeutic factors, and promote
tissue regeneration. The main engineering strategies include:
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2.1.1. Genetic modification of parent MSCs

One approach to enhance the therapeutic potential of MSC-EVs
is to genetically modify the parent MSCs to overexpress specific
therapeutic factors. For example, MSCs can be engineered to
overexpress anti-inflammatory cytokines such as IL-10 or TSG-6,
which are then incorporated into the secreted EVs [60]. Similarly,
MSCs can be modified to overexpress growth factors like VEGEF,
resulting in EVs enriched with pro-angiogenic cargo [61]. These
genetically engineered MSC-EVs have shown improved anti-
inflammatory and pro-regenerative effects in preclinical wound
healing models [60,61].

2.1.2. Loading of therapeutic cargo into EVs

Another strategy involves directly loading therapeutic mole-
cules into MSC-EVs. This can be achieved using various tech-
niques, such as electroporation, sonication, or incubation. For
instance, MSC-EVs can be loaded with specific miRNAs, such as
miR-21 or miR-146a, which have been shown to promote wound
healing by regulating inflammation and tissue remodeling
[62,63]. Similarly, small interfering RNAs (siRNAs) or drugs can be
incorporated into MSC-EVs to target specific pathways or mole-
cules involved in the wound healing process. These cargo-loaded
MSC-EVs have demonstrated enhanced therapeutic efficacy in
preclinical studies [62,64].

2.1.3. Surface modification of EVs

The surface of MSC-EVs can be engineered to display targeting
ligands or peptides, enhancing their specificity and uptake by target
cells or tissues. For example, MSC-EVs can be functionalized with
the RGD peptide, which binds to integrin receptors expressed on
endothelial cells and promotes EV uptake [40,47]. Similarly, MSC-
EVs can be modified with antibodies or aptamers that recognize
specific cell surface markers, allowing for targeted delivery to
specific cell types involved in wound healing [40,47]. These surface-
modified MSC-EVs have shown improved homing to injury sites
and enhanced therapeutic effects in preclinical models [40,47].

2.14. Exosome surface engineering and targeting

In addition to the strategies mentioned above, direct engineer-
ing of the exosome surface is an emerging approach to enhance the
targeting and therapeutic efficacy of MSC-EVs. By conjugating
specific ligands, peptides, or polymers to the exosome surface, re-
searchers can improve their binding and uptake by target cells,
reduce off-target effects, and prolong their circulation time [40,47].

One common approach to exosome surface engineering is the
conjugation of targeting peptides, such as the RGD motif, which
binds to integrin receptors overexpressed on endothelial cells and
can enhance the delivery of MSC-EVs to the wound site [40,47].
Another strategy involves the functionalization of the exosome
surface with hydrophilic polymers, such as polyethylene glycol
(PEG), which can increase their stability, reduce immune clearance,
and prolong their circulation time [65].

Recent studies have also explored the use of click chemistry and
metabolic labeling to incorporate specific functional groups onto
the exosome surface, enabling the conjugation of various targeting
ligands or therapeutic molecules [66,67]. However, challenges
remain in developing more efficient and scalable conjugation
methods, identifying novel targeting moieties, and understanding
the complex interactions between engineered exosomes and the
wound microenvironment.

Employing these advanced engineering strategies enables re-
searchers to create MSC-EVs with specifically tailored therapeutic
potentials, aimed at addressing distinct aspects of the wound
healing process. Promising preclinical studies reveal that these
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engineered MSC-EVs outperform their unmodified counterparts in
reducing inflammation, promoting angiogenesis, and enhancing
tissue regeneration. With ongoing advancements in this field,
future research is expected to develop even more sophisticated
engineering techniques to further optimize MSC-EVs, enhancing
their efficacy and utility in wound healing applications.

Table 1 provides a comprehensive overview of various bioen-
gineering strategies used to enhance the therapeutic potential of
MSC-EVs. These strategies can be broadly categorized into two
main approaches: direct cargo incorporation into isolated EVs and
genetic modification of parent MSCs. Direct cargo loading tech-
niques, such as electroporation, sonication, and incubation, allow
for the precise modulation of EV contents by incorporating bioac-
tive factors [62—64,68,69]. While these methods offer flexibility in
tailoring therapeutic payloads, they may be associated with tran-
sient cargo loading and potential batch-to-batch variability. Genetic
modification of parent MSCs using gene-editing tools, such as
CRISPR/Cas9, TALENSs, and viral vectors, enables the alteration of
MSC genomes [70,71]. This approach results in the secretion of EVs
with modified native cargo and bioactivity, ensuring the consistent
generation of customized EVs. However, it is important to consider
the potential impact on genomic stability, as well as the technical
complexities, risk of off-target effects, and possible alterations to
cell function. The table also highlights emerging strategies for
surface functionalization and targeting ligand conjugation, which
aim to enhance the targeting specificity, uptake, and therapeutic
efficacy of MSC-EVs [47,65—67,72,73]. Ultimately, the choice be-
tween direct cargo loading and genetic engineering depends on the
specific treatment context and desired outcomes, with direct EV
loading allowing for maximum cargo flexibility and genetic engi-
neering offering consistent and tailored EV production, provided
genomic stability is maintained.

