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Abstract: Three major cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β),
and IL-6, mediate endotoxemia-induced liver injury. With the similar structures to the binding do-
mains of the three cytokines to their cognate receptors, the novel peptide KCF18 can simultaneously
inhibit TNF-α, IL-1β, and IL-6. We elucidated whether KCF18 can alleviate injury of liver in endotox-
emic mice. Adult male mice (BALB/cJ) were intraperitoneally (i.p.) administered lipopolysaccharide
(LPS, 15 mg/kg; LPS group) or LPS with KCF18 (LKCF group). Mice in the LKCF group received
KCF18 (i.p.) at 2 h (0.6 mg/kg), 4 h (0.3 mg/kg), 6 h (0.3 mg/kg), and 8 h (0.3mg/kg) after LPS
administration. Mice were sacrificed after receiving LPS for 24 h. Our results indicated that the
binding levels of the three cytokines to their cognate receptors in liver tissues in the LKCF group
were significantly lower than those in the LPS group (all p < 0.05). The liver injury level, as measured
by performing functional and histological analyses and by determining the tissue water content
and vascular permeability (all p < 0.05), was significantly lower in the LKCF group than in the LPS
group. Similarly, the levels of inflammation (macrophage activation, cytokine upregulation, and
leukocyte infiltration), oxidation, necroptosis, pyroptosis, and apoptosis (all p < 0.05) in liver tissues
in the LKCF group were significantly lower than those in the LPS group. In conclusion, the KCF18
peptide–based simultaneous inhibition of TNF-α, IL-1β, and IL-6 can alleviate liver injury in mice
with endotoxemia.

Keywords: TNF-α; IL-1β; IL-6; necroptosis; pyroptosis; apoptosis; liver

1. Introduction

Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and IL-6 are three major
inflammatory cytokines that actively participate in mediating the development of organ
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injury (e.g., that of the liver) induced by endotoxemia and sepsis [1–3]. The three major in-
flammatory cytokines are produced by infectious, stimulus-activated immune cells during
endotoxemia and sepsis and released into circulation in the early phase of endotoxemia
and sepsis through activation of Toll-like receptor followed by the subsequent activation of
nuclear factor-κB (NF-κB) [4,5]. In experimental studies, TNF-α, IL-1β, and IL-6 peaked
in concentration within 90, 120, and 240 min, respectively, after endotoxin infusion [6,7].
Moreover, clinical studies on patients with endotoxemia and sepsis have reported robust
correlations of the three major inflammatory cytokines concentrations with disease severity
and organ dysfunction or failure [8,9].

Through directly activating NF-κB to prompt inflammatory cytokines (e.g., IL-6)
and chemokines upregulation, TNF-α plays a central role in mediating inflammatory
response [10]. TNF receptor 1 (TNFR1) is a transmembrane death receptor and the cognate
receptor of TNF-α [11]. When binding with circulating TNF-α, TNFR1 can provoke the
cell death processes of necroptosis and apoptosis and cause damage to vital organs (e.g.,
liver) [11–13]. IL-1β also plays a central role in mediating inflammatory response [14].
Upon induction, IL-1β is firstly presented as the inactive precursor form pro-IL-1β [15].
Then, this inactive form pro-IL-1β will be transformed into the active form IL-1β following
caspase-1-mediated cleavage [15]. With binding to its cognate receptor IL-1 receptor
(IL-1R), IL-1β prompts MyD88 recruitment and NF-κB activation to cause subsequent
productions of inflammatory cytokines (e.g., IL-6) and chemokines [14,16]. IL-1β is also
associated with the cell death process of pyroptosis, which involves activation of the crucial
nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome
pathway and caspase-1 [15,17]. IL-6, similar to TNF-α and IL-1β, also plays a central role in
mediating inflammatory response [18]. Acting through binding with IL-6 receptor (IL-6R),
i.e., the cognate receptor, IL-6 exerts various pathological effects (e.g., vascular endothelial
breakdown) that may result in organ injury (i.e., through classical IL-6 signaling) [19]. In
addition to IL-6R, classical IL-6 signaling activates crucial pathways of STAT3 and Akt [20].
Moreover, the three major inflammatory cytokines can increase the production of reactive
oxygen and nitrogen species and impose oxidative stress in vital organs [8]. Subsequently,
oxidative stress may contribute to organ injury induced by endotoxemia and sepsis [8].

Anticytokine therapy that involves the blockade of cytokines and the inhibition of the
binding of cytokines to their cognate receptors has been developed for treating endotoxemia
and sepsis. For instance, we recently developed a novel peptide-based anti-TNF-α therapy
against endotoxemia and confirmed its therapeutic effects [21]. Our results demonstrated
that the novel peptide SEM18, with the structures similar to the binding domain of TNF-α
to TNFR1, can act by binding with TNF-α (i.e., as a binding decoy) to, in turn, reduce TNF-
α/TNFR1 binding, thus ameliorating organ injury and improving survival in endotoxemic
mice [21]. In addition, the beneficial effects of monoclonal antibody-based anti-TNF-α, anti-
IL-1β, or anti-IL-6 therapy individually on sepsis have previously been reported [22–24].
However, treatments that can simultaneously block the three major inflammatory cytokines
and exert therapeutic effects on endotoxemia and sepsis remain to be developed.

A study employed a molecular docking simulation technique [25] to design a novel
peptide KCF18 possessing structures similar to the binding domains of the three major
inflammatory cytokines to the respective cognate receptors [26]. The findings in an ex vivo
model demonstrated that KCF18 can act as a decoy for bindings to concurrently block
TNF-α, IL-1β, and IL-6 [26]. Furthermore, the results in ex vivo experiments revealed
the potent anti-inflammatory activity of KCF18 [26]. In this study, we elucidated the
therapeutic effects of the novel peptide KCF18 on endotoxemia by using an endotoxin-
induced monomicrobial sepsis murine model. We hypothesized that KCF18 can alleviate
liver injury in endotoxin-treated mice. We determined whether KCF18 can reduce the
bindings of TNF-α/TNFR1, IL-1β/IL-R, and IL-6/IL-6R in liver tissues. In addition, we
elucidated possible underlying mechanisms in mediating therapeutic effects of the KCF18
peptide against endotoxemia-induced injury of liver, particularly cell death processes,
namely necroptosis, pyroptosis, and apoptosis. Moreover, as demonstrated in our recent
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SEM18 peptide study, the in vivo half life of peptides was short [21]. Based on those data,
this study designed a therapeutic regimen with a loading dose of peptide followed by
repeated doses of peptide to achieve and maintain therapeutic levels.

