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Identification and validation of
autophagy-related gene
expression for predicting
prognosis in patients with
idiopathic pulmonary fibrosis

Guichuan Huang1†, Xin Xu1†, Chunrong Ju1†,
Nanshan Zhong1,2*, Jianxing He1* and Xiao Xiao Tang1,2*

1State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory
Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The
First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China, 2Guangzhou
Laboratory, Guangzhou, China
Background: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and

fatal fibrotic pulmonary disease with unknow etiology. Owing to lack of reliable

prognostic biomarkers and effective treatment measures, patients with IPF

usually exhibit poor prognosis. The aim of this study is to establish a risk score

prognostic model for predicting the prognosis of patients with IPF based on

autophagy-related genes.

Methods: The GSE70866 dataset was obtained from the gene expression

omnibus (GEO) database. The autophagy-related genes were collected from

the Molecular Signatures Database (MSigDB). Gene enrichment analysis for

differentially expressed genes (DEGs) was performed to explore the function of

DEGs. Univariate, least absolute shrinkage and selection operator (LASSO), as

well as multivariate Cox regression analyses were conducted to identify a

multi-gene prognostic model. Receiver operating characteristic (ROC) curve

was applied to assess the prediction accuracy of the model. The expression of

genes screened from the prognostic model was validated in clinical samples

and human lung fibroblasts by qPCR and western blot assays.

Results: Among the 514 autophagy-related genes, a total of 165 genes were

identified as DEGs. These DEGs were enriched in autophagy-related processes

and pathways. Based on the univariate, LASSO, and multivariate Cox regression

analyses, two genes (MET and SH3BP4) were included for establishing the risk

score prognostic model. According to the median value of the risk score,

patients with IPF were stratified into high-risk and low-risk groups. Patients in

high-risk group had shorter overall survival (OS) than low-risk group in both

training and test cohorts. Multivariate regression analysis indicated that

prognostic model can act as an independent prognostic indicator for IPF.

ROC curve analysis confirmed the reliable predictive value of prognostic

model. In the validation experiments, upregulated MET expression and
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downregulated SH3BP4 expression were observed in IPF lung tissues and TGF-

b1-activated human lung fibroblasts, which is consistent with results from

microarray data analysis.

Conclusion: These findings indicated that the risk score prognostic model

based on two autophagy-related genes can effectively predict the prognosis of

patients with IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive

and fatal interstitial lung disease with unknown etiology (1). It is

characterized by repetitive epithelial cell injury, fibroblast

activation and overwhelming extracellular matrix (ECM)

deposition which ultimately cause progressive loss of lung

function and even death owing to respiratory failure (1). In

the USA, the annual occurrence rate of IPF was 6.8-8.8 per

100,000 population with narrow case definitions and 16.3-16.7

per 100,000 population with broad case definitions (2). The

annual occurrence rate in Europe was 0.22-7.4 per 100,000

population (2). The medial survival after diagnosis is only 2-3

years and the 5-year survival rate is no more than 40% (3, 4).

Due to the complex etiology and unclear pathogenesis, there is

still a lack of effective drugs. Pirfenidone and nintedanib, the two

FDA-approved drugs, can’t stop disease progression or reduce

mortality (5). Therefore, it is important to identify the

pathogenesis of IPF, explore novel treatment strategies and

develop prognosis model.

Autophagy is a multi-step dynamic process that regulated by

autophagy-related genes. In this process, autophagosomes are

generated by phagocytosis of unwanted organelles and

cytoplasmic proteins in a double membraned-surrounded

vesicle (6). Then, autophagosomes are fused with lysosomes to

degrade the contents of vesicles (6). Dysregulation of autophagy

is involved in various lung diseases, including pulmonary

hypertension, asthma, chronic obstructive pulmonary disease,

and pulmonary fibrosis (7). For instance, a study has shown that

leucine-rich repeat kinase 2 (LRRK2) is conducive to alleviate

pulmonary fibrosis via preventing alveolar type II epithelial

dysfunction and regulating the innate immune responses (8).

Kim et al. reported that interleukin-37 (IL-37) attenuates IPF by

blocking the transforming growth factor-b1 (TGF-b1) pathway
and enhancing autophagy in IPF fibroblast (9). Wan et al. found

that the downregulation of thymocyte differentiation antigen-1

(Thy-1) and upregulation of integrin b3 can lead to pulmonary
02
fibrosis via activating PI3K/AKT/mTOR pathway and inhibiting

lung fibroblast autophagy (10). Nevertheless, the role of

autophagy-related genes in the prognosis of IPF remains

largely unclarified and awaits further study.