2.2. Advanced gene-editing technologies for MSC-EV development

Gene-editing technologies, such as CRISPR/Cas9, zinc finger
endonuclease (ZFN), megaTALs, and TALENs, have revolutionized
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the field of regenerative medicine by enabling precise genomic
modifications in MSCs. These modifications significantly enhance
the therapeutic potential of MSC-derived EVs for personalized
wound healing treatments [70,71,74—78]. CRISPR/Cas9, known for
its precision and ease of use, has emerged as a key player in this
field. However, TALENs and ZFNs offer valuable alternatives in sit-
uations where CRISPR/Cas9 may encounter limitations due to
technical or ethical constraints [68,79,80].

2.2.1. Enhancing MSC-EV efficacy through gene editing

Gene-editing strategies have been pivotal in augmenting the
efficacy of MSC-EVs for chronic wound treatment. Elevating the
expression of hypoxia-inducible factor 1 alpha in MSCs enhances
VEGF production and promotes angiogenesis in ischemic wounds
[61,81]. The inhibition of antiangiogenic factors, such as
thrombospondin-1, further facilitates angiogenesis [82—84],
whereas the upregulation of matrix metalloproteinases (MMPs),
such as MMP-1 and MMP-9, facilitates the remodeling of the
extracellular matrix, which is crucial for healing complex wounds
[85,86].

Additionally, the manipulation of key signaling pathways,
including calmodulin-dependent protein kinase II, ephrin-A3
signaling, mitogen-activated protein kinase, wingless (Wnt)/B-
catenin, phosphatidylinositol 3-kinase/protein kinase B, Notch,
transforming growth factor § (TGF-B)/Smad, STAT, and Hedgehog
signaling, is crucial in regulating angiogenesis, cellular prolifera-
tion, and extracellular matrix remodeling during wound healing
[87—92]. For instance, activation of the Wnt/B-catenin pathway
enhances dermal fibroblast migration and endothelial cell activa-
tion. This can be achieved by overexpressing Wnt ligands or B-
catenin in MSCs, thereby enriching MSC-EVs with Wnt agonists
[93,94]. Similarly, modulating TGF-§ signaling, particularly via the
overexpression of TGF-$1, results in EVs enriched with collagen and
elastin, which are essential for matrix remodeling [82]. Introduc-
tion of the Notch intracellular domain activates transcriptional
regulators that pack EVs with proangiogenic cytokines and che-
mokines, such as IL-6, underscoring the potential of these

Table 1
Comparison between various extracellular vesicle engineering approaches.
Approach Method examples Benefits Limitations References
Direct cargo loading Electroporation, co-incubation, - Precise tuning of EV cargo - Transient cargo loading [62,63]
freeze-thaw, and sonication - Flexible incorporation of various - Batch-to-batch variability
molecules
Parent cell engineering CRISPR/Cas9, TALENS, ZFNs, and - Genomic integration enables stable - Technical complexities [68,69]
viral vectors expression - Risk of off-target effects
- Uniform EV production - Cell function alteration
Engineering cell Hypoxia, inflammatory stimuli, - Innate EV cargo and functional - Less precise control [70]
culture conditions and growth factors modulation - Limited cargo options
Bioengineered scaffolds Microfluidics and hydrogels - Optimized EV growth and release - Relatively new approach [69,70]
- Scaffold biocompatibility issues
Surface Functionalization Targeting Peptides (e.g., RGD) — Improved targeting and uptake by — Potential immunogenicity, limited [47,65]
Hydrophilic Polymers (e.g., specific cell types, enhanced stability [66,67]
PEG) delivery to wound site — Potential interference with EV-cell [72,73]
Click Chemistry and Metabolic — Increased stability, reduced immune interactions
Labeling clearance, prolonged circulation — Potential toxicity of labeling agents,
time need for optimization
— Versatile and specific conjugation of
targeting ligands or therapeutic
molecules
Targeting Ligand Antibodies — High specificity and affinity for — Potential immunogenicity, high [40,47]
Conjugation Aptamers target antigens, improved EV production costs
Affinity Tags (e.g., His-tag, targeting — Limited stability, potential
Strep-tag) — High specificity, low interference with EV-cell