2. Materials and Methods
2.1. Approval of Animal Experiment and Study

We used male, adult BALB/cJ mice (age: 7–8 weeks) from Taiwan National Laboratory
Animal Center (Taipei, Taiwan) in this study. All mice were maintained on a 12 h light/12 h
dark cycle and provided with standard laboratory mouse diet and accessing to water freely.
The care and handling of the mice were conducted in conformity with the US National
Institutes of Health (NIH) guidelines. The Institutional Animal Use and Care Committee,
Taipei Medical University, approved all the animal studies (LAC-2017-0206).

2.2. Peptide Design and Synthesis

KCF18 (molecular weight: 2195.92 Da) based on structures derived from TNFR1,
IL-1R, and IL-6R was designed using a protein docking ZDOCK software (Biovia Discovery
Studio 3.5; Biovia, San Diego, CA, USA) per a method reported previously [26]. In addition,
a random peptide (KCP; molecular weight: 2195.92 Da) was designed as the control. KCF18
and KCP were both synthesized (Mission Biotech, Taipei, Taiwan). High-performance
liquid chromatography data revealed that the purity of both peptides was 95%.

2.3. Pharmacokinetic Analysis

For KCF18 pharmacokinetic analysis, a set of mice was employed. Pharmacokinetic
analysis was performed according to the method of a previous study [27]. In brief, the mice
were intraperitoneally (i.p.) administered one dose of KCF18 (0.6 mg/kg). Serial samples
of blood were obtained through submandibular vein puncture before dosing (time 0) and
at another 5 time points (i.e., 0.5, 1, 2, 4, 8, and 12 h) after KCF18 administration. Blood
samples were centrifuged (3000 rpm, 10 min) immediately after collection. Then, plasma
samples were collected and stored (−80 ◦C) until analysis. The plasma concentrations of
KCF18 were analyzed through liquid chromatography–tandem mass spectrometry (Xevo
TQ-S with Acquity UPLC pump system; Waters, Milford, MA, USA). Data were analyzed
with MassLynx 4.1 Software (version 4.1, SCN 714; Waters) to facilitate the pharmacokinetic
analysis of KCF18.

The KCF18 in vivo half life, as our data demonstrated, was estimated to be 2 h.
Detailed information is provided in Section 3.1.

2.4. Ex Vivo Bioluminescence Imaging

The biodistribution of KCF18 was determined by performing ex vivo biolumines-
cence imaging analysis per a previously reported method [21]. For imaging, KCF18 was
conjugated with rhodamine B (Abcam, Cambridge, UK). One dose (0.6 mg/kg, i.p.) of
rhodamine B-conjugated KCF18 was injected. Two hours later, the mice were euthanized,
and the organs (including heart, lung, liver, kidney, and spleen) were collected. An in vivo
imaging system (IVIS Lumina XRMS; PerkinElmer, Waltham, MA, USA) was employed and
bioluminescence imaging assay was conducted. Images were analyzed with PerkinElmer’s
Living Image software.

2.5. Cytokine Receptor Binding Assay

Immunofluorescence staining and the proximity ligation assay (PLA) were performed
to evaluate bindings of TNF-α, IL-1β, and IL-6 to TNFR1, IL-1R, and IL-6R, respectively, in
liver tissues, per a previously reported method [28]. A DuoLink Mouse Rabbit in situ PLA
kit from Sigma-Aldrich (St. Louis, MO, USA) was employed, and the assay was performed
per the manufacturer’s protocol. After blocking, sections of liver tissues were incubated
with primary antibodies against TNF-α and TNFR1, IL-1β and IL-1R, or IL-6 and IL-6R
(all from Abcam, Cambridge, UK), followed by incubation with secondary antibodies
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(namely PLA probes) labeled with oligonucleotide. Nuclei staining was performed using
4′,6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich). A microscope (DeltaVision Elite
microscope; GE Healthcare, Marlborough, MA, USA) was employed for visualizing tissue
sections. All images were analyzed with the image processing software Image J (a free
software developed by NIH, USA; https://imagej.nih.gov/ij/, accessed on 11 July 2018.).

2.6. Endotoxemia Murine Model and Peptide Therapy

Gram (-) endotoxin (lipopolysaccharide, LPS, Escherichia coli 0127:B8 from Sigma-
Aldrich) was employed to prompt endotoxemia and liver injury per a previously reported
method [29]. The mice were randomly allocated to receive LPS (15 mg/kg, i.p.), LPS with
KCF18, or LPS with KCP (designated as the LPS group, LKCF group, and LKCP group,
respectively). To serve as the respective control of those groups treated with LPS, another
set of mice was allocated randomly to receive 0.9% saline (NS; 0.5 mL, i.p.), NS with KCF18,
or NS with KCP (designated as the Sham group, KCF group, and KCP group, respectively).
Four doses of the peptide were administered to the mice receiving peptide therapy. The
first dose (KCF18 or KCP, 0.6 mg/kg, i.p.) was injected 2 h after LPS or NS, and then,
3 supplemental doses (KCF18 or KCP, 0.3 mg/kg) were respectively injected 4, 6, and 8 h
after LPS or NS, according to KCF18 pharmacokinetic data.

2.7. Blood Sampling, Liver Harvesting, and Wet/Dry Weight (W/D) Ratio Determination

All mice were closely monitored for 24 h. The surviving mice received zoletil/xylazine
(40/10 mg/kg, i.p.) for anesthesia. After obtaining blood samples, decapitation was
performed to euthanize the mice. Then, the liver tissues were collected. Part of the liver
tissues (the right and median lobes) were immediately frozen with liquid nitrogen and
then stored (−80 ◦C) for later analysis. Part of the liver tissues (the left lobe) was placed in
10% formalin (Sigma-Aldrich) for histological analysis.

Moreover, for liver water content assay, part of the liver tissues (the caudate lobe) was
freshly collected, weighed, placed in an oven (80 ◦C) for 24 h, and weighed again. Then,
the W/D weight ratio was calculated to determine liver water content [30].