In the present study, the autophagy-associated differentially

expressed genes (DEGs) between control samples and IPF

samples were analyzed in GSE70866 dataset. Gene ontology

(GO) and kyoto encyclopedia of genes and genomes (KEGG)

enrichment analyses were performed for DEGs. Then, based on

the univariate, least absolute shrinkage and selection operator

(LASSO) as well as multivariate regression analyses, two

autophagy genes were included to establish a risk score

prognostic model in the training set. Finally, this risk score

model was proved to be an independent and reliable prognostic

factor in patients with IPF.
Materials and methods

Acquisition of dataset and autophagy-
related genes

The microarray data and clinical information in GSE70866

dataset (GPL14550 platform) were downloaded from gene

expres s ion omnibus (GEO) da tabase [20 norma l

bronchoalveolar lavage fluid (BALF) samples and 112 IPF

BALF samples]. The diagnosis of IPF in the dataset was

confirmed by a multidisciplinary board at each institution

according to the American Thoracic Society/European

Respiratory Society criteria. To obtain BALF, pre-warmed and

sterile saline was instilled by 20ml aliquots with immediate

aspiration by gentle suction after each aliquot. Additional

information regarding the collected BALF samples can be seen

in this article (11). The raw microarray data were pre-processed

for quality control with the use of “limma” package, including

background adjustment and normalization. The general

information of 112 patients with IPF was presented in
frontiersin.org
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Table 1. A total of 12 autophagy-related gene sets were

downloaded from the Molecular Signatures Database

(MSigDB) (version 7.5.1) (Supplementary Table 1). After

deleting the overlapping genes, 504 autophagy-associated

genes were included for analysis (Supplementary Table 2).
Identification of
autophagy-associated DEGs

The autophagy-associated DEGs between normal samples

and IPF samples were investigated using “limma” R package. A

gene with p<0.05 was considered as DEG. Then, based on the

GO and KEGG analyses, the biological functions and

mechanism pathways for these autophagy-associated DEGs

were explored.
Construction of risk score
prognostic model

A total of 112 IPF samples was randomly divided into the

training set (n=56) and the test set (n=56) with the use of “caret”

R package. First, the prognosis-related genes from autophagy-

associated DEGs were identified utilizing a univariate Cox

regression analysis in the training set. Then, in order to avoid

overfitting, we adopted the LASSO regression analysis to obtain

the crucial autophagy-associated DEGs. Finally, a multivariate

Cox regression analysis was conducted to select the autophagy-

associated genes for establishing a risk score prognostic model.

The formula of risk score model was presented as follows: Risk

score= [(expression value of gene 1 × b1) + (expression value of

gene 2 × b2) +…+ (expression value of gene n × bn)], where b is

the corresponding gene’s regression coefficient. The risk score of

each sample was calculated according to the formula. Samples
Frontiers in Immunology 03
were stratified into the high-risk group and low-risk group on

the basis of the median value of risk score. Kaplan-Meier analysis

and log-rank test were performed to compare the survival

differences between the two risk groups using “survival” R

package. Receiver operating characteristic (ROC) curve was

conducted to assess the model’s prediction accuracy using

“survivalROC” R package. Cox regression analysis, including

univariate and multivariate, was performed to evaluate whether

the risk score model is an independent factor in IPF.
Pre and post risk score prognostic
model comparison for principal
component analysis

First, based on all autophagy-associated genes, PCA was

performed to explore the sample distribution between two risk

groups in the training set. Then, based on the two genes from

risk score model, PCA was performed again. Finally, the

“ggplot2” R package was employed to visualize the results.
The relationship between risk scores and
clinical parameters

The relationship between risk scores and clinical parameters

was explored, including age, gender, gender-age-physiology

(GAP) index. GAP index is a staging system for patients with

IPF and can be calculated using gender (G), age (A), and two

lung physiology variables (P), including forced vital capacity

(FVC) and diffusing capacity for carbon monoxide (DLCO) (12).

GAP index may be used as a simple and quick approach for

assessing risk in patients with IPF (12). IPF samples were divided

into different groups according to the clinical parameters and the

difference of risk scores among these groups was compared.
TABLE 1 Baseline characteristic of patients with IPF in training and test set.