immunogenicity, easy to synthesize
Facilitate EV purification and
characterization, enable conjugation
of targeting moieties

interactions
— Potential interference with EV
function, limited in vivo applicability
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engineered EVs in wound healing applications [94—96]. The JAK-
STAT signaling pathway plays a pivotal role in mediating re-
sponses to cytokines and growth factors in chronic wounds.
Persistent activation of this pathway, often triggered by inflam-
mation, can impede wound regeneration [41,97,98]. A novel
approach involves engineering MSCs to overexpress the suppressor
of cytokine signaling 3 (SOCS3), an intrinsic inhibitor of JAK-STAT
signaling. The resulting EVs carry SOCS3 mRNA, which, upon up-
take by wound-associated cells, such as macrophages, inhibits STAT
binding and reduces the transcription of proinflammatory genes
[99,100]. MSC-EVs engineered to carry SOCS3 have been shown to
enhance the presence of factors aiding in wound resolution like
insulin-like growth factor 1, demonstrating their potential in
modulating cellular responses within wound environments [100].

2.3. Optimizing genomic stability of MSCs

Maintaining the genomic stability of MSCs is crucial for the
production of safe and effective MSC-EVs. Genomic instability in
parent MSCs can lead to the incorporation of abnormal or poten-
tially harmful genetic material into the derived EVs, which may
compromise their therapeutic efficacy and safety [101]. Therefore,
itis essential to employ strategies that minimize genetic alterations
during MSC culture and EV production processes.

Factors such as prolonged ex vivo expansion, suboptimal culture
conditions, and exposure to stress-inducing agents can contribute
to genomic instability in MSCs [ 102,103]. For instance, high-glucose
culture conditions have been shown to increase the frequency of
chromosomal aberrations in MSCs, which may be transferred to the
derived EVs [104]. Similarly, the use of serum-containing media or
the presence of mycoplasma contamination can induce DNA dam-
age and genomic alterations in MSCs, potentially affecting the
safety and efficacy of the resulting EV products [105].

Emerging strategies, such as optimized hypoxic culture condi-
tions, have shown promise in minimizing stress-induced genetic
alterations and preserving genomic fidelity [106]. To mitigate the
risks associated with genomic instability, it is essential to imple-
ment strict quality control measures and adhere to best practices in
MSC culture and EV production. This includes the use of low-
passage MSCs, regular screening for mycoplasma contamination,
and the implementation of standardized protocols for cell expan-
sion and EV isolation [105]. Additionally, emerging strategies such
as the use of hypoxic culture conditions or the supplementation of
culture media with antioxidants have shown promise in reducing
stress-induced genetic alterations and preserving genomic stability
in MSCs [104,106].

Sophisticated tools, like whole-genome sequencing and
comparative genomic hybridization, play a critical role in identifying
and mitigating risks associated with genomic instability. Ongoing
research is dedicated to exploring the effects of external factors and
culture methods on genomic integrity. This research aims to un-
derstand the precise conditions and their influence on genetic al-
terations [101,102,110]. Developing strategies to mitigate these risks,
such as optimizing culture conditions and employing precise tar-
geted gene editing, is essential for maintaining the therapeutic po-
tential of MSCs while minimizing unintended effects [104,105].

Regular monitoring of MSC genomic stability through advanced
techniques such as whole-genome sequencing and comparative
genomic hybridization is crucial for ensuring the safety and quality
of MSC-EV products [101]. By comprehensively characterizing the
genomic profile of parent MSCs and their derived EVs, researchers
can identify potential risks and implement appropriate measures to
maintain genomic stability throughout the manufacturing process,
ultimately leading to the development of safer and more effective
MSC-EV therapies [102,103].

265

Regenerative Therapy 26 (2024) 260—274
2.4. Enhancing MSC-EV therapies for wound healing

2.4.1. Genetic engineering of EV cargo

MSC-derived EV therapies harness the innate regenerative po-
tential of MSCs, which is further refined through advanced
biotechnology methods. Customizing the molecular cargo of EVs
emerges as a promising strategy to fully unlock their therapeutic
potential in wound healing. This process involves engineering EVs
to transport bioactive molecules such as growth factors, cytokines,
and RNA species [40,65,107,108]. By loading EVs with angiogenic
factors like VEGF and platelet-derived growth factor (PDGF),
angiogenesis and tissue regeneration are stimulated at wound sites,
while the inclusion of antiinflammatory molecules effectively
manages chronic inflammation [43].