2.8. Vacular Permeability Assay

Vascular permeability was examined using an Evans blue dye (EBD) extravasation
assay [31]. A set of mice was treated per the aforementioned method. At 23 h after NS or
LPS administration, EBD (2% solution in NS; 2 mL/kg, Sigma-Aldrich) was administered
intravenously. One hour later, mice received zoletil/xylazine (40/10 mg/kg, i.p.) for
anesthesia and then thoroughly perfused with NS to remove residual EBD. The liver tissues
were harvested, weighed, and then homogenized (1:3 volume ratio of 50% trichloroacetic
acid, Sigma-Aldrich). After the removal of tissue debris and protein precipitates, the
EBD concentration in supernatants was determined through spectroscopy by examining
absorbance at 620 nm.

2.9. Liver Enzyme Measurements

Liver enzymes concentrations, namely alanine aminotransferase (ALT) and aspartate
aminotransferase (AST), in the collected blood samples were measured using the Vitros
750 autoanalyzer (Johnson & Johnson, New Brunswick, NJ, USA) to determine injury level
of liver [21].

2.10. Histological Analysis of Liver

The liver tissues fixed in formalin were placed in paraffin wax, followed by being seri-
ally sectioned and then stained using hematoxylin and eosin. Histological characteristics,
including infiltration of polymorphonuclear neutrophil (PMN), focal necrosis, interstitial
edema, and congestion/hemorrhage, were appraised with a light microscope. Then, the
liver injury level was determined by calculating Suzuki scores (namely sum scores of

https://imagej.nih.gov/ij/
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vacuolization (0: none; 4: severe), necrosis (0: none; 4: >60%), and congestion (0: none;
4: severe)) [32].

2.11. Enzyme-Linked Immunosorbent Assay (ELISA)

Hepatic concentrations of cytokines were assayed using ELISA. Commercial kits of
ELISA for TNF-α, pro-IL-1β, and IL-6 (Enzo Life Science, Farmingdale, NY, USA) were used.
Snap-frozen tissues were crushed (on dry ice), homogenized (at low speed with protease
inhibitors), and centrifuged per the manufacturer’s protocol. Then, the supernatants were
collected and ELISA was performed to determine the hepatic cytokines concentrations,
also according to the manufacturer’s protocol.

2.12. Immunohistochemistry Staining

The statuses of lipid peroxidation, M1/M2 macrophage polarization, necroptosis,
and pyroptosis were determined through immunohistochemistry staining, per a previ-
ously reported method [7–11]. Liver tissues (in paraffin sections) were incubated with
primary antibodies against one of the following: malondialdehyde (MDA; Abcam), a
lipid peroxidation-related protein [33]; inducible nitric oxide synthase (iNOS; Abcam), an
M1 phase macrophage polarization-related protein [34]; CD206 (Abcam), an M2 phase
macrophage polarization-related protein [34]; phosphorylated mixed lineage kinase domain-
like pseudokinase (pMLKL; Abcam), a necroptosis-related protein [35]; or NLRP3 (Abcam),
a pyroptosis-related protein [17]. All the sections were observed under the TissueGnostics
Axio Observer Z1 microscope (TissueGnostics, Vienna, Austria) and then quantified and
analyzed using the image processing software Image J.

2.13. The Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling (TUNEL) Assay

The key characteristic of apoptosis, i.e., DNA fragmentation, in liver tissues was
examined using the TUNEL assay [36]. A kit for in situ cell death detection (Roche,
Indianapolis, IN, USA) was used. Apoptotic cells were stained, as per the manufacturer’s
protocol. In addition, DAPI staining (Sigma-Aldrich) was conducted to examine the nuclei.
After scanning, five random fields (0.25 mm2) were selected to facilitate calculating the
mean TUNEL-positive cells of each group.

2.14. Immunoblotting Assay

Protein extraction from the freshly frozen liver tissues were conducted per a previ-
ously described method [21]. Then, proteins from each group (100 µg) were segregated
via electrophoresis and passed onto nitrocellulose membranes (Bio-Rad Laboratories, Her-
cules, CA, USA). The membranes were subsequently incubated with one of the following
primary antibodies: the anti-phospho-Akt (Thr308) antibody (p-Akt, #2965, Cell Signaling
Technology, Danvers, MA USA), anti-Akt antibody (#4691S, Cell Signaling), anti-phospho-
STAT3 (Thr705) antibody (p-STAT3, #9145, Cell Signaling), anti-STAT3 antibody (#30835,
Cell Signaling), anti-caspase-8 (EPR17367) antibody (ab1844721, Abcam), anti-caspase-1
(EPR4321) antibody (ab108362, Abcam), anti-BAX antibody (ab32503, Abcam), anti-Bcl-2
antibody (#2870, Cell Signaling), anti-actin antibody (A5441, Sigma-Aldrich; as an internal
standard), and anti-tubulin antibody (a7291, Abcam; also as an internal standard). Then,
the membranes were incubated with horseradish peroxidase-conjugated secondary an-
tibody (Abcam). Bound antibody was recognized using chemiluminescence (ECL Plus
kit; Amersham, Buckinghamshire, UK). Then, the membranes were scanned (Invitrogen
iBright CL1500 Imaging Systems, Thermo-Fischer, Waltham, MA, USA). The density of
each protein band on the scanned digital images was measured using the image processing
software Image J for densitometry analysis. Then, each protein band density was compared
to that of the internal standard (actin or tubulin) for normalization. The relative BAX/Bcl-2
ratio, which indicates susceptibility to apoptosis [21], was also calculated.
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2.15. Statistical Analysis

Data were calculated to determine the mean ± standard deviation. One-way analysis
of variance with post hoc pairwise comparisons using Tukey’s test were performed to
analyze differences between groups. A p value of <0.05 was considered as significant. The
software SPSS v21.0 (SPSS, Somers, NY, USA) was employed for statistical analysis.

3. Results
3.1. Pharmacokinetics and Tissue Distribution of KCF18

Figure 1a illustrates the pharmacokinetic data of KCF18. The plasma KCF18 concen-
tration measured 1 h after KCF18 administration was not significantly different from that
measured 0.5 h after KCF18 administration (i.e., the baseline). Notably, the plasma KCF18
concentrations measured 2, 4, and 8 h after KCF18 administration were comparable, and
all were significantly lower than the baseline (approximately 50% of the baseline; p = 0.015,
0.003 and 0.006, respectively). Moreover, the mean plasma KCF18 concentration measured
12 h after KCF18 administration was low. Thus, the KCF18 in vivo half life was estimated
to be 2 h after its i.p. administration.