Characteristic Total (n=112) Training set (n=56) Test set (n=56) P value

Age (Mean±SD) 67.97±10.06 69.54±10.36 66.41±9.61 0.812

Age, n (%)

<70 56 (50.00) 25 (44.64) 31 (5.36)

≥70 56 (50.00) 31 (55.36) 25 (44.64) 0.257

Sex, n (%)

Male 93 (83.04) 44 (78.57) 49 (87.50)

Female 19 (16.96) 12 (21.43) 7 (12.50) 0.208

GAP index (Mean±SD) 4.54±1.73 4.64±1.88 4.43±1.58 0.535

Status, n (%)

Alive 36 (32.14) 19 (33.93) 17 (30.36)

Dead 76 (67.86) 37 (66.07) 39 (69.64) 0.686
front
SD, Standard deviation; GAP, Gender-age-physiology.
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Immune cell infiltration and immune-
related function analyses in the two
risk groups

The 22 kinds of immune cells in two risk groups were

de te rmined us ing CIBERSORT. CIBERSORT is a

deconvolution method that assesses the immune cell

composition of tissue from their gene expression profile (13).

It applies linear support vector regression (SVR) (a machine

learning approach) to deconvolute a mixture of gene expression.

It has been shown that the results are correlated well with flow

cytometric analysis. Therefore, CIBERSORT is also referred as

“digital cytometry” (14). In addition, the 13 kinds of immune-

related function were explored in the two risk groups.
Gene set variation analysis

GSVA is a nonparametric and unsupervised analysis method

to condense information from gene expression profiles into a

pathway summary (15). To investigate the biological process

between the two risk groups, GSVA was performed with the use

of “GSVA” R package. P<0.05 was considered as statistically

significant. The gene set of “c2.cp.kegg.v7.5.1.symbols”,

downloaded from the MSigDB, was used as a reference.
Validation of the risk score model in the
test set

According to the median value of risk score from the

training set, the patients with IPF in test set were split into the

high-risk and low-risk groups. The OS in two groups were

compared using Kaplan-Meier analysis and log-rank test. ROC

curve was conducted to evaluate the prediction accuracy of the

model in the test set.
Preliminary experimental validation of
the genes from risk score model

Lung tissue samples were obtained from six patients with

IPF and six healthy controls at the First Affiliated Hospital of

Guangzhou Medical University. This study was approved by the

ethics committee of the First Affiliated Hospital of Guangzhou

Medical University and was carried out in accordance with the

Declaration of Helsinki.

Human lung fibroblasts were purchased from the ATCC.

Cells were cultured in DMEM medium supplemented with 10%

fetal bovine serum, 100U/ml penicillin, and 100mg/ml

streptomycin (Gibco) at 37°C in a 5% carbon dioxide

atmosphere. The fibroblasts were stimulated with 10ng/ml TGF-
Frontiers in Immunology 04
b1 for 48h to induce them differentiate into myofibroblasts. Then,

the total RNA and protein were collected for further analysis.
qPCR

To detect the mRNA levels, total RNA from cells was

obtained using NucleoZOL reagent (Macherey-nagel Gmbh &

Co. Kg, Germany). RNA concentration was determined with a

NanoDrop 2000 micro−spectrophotometer (Thermo Fisher

Scientific, USA). Then, total RNA was reverse-transcribed into

complementary DNA (cDNA) using Hifair® III 1st Strand

cDNA Synthesis SuperMix (Yeasen Biotechnology, China).

Subsequently, the cDNA was amplified by SYBR Green Master

Mix (Yeasen Biotechnology, China). The relative expression

levels of mRNA were normalized to the levels of GAPDH and

calculated by the 2-DDCT method.

The primers sequences were as follows:

MET, forward, 5’-AGCGTCAACAGAGGGACCT-3’,

reverse, 5’-GCAGTGAACCTCCGACTGTATG-3’; SH3BP4,

forward, 5’-ACCCTGATTGACCTGAGCGA-3’, reverse, 5’-

GGGGTTGTCTACGAGCAAGG-3’.
Western blot

Tissues from explanted IPF lungs or healthy donor lungs were

collected and stored in liquid nitrogen before use. For protein

extraction, tissues or cells were homogenized in ice-cold RIPA lysis

buffer supplemented with phenylmethylsulfonyl fluoride (Biosharp,

China) and phosphatase inhibitor cocktail (Sigma, USA). After

centrifuging at 14,000 xg for 30 min at 4 °C, the supernatant was

collected as total protein and the protein concentration was

determined using BCA protein assay kit (Thermo Fisher

Scientific, USA). Equal amounts of protein (20µg) were separated

by 10% SDS−PAGE and transferred to PVDF membranes. After

blocking with 5% non-fat milk at room temperature for 1h, the

membranes were soaked in primary antibodies solutions at 4°C

overnight. On the next day, membranes were washed with TBST

for three times, then incubated with secondary antibodies at room

temperature for 1h. Finally, the protein bands were visualized via

an electrochemiluminescence reagent (Thermo Fisher Scientific,

USA). The images were analyzed by Image J software. The

following primary antibodies were utilized: anti-MET (1:1000,

25869-1-AP, Proteintech), anti-SH3BP4 (1:200, sc-393730,

Santa Cruz).
Statistical analysis

The statistical analysis was implemented by R software

(version 4.1.3). Gene expression in two groups was compared
frontiersin.org
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by Wilcoxon test. Univariate Cox, LASSO and multivariate Cox

regression analyses were performed to identify the prognosis-

associated genes. The Kaplan-Meier analysis combined with a

log-rank test was used to explore the differences in OS between

two groups. ROC analysis was conducted to assess accuracy of

the risk score prognostic model.

Raw data from qPCR and western blot analysis were

presented as “mean ± standard error of mean (SEM)” and

were further compared by Student’s t test. GraphPad software

(version 8.0) was used to visualize the statistical results. p<0.05

was considered as statistically significant.
Results

Identification of autophagy-related DEGs
and function enrichment analysis in IPF

The overall flow chart for this study was presented in

Figure 1. A total of 504 autophagy-related genes were collected

from the MSigDB database (Supplementary Table 2). We

explored the expression of autophagy-related genes between

the 20 normal samples and 112 IPF samples. Among the 504

autophagy-related genes, 165 genes with p<0.05 were considered

as DEGs (Supplementary Table 3). Of the 165 DEGs, 113 genes

were downregulated and 52 genes were upregulated in IPF.

To further understand the function of these DEGs in IPF, we

conducted GO and KEGG enrichment analyses. Three

categories, including biological process (BP), cellular

component (CC) and molecular functions (MF), were

presented to describe the GO analysis. With respect to BP,

DEGs were mainly enriched in autophagy-related biological

activities (Figure 2A). Regarding CC, the top three items were

autophagosome, vacuolar membrane, and autophagosome

membrane, which were associated with autophagy (Figure 2A).

In terms of MF, DEGs were closely related to ubiquitin protein
Frontiers in Immunology 05
ligase which can degrade the proteins (Figure 2A). For the

KEGG pathways, DEGs were also enriched in autophagy-

related pathways, such as mTOR, JAK-STAT, and autophagy

signaling pathways (Figure 2B).
Establishment of an autophagy-related
gene risk score model in the training set

IPF samples (n=112) were randomly divided into the training

set (n=56) and test set (n=56) (Table 1). First, 165 autophagy-

related DEGs were included for a univariate Cox regression

analysis. The results showed that 39 autophagy-related genes

were associated with prognosis of patients with IPF (p<0.05)

(Supplementary Table 4). LASSO and multivariate Cox

regression analyses were performed to select the key genes from

the above 39 genes for construction of a risk score prognostic

model. Finally, two genes were identified to establish the risk score

prognostic model using the following formula: Risk score=MET ×

0.545 + SH3BP4 × (-0.461). In IPF, MET is a risk factor with

HR>1, whereas SH3BP4 is a protective factor for HR<1 (Figure 3

and Table 2). In addition, upregulated MET expression and

downregulated SH3BP4 expression were found in IPF group as

compared with the control group (Figure 4).

Based on the formula of risk score, patients were stratified

into high-risk and low-risk groups with a median value of risk

score as a cut-off point. First, we explored the distribution of

patients using PCA analysis. As shown in Figure 5, the genes

from risk score model could distinguish IPF from different risk

groups. In order to assess the performance of risk score model in

predicting the prognosis of patients with IPF, Kaplan-Meier

curves were conducted. The results demonstrated that patients

in high-risk group had a shorter OS as compared to the low-risk

group (p<0.001) (Figure 6D). The distribution of risk score in

different risk groups was displayed in Figure 6A. Survival status

of each patient was shown in Figure 6B. The heatmap presented
FIGURE 1

Flow chart of the study.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.997138
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Huang et al. 10.3389/fimmu.2022.997138