Utilizing gene-editing tools like CRISPR/Cas9 allows precise
genetic modifications in MSCs to fine-tune their EV cargo compo-
sition. By targeting specific pathways pivotal for wound healing,
such as collagen synthesis and fibroblast activation, the cargo
of MSC-EVs can be optimized to enhance wound closure and
tissue remodeling [53,109,110]. Moreover, downregulating pro-
inflammatory cytokines through gene editing can mitigate scar
formation and improve healing outcomes.

2.4.2. Direct drug encapsulation into EVs

Although cellular processing enables drug expression in EVs, it
has inherent limitations. Therefore, direct encapsulation of
therapeutic drugs into EVs using techniques such as electropo-
ration, co-extrusion, and ultrasonication has garnered attention.
Electroporation involves the use of electrical pulses to create
transient pores in natural EVs, facilitating direct loading of drug
molecules. However, these electrical pulses may induce EV ag-
gregation or fusion, potentially compromising their intercellular
communication efficiency. Nonetheless, one study by Johnsen
et al. [111] suggests the potential of this approach in promoting
wound healing. In their study, they evaluated the effects of
electroporation on the structural and functional properties of
adipose-derived stem cell (ASC) exosomes. Despite observing
some degree of EV aggregation and fusion, they found that
electroporated ASC exosomes retained their ability to promote
migration and proliferation of human dermal fibroblasts in vitro,
which are key processes in wound healing. These findings sug-
gest that electroporation-mediated drug loading into EVs may be
a viable strategy for enhancing their therapeutic potential in
wound healing applications, although further optimization is
needed to minimize potential adverse effects on EV integrity and
function.

2.4.3. Integrating EVs with biomaterial scaffolds

Most EV studies entail subcutaneous administration around the
wound or wound bed. However, concerns arise regarding EV
diffusion away from the target site, which may diminish their
therapeutic effects. An emerging solution involves immobilizing
EVs on biocompatible scaffold materials to ensure sustained de-
livery. Several animal studies have validated the efficacy of this
scaffold engineering approach. For instance, Sun et al. [112] utilized
a versatile nanoagent based on 2 dimensional reductive covalent
organic frameworks coated with antibacterial immuno-engineered
exosomes (PCOF@E-Exo) for efficient combination therapy in dia-
betic wounds. Chen et al. [113] loaded adipose-derived stem cell
exosomes into Ag@bovine serum albumin nanoflowers, forming a
protective “pollen-flower” structure encapsulated within an
injectable collagen hydrogel for concurrent oxidative stress mod-
ulation and controlled EV release. Moreover, Zhang et al. [114]
developed an MSC-exosome-encapsulated adjustable Polyvinyl
alcohol hydrogel for treating diabetic ulcers.
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2.5. Overcoming challenges in gene editing of MSC-EVs

Integrating gene editing into MSC-EV therapies presents
challenges that must be addressed to fully leverage the potential
of this technology in regenerative medicine. Balancing thera-
peutic efficacy with patient safety is a primary concern, given the
risks of off-target effects and oncogenesis associated with gene-
editing tools, such as CRISPR/Cas9. Strategies to enhance target-
ing specificity, such as developing high-fidelity CRISPR variants
and improving guide RNA design, are actively pursued. Rigorous
preclinical testing and safety profiling are essential to ensure that
the benefits of genetically modified MSC-EVs outweigh the po-
tential risks [51,55,110].

Technical challenges include maintaining stable gene expres-
sion in MSCs while preserving cell functionality and viability.
Developing efficient and safe delivery systems for gene-editing
components is crucial [77]. Furthermore, the ethical implications
of gene editing in human cells, particularly in regenerative medi-
cine, require careful consideration. Robust ethical guidelines and
regulatory frameworks are necessary to address issues, such as
informed consent, long-term effects, and the potential for unin-
tended germline modifications [115—118].

2.6. Future directions and considerations for MSC-EV therapy
development

The development of effective MSC-EV therapies for wound
healing requires a multifaceted approach that integrates advances
in gene editing, cargo engineering, and safety profiling. Refining
CRISPR strategies to enhance the precision and efficiency of gene
editing in MSCs is crucial for generating EVs with optimized ther-
apeutic properties [119,120]. For instance, a recent report by Zhang
et al. [121] demonstrated that MSC-EVs engineered to overexpress
miR-126 using CRISPR/Cas9 technology exhibited enhanced
proangiogenic effects and accelerated wound healing in a diabetic
rat model. Additionally, combining gene editing with cargo engi-
neering techniques, such as incorporating growth factors, chemo-
kines, and miRNAs, can further enhance the therapeutic potential of
MSC-EVs [52,61]. A recent study highlighted in Zheng et al. [122]
discusses the functionalization of MSC-EVs through advanced
strategies such as electroporation, which allows for the incorpo-
ration of key growth factors like VEGF and bFGF. These modified
MSC-EVs have demonstrated enhanced proangiogenic effects and
improved wound healing capabilities in a mouse model of cuta-
neous injury, illustrating the potential of tailored therapeutic in-
terventions in regenerative medicine.