Figure 1. (a) Pharmacokinetic analysis of KCF18. The plasma concentrations of KCF18 were measured
through the assay of liquid chromatography–tandem mass spectrometry. The KCF concentration
measured 0.5 h after intraperitoneal (i.p.) administration was used as the baseline. (b) Biodistribution
of KCF18. The fluorescence signal intensities of KCF18 were measured 0 h (baseline) and 2 h after i.p.
administration through the assay of the ex vivo bioluminescence imaging method. Data regarding
pharmacokinetics and biodistribution were obtained from four and three mice from each time point,
respectively. * p < 0.05 relative to the baseline.

As illustrated in Figure 1b, significant fluorescence signals of KCF18 were detected in
the heart, lung, liver, kidney, and spleen 2 h after i.p. KCF18 administration. Furthermore,
the signal intensities of KCF18 measured 2 h after KCF18 administration in the heart, lung,
liver, kidney, and spleen were all significantly higher than the baseline (i.e., 0 h after i.p.
KCF18 administration; p = 0.037, 0.046, 0.032, 0.032, and 0.030, respectively). These results
demonstrated significant KCF18 distribution in major organs after its i.p. administration.

3.2. KCF18 Inhibits LPS-Induced Cytokine Receptor Bindings in the Liver

Figure 2 illustrates the results of the binding assay performed to examine the binding
of cytokines to their cognate receptors in liver tissues. No significant hepatic PLA signals of
TNF-α/TNFR1, IL-1β/IL-1R, and IL-6/IL-6R were observed in the Sham, KCF, and KCP
groups (data not shown). By contrast, significant hepatic PLA signals of TNF-α/TNFR1, IL-
1β/IL-1R, and IL-6/IL-6R were noted in the LPS, LKCF, and LKCP groups (Figure 2a). The
hepatic PLA signal intensities of TNF-α/TNF, IL-1β/IL-1R, and IL-6/IL-6R in the LKCF
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group were approximately 26.3%, 18.2%, and 30.7% of those in the LPS group, respectively.
Our analyses revealed that the hepatic PLA signal intensities of TNF-α/TNFR1, IL-1β/IL-
1R, and IL-6/IL-6R in the LKCF group were significantly lower than those in the LPS group
(all p < 0.001, Figure 2b). Similar pictures were observed between the LKCF and the LKCP
groups (all p < 0.001, Figure 2b). These results indicated that KCF18 could simultaneously
inhibit bindings of the three major cytokines to their cognate receptors in liver tissues.

Figure 2. Binding assays of tumor necrosis factor-α (TNF-α)/TNF receptor 1 (TNFR1), interleukin-
1β (IL-1β)/IL-1 receptor (IL-1R), and IL-6/IL-6R in liver tissues that was measured 24 h after
intraperitoneal injection of lipopolysaccharide (LPS), using methods of immunofluorescence staining
and the proximity ligation assay (PLA). (a) Characteristic microscopic images of PLA. A positive PLA
signal was identified as red dots, indicating positive TNF-α/TNFR1, IL-1β/IL-1R, or IL-6/IL-6R
protein/protein interactions in liver tissues, respectively. DAPI staining of nuclei in liver tissues
was identified as blue dots. (b). The ratios of PLA dots, comparing to those in the LPS group. LPS:
the LPS (15 mg/kg) group. LKCF: the LPS with KCF18 peptide group. LKCP: the LPS with control
peptide group. Data are expressed as mean ± standard deviation. PLA data were derived from five
mice from each group. # p < 0.05, LKCF group comparing to LPS group. † p < 0.05, LKCP group
comparing to LKCF group.

3.3. KCF18 Inhibits LPS-Induced Liver Injury and Oxidation

All mice survived the experiment. Figure 3a shows the histological characteristics
and injury scores (Suzuki scores) of the liver tissues. Liver injury was determined through
measuring the AST and ALT concentrations in plasma (Figure 3b). Figure 3c presents
the oxidation status determined by measuring the lipid peroxidation of the liver tissues.
Histological analysis revealed no significant liver injury characteristics in the Sham, KCF,
and KCP groups. Suzuki scores, plasma AST and ALT concentrations, and hepatic MDA
expression levels were low in the Sham, KCF, and KCP groups. By contrast, histological
analysis revealed significant characteristics of liver injury in the LPS group. Suzuki scores,
AST and ALT concentrations in plasma, and hepatic MDA expression levels were all
significantly higher in the LPS group than those in the Sham group (p = 0.002, < 0.001,
= 0.003, and < 0.001, respectively). By contrast, the level of liver injury in the LKCF
group was significantly lower than that in the LPS group. Our findings revealed lower
Suzuki scores, plasma AST and ALT concentrations, and hepatic MDA expression levels
in the LKCF group than those in the LPS group (p < 0.001, < 0.001, = 0.024, and < 0.001,
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respectively). Similar pictures were observed between the LKCF and the LKCP groups
(Suzuki scores: p = 0.010; AST: p = 0.001; ALT: p < 0.001; MDA: p < 0.001). These results
demonstrated that KCF18 alleviated LPS-induced liver injury and oxidation.

Figure 3. Liver injury and oxidative status. (a) Characteristic microscopic images of liver tissues with hematoxylin and
eosin staining (200×) and Suzuki scores, i.e., liver injury scores. (b) Concentrations of aspartate aminotransferase (AST) and
alanine aminotransferase (ALT) in plasma. (c) Characteristic microscopic images of malondialdehyde (MDA, as marked by
the red arrow; 200×) in liver tissues determined with immunohistochemistry analysis as well as the sum of the quantitative
intensity of MDA. Sham: the normal saline (NS) group. KCF: the NS with KCF18 peptide group. KCP: the NS with
control peptide (CP) group. LPS: the lipopolysaccharide (LPS; 15 mg/kg) group. LKCF: the LPS with KCF18 peptide
group. LKCP: the LPS with CP group. All data were measured 24 h after NS or LPS administration. Data are expressed as
mean ± standard deviation. Data regarding Suzuki scores, AST, ALT, and MDA were derived from four, five, five, and five
mice from each group, respectively. * p < 0.05, LPS group comparing to Sham group. # p < 0.05, LKCF group comparing to
LPS group. † p < 0.05, LKCP group comparing to LKCF group.

3.4. KCF18 Inhibits the LPS-Induced Increase in Vascular Permeability and Akt and
STAT3 Activation

Figure 4a shows the findings of vascular permeability, as measured by calculating
the W/D weight ratio and EBD concentration in liver tissues. Figure 4b shows the levels
of Akt and STAT3 activation in the liver tissues, as measured through immunoblotting
assay. Analyses of the Sham, KCF, and KCP groups revealed low W/D weight ratios,
low EBD concentrations in liver tissues, and low hepatic concentrations of p-Akt and p-
STAT3. By contrast, the W/D weight ratios, EBD concentrations in liver tissues, and hepatic
concentrations of p-Akt and p-STAT3 were significantly higher in the LPS group than those
in the Sham group (p < 0.001, = 0.003, = 0.034, and = 0.007, respectively). Notably, the W/D
weight ratio and EBD concentrations in liver tissues were significantly lower in the LKCF
group than those in the LPS group (p < 0.001 and = 0.003, respectively). In addition, the
W/D weight ratio was significantly lower in the LKCF group than that in the LKCP group
(p = 0.002). Moreover, the concentration of EBD, p-Akt, and p-STAT3 in the liver tissues
were lower in the LKCF group than those in the LKCP group; however, the differences
were not statistically significant (p = 0.15, 0.27, and 0.18, respectively). These findings
demonstrated that KCF18 mitigated the LPS-induced increase in vascular permeability and
Akt and STAT3 activation in the liver tissues.
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Figure 4. Vascular permeability status and activation levels of Akt and STAT3. (a) Wet/dry (W/D) weight ratio and Evans
blue dye (EBD) concentration in liver tissues. (b) Characteristic gel images of phosphorylated Akt (p-Akt), Akt, phosphory-
lated STAT3 (p-STAT3), STAT3, and actin (as the internal standard) in liver tissues analyzed through immunoblotting assay;
findings are presented with the relative band density of p-Akt/actin and p-STAT3/actin. Sham: the normal saline (NS)
group. KCF: the NS with KCF18 peptide group. KCP: the NS with control peptide (CP) group. LPS: the lipopolysaccharide
(LPS; 15 mg/kg) group. LKCF: the LPS with KCF18 peptide group. LKCP: the LPS with CP group. All data were measured
24 h after NS or LPS administration. Data are expressed as mean ± standard deviation. Data regarding the W/D weight
ratio, EBD assay, p-Akt/Akt/actin, and p-STAT3/STAT3/actin were obtained from five, three, three, and three mice from
each group, respectively. * p < 0.05, LPS group comparing to the Sham group. # p < 0.05, LKCF group comparing to the LPS
group. † p < 0.05, LKCP group comparing to the LKCF group.

3.5. KCF18 Inhibits LPS-Induced Liver Inflammation

Liver inflammation was determined by examining macrophage activation in the liver
tissues (Figure 5a). The expression level of iNOS (i.e., M1 phase polarization) was low in
the Sham, KCF, and KCP groups. By contrast, the iNOS expression level in the LPS group
was significantly higher than that in the Sham group (p < 0.001). In addition, the iNOS
expression level in the LKCF group was significantly lower than that in the LPS group
(p < 0.001). Similarly, the iNOS expression level in the LKCF group was significantly lower
than that in the LKCP group (p < 0.001). The expression level of CD206 (i.e., M2 phase
polarization) was similar in the Sham, KCF, and KCP groups. In contrast to that of iNOS,
the expression level of CD206 in the LPS group was significantly lower than that in the
Sham group (p = 0.014). Moreover, the expression level of CD206 in the LKCF group was
significantly higher than those in the LPS group (p = 0.014) and the LKCP group (p = 0.015).
Liver inflammation was also determined by examining cytokine upregulation and PMN
infiltration in the liver tissues (Figure 5b). Our findings revealed that the data of hepatic
TNF-α, pro-IL-1β, and IL-6 concentrations as well as the data of PMN infiltration level
paralleled the data of iNOS, except that the differences in hepatic TNF-α, pro-IL-1β, and IL-
6 concentrations between the LKCF and the LKCP groups were not statistically significant
(p = 0.389, 0.102, and 0.867, respectively). Collectively, these findings demonstrated that
KCF18 alleviated LPS-induced liver inflammation.
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Figure 5. Liver inflammation status. (a) Characteristic microscopic images (200×) of inducible nitric oxide synthase (iNOS,
as marked by the red arrow; the M1 phase polarization marker) and CD206 (as marked by the black arrow; the M2 phase
polarization marker) in liver tissues obtained by performing immunohistochemistry analysis; findings are presented with
the respective quantitative sum intensity of iNOS and CD206. (b) Concentrations of tumor necrosis factor-α (TNF-α), pro-
interleukin-1β (pro-IL-1β), and interleukin (IL-6) in liver tissues, as determined using the enzyme-linked immunosorbent
assay, and the polymorphonuclear leukocyte (PMN) infiltration level in liver tissues. Sham: the normal saline (NS) group.
KCF: the NS with KCF18 peptide group. KCP: the NS with control peptide (CP) group. LPS: the lipopolysaccharide (LPS;
15 mg/kg) group. LKCF: the LPS with KCF18 peptide group. LKCP: the LPS with CP group. All data were measured 24 h
after NS or LPS administration. Data are expressed as mean ± standard deviation. Data regarding iNOS, C206, TNF-α,
pro-IL-1β, IL-6, and PMN infiltration were derived from 5, 5, 3, 3, 3, and 5 mice from each group, respectively. * p < 0.05,
LPS group comparing to Sham group. # p < 0.05, LKCF group comparing to LPS group. † p < 0.05, LKCP group comparing
to LKCF group.

3.6. KCF18 Inhibits LPS-Induced Liver Necroptosis

Liver necroptosis status was examined by determining the expression levels of pMLKL
and cleaved caspase 8 in the liver tissues (Figure 6a,b, respectively). The expression levels
of pMLKL and cleaved caspase 8 were low in the Sham, KCF, and KCP groups. Moreover,
the expression levels of pMLKL and cleaved caspase 8 in the LPS group were significantly
higher than those in the Sham group (p < 0.001 and = 0.013, respectively). Notably, the
expression levels of pMLKL and cleaved caspase 8 in the LKCF group were significantly
lower than those in the LPS group (p < 0.001 and = 0.002, respectively) and those in the
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LKCP group (p < 0.001 and = 0.025, respectively). These data indicated that KCF18 could
inhibit LPS-induced liver necroptosis.