To facilitate the effective integration of therapeutic cargo into
MSC-EVs, the use of advanced methods such as electroporation,
sonication, and microfluidic devices is essential [63]. These
techniques enable the efficient loading of desired molecules into
EVs while minimizing potential adverse effects on their structural
and functional integrity. For example, recent advancements have
utilized microfluidic devices to enhance the loading of specific
miRNAs into MSC-EVs [123]. This approach has been shown to
enhance angiogenesis and accelerate wound healing in models of
diabetic foot ulcers. Similarly, employing advanced delivery
techniques such as sonication, researchers have successfully
loaded MSC-EVs with therapeutic agents, including curcumin,
demonstrating enhanced wound healing outcomes in mouse
models of cutaneous injury [124].

As the field of MSC-EV therapy continues to evolve, it is crucial
to address ethical and regulatory considerations to ensure the
responsible development and clinical translation of these therapies.
This includes obtaining informed consent from cell donors and
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patients, assessing the risks of off-target effects associated with
gene editing, and ensuring equitable access to these therapies
[116,118,125]. The International Society for Cell & Gene Therapy
(ISCT) has recently published a position paper [125] that provides
guidance on the ethical and regulatory considerations for the
clinical translation of cell and gene therapies, including MSC-EV
therapies.

Future research should focus on enhancing the precision of gene
editing techniques, exploring the long-term stability and consis-
tency of gene-edited MSC-EVs, and expanding the empirical evi-
dence base to guide clinical applications. This will require
interdisciplinary collaboration among researchers, clinicians, and
regulatory bodies to establish standardized protocols, share best
practices, and address knowledge gaps [126—128]. Initiatives such
as the International Society for Extracellular Vesicles (ISEV) [126]
and the ISCT [125] play a crucial role in fostering collaborative ef-
forts and promoting the development of standardized guidelines
for the production, characterization, and clinical application of
MSC-EV therapies.

3. Manufacturing systems and quality control for
MSC-derived EVs

The field of regenerative medicine is rapidly advancing toward
the transformative realm of MSC-EVs. This shift from traditional
cell therapy manufacturing methods requires innovative solutions
to overcome unique bioprocessing challenges [129,130]. Ground-
breaking technologies are crucial to align with the evolving land-
scape of therapeutic applications and unlock the full potential of
MSC-EV therapies [127,131,132].

Although two-dimensional monolayer cell cultures have been
historically relied upon, cGMP standards require adaptation to
effectively navigate the intricate landscape of MSC-EV production.
Downstream processes such as centrifugation, filtration, chroma-
tography, and precipitation are essential for isolating vesicle com-
ponents. Therefore, advanced and efficient techniques are
necessary [59,133].

Scalable bioprocessing innovations are spearheading this crucial
transition. Hollow-fiber perfusion and membrane-integrated bio-
reactors provide promising solutions for large-scale cGMP-
compliant production, ensuring consistent quality and purity.
These advancements are essential for unlocking the therapeutic
potential of MSC-EVs [119,134,135].

Maintaining the functional integrity of EVs throughout the
manufacturing process poses a significant challenge. Shear stress in
suspension bioreactors and prolonged processing can have a
negative impact on EVs, potentially compromising their potency
and therapeutic efficacy [135—138]. To address this challenge,
innovative enclosed platforms, such as the MCube system, have
been developed to facilitate scalable cGMP-compliant production
while minimizing the risk of EV damage [135,139].