Figure 6. Liver necroptosis status. (a) Characteristic microscopic images (200×) of phosphorylated mixed lineage kinase
domain-like pseudokinase (pMLKL, as marked by the red arrow) in liver tissues obtained by performing immunohisto-
chemistry analysis; findings are presented with the sum quantitative intensity of pMLKL. (b) Characteristic gel images of
cleaved caspase 8 and tubulin (as the internal standard) in liver tissues obtained through immunoblotting assay; findings are
presented with the relative band density of cleaved caspase-8 and tubulin. Sham: the normal saline (NS) group. KCF: the NS
with KCF18 peptide group. KCP: the NS with control peptide (CP) group. LPS: the lipopolysaccharide (LPS; 15 mg/kg)
group. LKCF: the LPS with KCF18 peptide group. LKCP: the LPS with CP group. All data were measured 24 h after NS
or LPS administration. Data are expressed as mean ± standard deviation. Data regarding pMLKL and cleaved caspase 8
were derived from five and three mice from each group, respectively. * p < 0.05, LPS group compared to the Sham group.
# p < 0.05, LKCF group compared to the LPS group. † p < 0.05, LKCP group compared to the LKCF group.

3.7. KCF18 Inhibits LPS-Induced Liver Pyroptosis

Liver pyroptosis status was examined by determining NLRP3 and cleaved caspase
1 expression levels in liver tissues (Figure 7a,b, respectively). Hepatic NLRP3 inflamma-
some and cleaved caspase 1 expression levels in the Sham, KCF, and KCP groups were low.
By contrast, hepatic NLRP3 and cleaved caspase 1 expression levels in the LPS group were
significantly higher than those in the Sham group (p < 0.001 and = 0.006, respectively). In
addition, hepatic NLRP3 and cleaved caspase 1 expression levels in the LKCF group were
significantly lower than those in the LPS group (p = 0.010 and = 0.002, respectively) and
those in the LKCP group (p = 0.003 and = 0.032, respectively). These findings demonstrated
that KCF18 could inhibit LPS-induced liver pyroptosis.
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Figure 7. Liver pyroptosis status. (a) Characteristic microscopic images (200×) of nucleotide-binding
oligomerization domain-like receptor protein 3 (NLRP3, as marked by the red arrow) in liver tissues
obtained by performing immunohistochemistry analysis; findings are presented with the sum
quantitative intensity of NLRP3. (b) Characteristic gel images of cleaved caspase 1 and tubulin (as
the internal standard) in liver tissues obtained through immunoblotting assay; findings are presented
with the relative band density of cleaved caspase-1 and tubulin. Sham: the normal saline (NS) group.
KCF: the NS with KCF18 peptide group. KCP: the NS with control peptide (CP) group. LPS: the
lipopolysaccharide (LPS; 15 mg/kg) group. LKCF: the LPS with KCF18 peptide group. LKCP: the
LPS with CP group. All data were measured 24 h after NS or LPS administration. Data are expressed
as mean ± standard deviation. Data regarding pMLKL and cleaved caspase 8 were derived from
five and three mice from each group, respectively. * p < 0.05, LPS group compared to the Sham
group. # p < 0.05, LKCF group compared to the LPS group. † p < 0.05, LKCP group compared to
the LKCF group.

3.8. KCF18 Inhibits LPS-Induced Liver Apoptosis

Liver apoptosis status was determined by examining DNA fragmentation using the
TUNEL assay (Figure 8a) and evaluating the expression levels of proapoptotic BAX and
antiapoptotic Bcl-2 (Figure 8b) in the liver tissues. The counts of TUNEL-positive cells in
the Sham, KCF, and KCP groups were low. By contrast, the count of TUNEL-positive cells
in the LPS group was significantly higher than that in the Sham group (p < 0.001). The
count of TUNEL-positive cells in the LKCF group was significantly lower than those in
the LPS and LKCP groups (both p < 0.001). Similarly, the expression level of BAX in the
Sham, KCF, and KCP groups was low. By contrast, the expression level of BAX in the LPS
group was significantly higher than that in the Sham group (p = 0.035). Furthermore, the
expression level of BAX in the LKCF group was significantly lower than those in the LPS
and LKCP groups (p = 0.015 and = 0.029, respectively). The expression levels of Bcl-2 in the
Sham, KCF, and KCP groups were comparable. By contrast, the Bcl-2 expression level in
the LPS group was significantly lower than that in the Sham group (p = 0.037). Furthermore,
the Bcl-2 expression level in the LKCF group was significantly higher than those in the
LPS and LKCP groups (p = 0.025 and 0.022, respectively). Moreover, the findings for the
BAX/Bcl-2 ratio were similar to those for BAX. These data indicated that KCF18 could
inhibit LPS-induced liver apoptosis.
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Figure 8. Liver apoptosis status. (a) Characteristic DNA fragmentation microscopic images (as marked by the red arrow) in
liver tissues (200×) obtained through the terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) method
and the count of TUNEL-positive cells (0.25 mm2). (b) Characteristic gel images of the proapoptotic BAX, the antiapoptotic
Bcl-2, and tubulin (as the internal standard) in liver tissues obtained through immunoblotting assay as well as the band
densities of BAX/tubulin, Bcl-2/tubulin, and BAX/Bcl-2 ratios. Sham: the normal saline (NS) group. KCF: the NS with
KCF18 peptide group. KCP: the NS with control peptide (CP) group. LPS: the lipopolysaccharide (LPS; 15 mg/kg) group.
LKCF: the LPS with KCF18 peptide group. LKCP: the LPS with CP group. All data were measured 24 h after NS or LPS
administration. Data are expressed as mean ± standard deviation. Data regarding TUNEL, BAX, and Bcl-2 were derived
from five, three, and three mice from each group, respectively. * p < 0.05, LPS group compared to the Sham group. # p < 0.05,
LKCF group compared to the LPS group. † p < 0.05, LKCP group compared to the LKCF group.

4. Discussion

The novel peptide KCF18 was designed to act as a binding decoy to concurrently
block TNF-α, IL-1β, and IL-6 and inhibit their bindings to their cognate receptors [26]. In
the present study, the PLA data indicated that KCF18 could simultaneously inhibit more
than 70% binding of TNF-α to TNFR1, more than 80% binding of IL-1β to IL-1R, and
approximately 70% binding of IL-6 to IL-6R in the liver tissues of mice with endotoxemia.
Considering that TNF-α, IL-1β, and IL-6 as well as their bindings to the cognate receptors
play crucial roles in mediating the development of endotoxemia-induced organ injury, we
hypothesized that KCF18 can alleviate acute liver injury in mice with endotoxemia. The
findings of the present study confirmed our hypothesis and demonstrated that the novel
peptide KCF18 could alleviate acute liver injury in the mice with endotoxemia. In addition,
our results demonstrated that KCF18 could alleviate inflammation, oxidation, and cell
death processes, namely necroptosis, apoptosis, and pyroptosis, in the liver tissues of
mice with endotoxemia. Collectively, these findings confirmed the therapeutic potential of
KCF18 against endotoxemia. The aforementioned mechanisms are summarized in Figure 9.
Since effective therapies against endotoxemia and sepsis have not yet been developed,
the findings of this study have potentially profound clinical implications and warrant
further investigation.