Ensuring stringent quality control is crucial in the develop-
ment and production of MSC-EV therapies. Comprehensive
profiling of omics and rigorous characterization assays are
essential to confirm the identity, purity, potency, and stability of
EVs [59]. However, establishing standardized benchmarks for
critical quality attributes remains challenging because of the
inherent variability associated with upstream processes. Initia-
tives such as EV-TRACK play a crucial role in promoting collab-
orative endeavors to enhance best practices and establish robust
field standards [140]. Harmonizing global regulatory pathways
and approval processes is essential to ensure that MSC-EV
therapies meet diverse regulatory requirements and are acces-
sible to patients worldwide [29,141].
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The development of commercially viable cGMP-grade MSC-EV
platforms presents an intricate challenge. Business viability, pro-
cess control, and product quality assurance all intertwine to create
a complex landscape. Integrated solutions that facilitate a collab-
orative effort between industry and academia are crucial for
establishing a balanced and sustainable approach. These partner-
ships play an essential role in translating the promising clinical
potential of engineered MSC-EV therapies into scalable and readily
available treatment options [29,138].

cGMP standards, enforced by regulatory agencies like the U.S.
Food and Drug Administration (FDA), ensure the quality, safety, and
consistency of pharmaceutical products, including biologics like
MSC-EVs [48,52]. These regulations punctiliously govern every
facet of the manufacturing process, from initial raw material
acquisition to final product release [142]. Achieving cGMP
compliance for MSC-EV production necessitates careful design,
installation, and consistent maintenance of manufacturing facilities
and equipment, coupled with rigorous testing and qualification of
raw materials. Additionally, clearly defined, thoroughly validated,
and consistently executed manufacturing processes are essential,
alongside robust quality control and assurance systems for
continuous monitoring throughout production. Finally, compre-
hensive documentation of all these aspects is mandatory to ensure
adherence to cGMP requirements.

Maintaining cGMP compliance is paramount for guaranteeing
the quality, safety, and consistency of MSC-EV therapies. Further-
more, it paves the way for regulatory approval and successful
commercialization [143,144]. Several existing MSC-EV therapies
serve as exemplary models for implementing these principles. The
cGMP-compliant manufacturing process employed for an MSC-EV
therapy targeting graft-versus-host disease exemplifies the crit-
ical role of quality control. The consistent product quality,
demonstrably successful clinical outcomes, and ultimate market
approval of this therapy underscore the effectiveness and reliability
of this approach [134,145].

MSC-EV therapy for myocardial infarction uses advanced
bioreactor systems for scalable and controlled production, leading
to consistent clinical outcomes and regulatory compliance. In the
context of neurodegenerative diseases, MSC-EV therapy integrates
Quality by Design principles from early development stages,
ensuring process fidelity, effective scale-up, and adherence to
predefined product quality standards [146]. In the context of dia-
betic wound healing, MSC-EV therapy employs automated and
closed-system manufacturing procedures to minimize human
intervention and improve product sterility and consistency. This
underscores the importance of technological advancements in
optimizing production efficiency [147].

These examples underscore the critical roles of meticulous
process design, thorough testing, and continuous monitoring in
developing high-quality and safe MSC-EV therapies. Adhering
to established best practices will be crucial in overcoming the
challenges of transitioning from traditional MSC production to
MSC-EV manufacturing in the evolving field of MSC-EV
research. Through innovative strategies and collaborative ef-
forts, the full potential of MSC-EV therapies can be realized,
offering transformative solutions for a variety of medical
conditions.

4. Toxicity risk assessment and preclinical profiling of MSC-
EV therapies

4.1. MSC-EV heterogeneity and complementary platforms

The inherent variability of EVs derived from different MSC
sources necessitates refined characterization methods. To gain a
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clear understanding of how these EVs impact chronic wound
healing, it is crucial to accurately identify their subclasses using
advanced techniques such as high-resolution flow cytometry,
which analyzes particle characteristics at a microscopic level, and
multiomics computational analysis, integrating various types of
biological data such as genomics, proteomics, and transcriptomics
[48,52]. Collaborative efforts with wound care specialists are key to
developing scalable and potent assays that enable precise pre-
dictions of the diverse bioactivities underlying the clinical potential
of MSC-EV treatments [142,148].

Humanized animal models and microfluidic organ chips are
transforming MSC-EV research by replicating pathologically rele-
vant wound environments with greater precision [52,124]. Hu-
manized models excel at evaluating immunomodulatory and tissue
regenerative dynamics within complex host stromal contexts,
while organ chips offer platforms for detailed, high-throughput
experimental analyses [52,123]. Integrating these innovative plat-
forms into a standardized workflow significantly improves the
predictive validity of preclinical data, ultimately guiding effective
translational efforts [52,123].

4.2. Refined animal models and biodistribution assessment of MSC-
EVs

Developing clinically relevant animal models is crucial for
bridging the gap between preclinical studies and human clinical
trials in wound healing research. However, current animal models
often fall short of accurately reflecting the complexities of human
wound conditions, posing challenges in extrapolating findings to
clinical settings [ 149,150]. Incorporating aspects of wound infection
and chronicity into animal models enhances their clinical rele-
vance. Chronic wounds, characterized by persistent inflammation
and impaired healing, frequently involve microbial colonization or
infection [150,151]. Modeling these aspects in animal studies offers
valuable insights into wound pathophysiology and therapeutic re-
sponses that more closely mimic clinical scenarios [150,151].

Strategically optimizing species and strains for specific wound
types, combined with advanced bioanalytical techniques, recon-
ciles ethical considerations with the need for relevance to human
trials [152]. Adhering to the principles of replacement, reduction,
and refinement in animal research, as overseen by institutional
animal care and use committees, ensures ethical conduct while
maximizing scientific value. Employing a comprehensive panel of
complementary models that encompasses a wider range of wound
severities can yield more integrated and comprehensive insights
[153].

Regarding in vivo evaluations of human-derived MSC-EVs,
robust evidence has not yet demonstrated significant advantages
associated with specific animal strains, ages, or genders. Among the
available models, the nude mouse model, which involves thymec-
tomy, might help mitigate the potential adverse effects of thymus-
derived T lymphocytes on wound healing. However, this model
lacks congruence with clinical conditions, as the immunodeficient
state may influence wound healing dynamics. Insufficient experi-
mental evidence supports its advantages for MSC-EV research,
particularly in the context of diabetic wound healing [143]. Alter-
native immunodeficient models, such as SCID (Severe Combined
Immunodeficiency) mice or NOD/SCID (Non-Obese Diabetic/SCID)
mice, could potentially offer advantages, but further research is
needed to evaluate their suitability for MSC-EV-based wound
healing studies.

Table 2 summarizes key considerations for selecting appropriate
animal models for preclinical MSC-EV research, including estab-
lished methods for modeling type 1 and type 2 diabetes mellitus in
rodents, which is crucial for evaluating the efficacy of MSC-EV
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cellular therapy research and development [126,128]. Establishing
standardized guidelines for preclinical testing of MSC-EV therapies,
including toxicity assessment, biodistribution studies, and po-
tency assays, is essential for global harmonization. Engaging in
constructive discussions with regulatory agencies is important for
researchers to simplify the approval process and uphold stringent
safety and ethical standards, particularly across various global
regulatory environments [170,171]. Patient advocacy organizations
are also vital in supporting standardized guidelines and research
strategies, promoting a patient-centered perspective in the devel-
opment of MSC-EV therapy [125].

By addressing the challenges associated with the heterogeneity
of MSC-EVs, refining animal models, employing advanced analyt-
ical techniques, and fostering collaborative efforts for global
harmonization, researchers can generate more robust and clinically
relevant preclinical data to support the successful translation of
MSC-EV therapies for wound healing applications.

5. Clinical translation and the regulatory landscape for
engineered EV therapies

5.1. Lessons from cell therapies and advantages of EV-based
approaches

The field of engineered EV therapies is evolving by leveraging
insights from established cell therapy techniques, both autologous
and allogeneic. Notably, autologous cell therapies like chimeric
antigen receptor (CAR) T-cell treatments have shown high success
rates in treating certain cancers but are constrained by significant
costs and complex manufacturing processes [172,173]. These chal-
lenges underscore the need for more scalable and cost-effective
alternatives such as allogeneic and acellular therapies.

Allogeneic MSC therapies, for instance, are promising but face
commercialization bottlenecks exemplified by high production
costs and logistical complexities seen in therapies like TEMCELL HS
Inj [173,174]. These challenges underscore the need for innovative
manufacturing and delivery strategies to improve patient access to
such therapies.

Engineered EVs offer several advantages over traditional cell
therapies, including greater stability, scalability, and reduced
immunogenicity [ 109,175]. However, they also share some common
challenges with cell therapies, such as ensuring batch-to-batch
consistency and developing reliable potency tests [176]. Address-
ing these challenges necessitates the development of standardized
manufacturing processes and robust quality control measures
specifically tailored for EV therapies [177].

5.2. Navigating the global regulatory landscape and harmonization
efforts

The regulatory landscape for EV therapies is complex and varies
significantly across regions, impacting their development and
clinical use. In the United States, the Food and Drug Administration
(FDA) classifies EVs as biological products, subjecting them to
stringent regulations, such as adherence to cGMP guidelines [178].
In contrast, the European Union employs a different framework,
categorizing them as advanced therapy medicinal products, which
necessitates distinct approaches for development and clinical trials.

Navigating these regulatory differences demands a deep un-
derstanding of each jurisdiction's specific requirements and the
formulation of tailored strategies for product development and
clinical trials [178]. Furthermore, global harmonization of regula-
tory standards spearheaded by organizations like the World Health
Organization and the International Council for Harmonization is
crucial. These efforts aim to standardize safety, quality, and efficacy
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evaluations for EV therapies worldwide, facilitating their global
adoption [179].