TNF-α and IL-1β can activate NF-κB and induce inflammatory cytokine production
(e.g., TNF-α, pro-IL-1β, and IL-6) [4,5,16]. KCF18 likely inhibits NF-κB activation and in
turn suppresses endotoxin-induced cytokine production by blocking TNF-α and IL-1β.
This hypothesis is supported by our finding that the hepatic TNF-α, pro-IL-1β, and IL-6
concentrations were significantly lower in the endotoxemic mice that were administered
KCF18 than in the endotoxemic mice that were not administered KCF18. Behaving in
line with this hypothesis, the endotoxemic mice that were administered KCF18 tended
to exhibit M2 macrophage polarization in their liver tissues, whereas the endotoxemic
mice that were not administered KCF18 tended to exhibit M1 macrophage polarization
in the liver tissues. These findings demonstrated that KCF18 could inhibit macrophage
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activation in the endotoxemic mice. In addition, our findings demonstrated that KCF18
could inhibit leukocyte infiltration in the liver tissues of the endotoxemic mice. Collectively,
these findings demonstrated that KCF18 alleviates endotoxemia-induced liver injury by
inhibiting the inflammatory response.

Figure 9. Diagram of the mechanisms of the novel peptide KCF18 on mitigating endotoxin-induced
liver injury in mice. IL-1β, interleukin-1β. IL-1R: interleukin-1 receptor. IL-6: interleukin-6. IL-6R:
interleukin-6 receptor. LPS: lipopolysaccharide. MDA: myeloperoxidase. NF-κB: nuclear factor-κB.
NLRP3: nucleotide-binding oligomerization domain-like receptor protein 3. pMLKL: phosphorylated
mixed lineage kinase domain-like pseudokinase. TNF-α: tumor necrosis factor-α. TNFR1: tumor
necrosis factor receptor 1.

The results of this study demonstrated that KCF18 suppressed endotoxemia-induced
lipid peroxidation in the liver tissues. ROS and RNS induced by oxidative stress may cause
tissue damage [37], and cytokines of TNF-α, IL-1β, and IL-6 can increase the production of
ROS and RNS during endotoxemia [8,9]. Notably, iNOS is the main source of RNS (e.g.,
NO) during endotoxemia, and iNOS expression is tightly regulated by NF-κB [38]. KCF18
likely inhibits the activation of NF-κB by blocking TNF-α as well as IL-1β. Consistent with
the aforementioned description, our findings demonstrated that hepatic iNOS expression
was significantly lower in the endotoxemic mice that were administered KCF18 than
that in the endotoxemic mice that were not administered KCF18. Collectively, these data
suggested that KCF18 inhibits endotoxemia-induced oxidative stress partly by inhibiting
iNOS upregulation in the liver tissues of endotoxemic mice.

Vascular endothelial breakdown triggered by upregulated IL-6 and its subsequent
binding to IL-6R (i.e., the classical IL-6 signaling) contributes to endotoxemia-induced
organ injury [19]. Our findings demonstrated that the levels of vascular permeability
and water content were lower in liver tissues of the endotoxemic mice administered
KCF18 than in those of the endotoxemic mice not administered KCF18. These findings
indicated that KCF18 could restore vascular endothelial integrity in the liver tissues of
the endotoxemic mice. Classical IL-6 signaling involves STAT3 and PI3K/Akt pathway
activations [20]. Our immunoblotting results revealed that the activation levels of STAT3
and Akt in liver tissues were both lower in the endotoxemic mice administered KCF18
than in the endotoxemic mice not administered KCF18. These findings indicated that
KCF18 exerts its therapeutic effects on endotoxemia-induced liver injury by modulating
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classical IL-6 signaling, inhibiting STAT3 and Akt activation as well as restoring vascular
endothelial integrity.

Crucial mechanisms mediating endotoxemia-induced acute organ injury involve cell
death processes, including necroptosis, pyroptosis, and apoptosis [11–13,15,17]. Upon
binding with TNF-α, the transmembrane death receptor TNFR1 can prompt cell death
processes of necroptosis and apoptosis [11–13]. Moreover, IL-1β upregulation is associated
with pyroptosis [15,17]. The findings of this study revealed the significant upregulation of
necroptosis-related proteins (i.e., MLKL and caspase-8) [35] and pyroptosis-related proteins
(i.e., NLRP3 and caspase-1) [17] in the liver tissues of the entotoxemic mice. In addition,
our findings revealed a significant increase in the count of TUNEL-positive cells, the upreg-
ulation of the proapoptotic protein BAX, the downregulation of the antiapoptotic protein
Bcl-2, and an increase in the BAX/Bcl-2 ratio [36] in the liver tissues of the endotoxemic
mice. These findings indicated the occurrence of significant necroptosis, pyroptosis, and
apoptosis in the liver tissues of endotoxemic mice. Furthermore, our results revealed lower
expression levels of pMLKL, caspase-8, NLRP3, caspase-1, and BAX; a lower count of
TUNEL-positive cells; and a lower BAX/Bcl-2 ratio in the liver tissues of endotoxemic
mice administered KCF18 than in those of the endotoxemic mice not administered KCF18.
By contrast, we observed a higher expression level of the antiapoptotic Bcl-2 in the liver
tissues of endotoxemic mice administered KCF18 than in those of the endotoxemic mice
not administered KCF18. These findings indicated that KCF18 could inhibit endotoxemia-
induced necroptosis, pyroptosis, and apoptosis in liver tissues. Collectively, these results
demonstrated that KCF18 exerted its therapeutic effects on endotoxemia-induced liver
injury by inhibiting necroptosis, pyroptosis, and apoptosis.

All existing anticytokine therapies against sepsis, including monoclonal antibody-
based anticytokine therapies and our recently developed SEM18 peptide-based anti-TNF-α
therapy, were designed to target a single cytokine and thus can inhibit only one cytokine
when administered to treat endotoxemia and sepsis. Since the novel peptide KCF18 could
simultaneously inhibit three cytokines (namely TNF-α, IL-1β, and IL-6), we conducted
this study to determine whether the simultaneous inhibition of TNF-α, IL-1β, and IL-6
by the KCF18 peptide could exert beneficial effects against endotoxemia (i.e., a model
of monomicrobial sepsis). In accordance with previous ex vivo data, the results of this
study indicated that KCF18 could simultaneously inhibit TNF-α, IL-1β, and IL-6 and
also inhibit their bindings to TNFR1, IL-1R, and IL-6R, respectively. Furthermore, the
findings of the present study indicated that KCF18 could alleviate acute liver injury in
the endotoxemic mice. These results confirmed the potent therapeutic effects of KCF18
against endotoxemia. Moreover, the findings of this study supported the concept that the
KCF18 peptide-based concurrent inhibition of three cytokines can be a novel therapeutic
strategy against endotoxemia and sepsis. Moreover, the KCF18 peptide-based therapy
has several advantages over the existing anticytokine therapies against endotoxemia and
sepsis. First, the KCF18 peptide-based therapy could simultaneously inhibit three cytokines.
However, unlike the KCF18 peptide-based therapy, existing anticytokine therapies can
inhibit only a single cytokine. Thus, three anticytokine therapies would be required to
achieve the same effect exerted by the KCF18 peptide-based therapy. Therefore, this KCF18
peptide-based therapy is simpler and more feasible for clinical application compared
with existing anticytokine therapies. Second, most of the existing anticytokine therapies
employ monoclonal antibodies to inhibit cytokines. However, monoclonal antibodies are
expensive. Moreover, developing a monoclonal antibody, either using the hybridoma
or phage display technique [39,40], is considerably more expensive in time, labor, and
money [22,41]. By comparison, a peptide is cheaper [21,26]. A peptide can be designed
and synthesized through molecular docking simulation [25]. In this technique, a small
molecule representing the crucial part of a target structure is generated by a computer after
a series of simulations with various positions, conformations, and orientations [25]. With
the use of molecular docking simulation, the development of a peptide and its subsequent
modification is quicker and cheaper [25]. Moreover, monoclonal antibodies are large
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molecules that can exert some side effects (e.g., anaphylaxis) [22]. By contrast, peptides are
small molecules that are relatively safe and well tolerated [21,42]. Therefore, this KCF18
peptide-based therapy can be a cheaper and safer treatment approach against endotoxemia
and sepsis compared with existing monoclonal antibody-based anticytokine therapies.

The results of this study indicated the potent therapeutic effects of the novel peptide
KCK18 against endotoxemia and sepsis and highlighted that cytokine production is a
crucial pathogenic mechanism underlying endotoxemia and sepsis. The production of
multiple inflammatory cytokines, as observed in endotoxemia and sepsis, is a critical
condition frequently referred to as a “cytokine storm” [43]. Naturally occurring microbial
infection is the most common cause of a cytokine storm [43]. In addition to disseminated
bacterial infection, a cytokine storm can be caused by a disseminated viral infection, such
as COVID-19, which is caused by severe acute respiratory syndrome coronavirus 2 [44].
Thus, anticytokine therapies (e.g., the IL-6 receptor antagonists tocilizumab and sarilumab)
have been proposed to be incorporated in the clinical treatment of critically ill patients
with COVID-19 [45,46]. Since the novel peptide KCF18 can simultaneously inhibit three
cytokines, KCF18 may exert significant therapeutic effects on critical conditions that cause a
cytokine storm. Additional studies are required before definitive conclusions can be drawn.

This study has some limitations that should be addressed. First, this study investigated
only one treatment protocol. Using pharmacokinetic data, we developed a treatment
protocol that involved the administration of a loading dose of KCF18 followed by the
administration of three supplemental doses of KCF18 every 2 h. Moreover, to more
effectively simulate real-world clinical conditions (i.e., patients usually do not seek medical
assistance and receive therapy until clinical symptoms and signs are evident), we decided
to begin KCF18 treatment after endotoxemia induction (i.e., 2 h after LPS administration).
Although our results confirmed the therapeutic effects of the KCF18-based treatment
protocol on endotoxemia, whether this treatment protocol is the most effective remains to be
elucidated. Second, peptides are rapidly degraded in vivo due to a lack of support [21,47].
Therefore, repeated doses of peptide drugs are required to maintain therapeutic levels.
Peptides can be conjugated with polymers to enhance their stability and increase their
therapeutic efficacy [47]. However, this study did not employ peptides with polymer
conjugation. Thus, we could not evaluate whether polymer conjugation can enhance the
therapeutic effects of the KCF18 peptide on endotoxemia. Third, this study investigated
the therapeutic effects of KCF18 only within 24 h after endotoxemia induction. Therefore,
whether this protocol can exert prolonged therapeutic effects on endotoxemia remains
unclear. Fourth, KCF18 could simultaneously inhibit three cytokines. However, whether
the current structure of KCF18 is in its most effective form for efficiently inhibiting the three
crucial cytokines remains to be elucidated. Fifth, this study employed endotoxemia, i.e.,
a widely used a monomicrobial sepsis model [29], to facilitate investigation. This model
provides a simple and reproducible animal model of sepsis [29]. However, sepsis involves
complex biology and pathophysiology [48]. Thus, one may challenge that endotoxemia
induced by endotoxin may not be an appropriate model for replicating human sepsis
(e.g., Wiggers–Bernard Conference on preclinical sepsis modeling) [49]. In addition to
endotoxemia, several other animal models of sepsis have been developed, including models
of bacterial injection, implantation of fibrin clots with bacteria inclusion, cecal ligation and
puncture, etc. [50]. As this study only employed the model of endotoxemia, the question
of whether the novel peptide KCF18 can exert similar beneficial effects in the other sepsis
models remains to be elucidated.

5. Conclusions

KCF18 peptide can simultaneously inhibit TNF-α, IL-1β, and IL-6 via concurrently
blocking bindings of TNF-α, IL-1β, and IL-6 to their cognate receptors in liver tissues
in endotoxemic mice. Moreover, KCF18 peptide can alleviate liver injury in mice with
endotoxemia. The mechanisms may involve inhibitions of inflammation, oxidation and the
cell death processes of necroptosis, pyroptosis, and apoptosis.
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