5.3. Advancing preclinical and clinical development of EV therapies

Developing reliable potency assays and standardized
immunogenicity models is essential for the successful progres-
sion of EV therapies [156]. Robust in vitro and in vivo assays
that can accurately predict the therapeutic efficacy and safety of
EV therapies are crucial for their clinical translation. Addition-
ally, research using large-scale datasets and organoid systems
is providing valuable insights into biodistribution and bioac-
tivity; however, the development of scalable and representa-
tive assays remains critical for ensuring clinical reliability and
safety [180].

The growing interest in EV therapies for wound healing has
ignited several clinical trials, albeit in their early phases. These trials
underscore the potential of EVs in therapeutic applications.
Addressing challenges such as demonstrating efficacy, ensuring
consistent product quality, and managing potential immune re-
sponses or toxicity arising from EV content heterogeneity is
essential for advancing these therapies.

5.4. Future directions and collaborative efforts for clinical
translation

Successful clinical translation of EV therapies for wound healing
and other applications necessitates a multifaceted approach. This
includes developing standardized, scalable, and GMP-compliant
processes. Additionally, robust characterization techniques and
quality control measures are essential to ensure product consis-
tency and safety. Well-designed clinical trials are necessary to
evaluate the efficacy, safety, and long-term effects of EV therapies
across diverse patient populations [181,182].

Collaboration among researchers, clinicians, regulatory bodies,
and industry partners is paramount to accelerate the development
and commercialization of EV therapies. Engaging with patient
advocacy groups and other stakeholders ensures ethical and
responsible development, focusing on patient access and afford-
ability [183].

By addressing these challenges and pursuing collaborative ef-
forts, the field of EV therapies can progress towards providing safe,
effective, and accessible treatments for patients in need. Stan-
dardized protocols, best practices, and knowledge sharing are
crucial for advancing the development and commercialization of
these promising therapies.

6. Conclusion and future directions

eMSC-EVs represent a significant advancement in chronic
wound treatment, offering a transformative shift from passive
dressings to targeted regenerative therapies [148]. This multidis-
ciplinary field leverages the regenerative potential of stem cells
within a stable, bioengineered nanocarrier platform, scrupulously
designed to promote healing in non-healing wounds. As millions
grapple with chronic wounds, this emerging field holds immense
promise to revolutionize patient care and improve quality of life
[184,185].

Realizing this potential necessitates ongoing innovation at the
intersection of bioengineering, cell biology, and translational
medicine. CRISPR technology allows for precise modification of
MSC genomes, paving the way for next-generation therapeutic EVs
selectively enriched with regenerative molecules like anti-
inflammatory cytokines, proangiogenic factors, and miRNA regu-
lators of healing pathways [186,187]. Concurrently, advancements
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in microfluidic manufacturing platforms for large-scale GMP pro-
duction ensure consistent quality control of these complex bi-
ologics [66,123]. Furthermore, integrating advanced analytical tools
like Al-powered proteomics and high-resolution flow cytometry
facilitates comprehensive molecular profiling and functional opti-
mization of engineered EV therapies [67,188-190].

Critical to expediting clinical translation is a conscientious focus
on patient safety. Rigorous preclinical assessments elucidating
potential risks, including immunogenicity, tumorigenicity, off-
target effects, and biodistribution profiles, are essential before hu-
man trials [191,192]. Simultaneously, innovative collaborative
frameworks combining regulatory science, bioengineering in-
novations, regenerative medicine insights, and patient advocacy
are essential for harmonizing global standards and expediting a
streamlined pathway for engineered EV therapies to reach patients
worldwide [169].

Exosome surface engineering and targeting represent a prom-
ising strategy to enhance the therapeutic potential of MSC-EVs for
wound healing. This approach holds great promise for clinical
translation by improving targeting specificity, bioavailability, and
overall efficacy of MSC-EV therapies. However, continued research
and development, along with interdisciplinary collaborations, are
crucial to fully harness this potential.

Looking ahead, the potential of stem cell-derived EVs extends
far beyond chronic wounds, potentially catalyzing a new era of
tissue restoration across regenerative medicine. These biomimetic
nanotherapies encapsulate the restorative capacity of stem cells in
a readily available modality, offering promise in revitalizing
damaged organs, alleviating neuropathic pain, and reducing human
suffering globally [184]. Driven by patient-centric innovation,
continuous collaboration, and profound biological insights, this
nascent field holds immense promise for restoring lives with the
healing power of our own cells.
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