Frontiers in Immunology frontiersin.org06
A B

FIGURE 2

GO and KEGG enrichment analyses of DEGs. (A) GO enrichment analysis of DEGs, including BP, CC, and MF. (B) KEGG enrichment analysis of
DEGs.
A B

C

FIGURE 3

Establishment of a risk score prognostic model. (A) LASSO coefficients of the 3 autophagy-associated DEGs. (B) Cross-validation for selecting
key genes. (C) The forest plot of 2 autophagy-associated DEGs in the risk score prognostic model.
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the expression profiles of the two genes in the high-risk and low-

risk groups (Figure 6C).
The risk score serves as an independent
prognostic indicator

In order to determine if the risk score prognostic model is

an independent prognostic factor for IPF, univariate and
Frontiers in Immunology 07
multivariate regression analyses were performed. We

integrated the risk score and clinical parameters (including

age, sex, and GAP index) for analysis. The univariate

regression analysis showed that GAP index and risk score

were correlated to prognosis (Figure 7A). In the multivariate

regression analysis, risk score as well as GAP index

was proved to be an independent prognostic indicator

(Figure 7B). These findings demonstrated that risk score

prognostic model is reliable in forecasting the survival of

patients with IPF.

We further performed ROC analysis to assess the risk score.

The area under the ROC curve (AUC) for risk score at one,

three, and five years was 0.889, 0.816, and 0.725, respectively

(Figure 8A). In addition, we found that the AUC value for risk

score at one year (0.889) was higher than age (0.497), sex (0.550)

and GAP index (0.710) (Figure 8B). Taken together, this risk

score model had a good prediction accuracy.
TABLE 2 Details of the two genes from the risk score prognostic
model.

Gene Location Coefficient HR P value

MET chr7:116,672,196-116,798,386 0.545 1.724 <0.001

SH3BP4 chr2:234,952,017-235,055,714 -0.461 0.631 0.009
HR, hazard ratio.
A B

FIGURE 4

Expression levels of two genes in Ctrl and IPF groups. (A) MET. (B) SH3BP4. *p<0.05; ***p<0.001.
A B

FIGURE 5

Principal component analysis. (A) Principal component analysis based upon all autophagy-associated genes in the training test. (B) Principal
component analysis based upon two autophagy-associated genes from risk score prognostic model.
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The relationship between risk scores and
clinical features

To explore the association between risk scores and clinical

features, we analyzed the distribution of risk scores in age, sex

and GAP index. There was no statistical difference in risk score

associations with age and sex, while higher risk scores were

related to high GAP index (Figure 9).
Frontiers in Immunology 08
Comparison analysis of immune cells or
immune functions between high-risk and
low-risk groups

Studies have shown that BALF contains different kinds of

blood cells which might affect the progression of pulmonary

fibrosis (16). Therefore, we explored the infiltration level of

immune cells in high-risk and low-risk groups. We found more
frontiersin.or
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FIGURE 6

A two-gene risk score model predicted the overall survival in patients with IPF in the training set. (A) Distribution of risk score per patient. (B)
Survival status of each patient. (C) Expression heatmap of the two genes. (D) Kaplan-Meier survival curve analysis of IPF patients divided into
high-risk and low-risk groups.
A B

FIGURE 7

Identification of independent prognostic factors in patients with IPF in the training set. (A) The univariate Cox regression analysis for risk score
model and clinical parameters. (B) The multivariate Cox regression analysis for risk score model and clinical parameters.
g
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monocytes and macrophages in the high-risk group than in the

low-risk group (Figure 10A). On the contrary, low-risk group

has more resting CD4+ T cells as compared with high-risk group

(Figure 10A). In addition, high-risk group exhibits high scores of

antigen-presenting cell (APC) co-stimulation, cytokine-cytokine

receptor (CCR) interaction, parainflammation and type II IFN

response (Figure 10B), while,human leukocyte antigen (HLA)

was increased in low-risk group (Figure 10B).
GSVA

In order to explore the differences in pathway activity

between the high-risk and low-risk groups in the training set,

GSVA was performed. A total of 23 pathways were found to be

statistically significant, such as pathways related to cancer, p53

signaling pathway, cytokine-cytokine receptor interaction, ECM

receptor interaction, and Toll-like receptor signaling pathway
Frontiers in Immunology 09
(Figure 11). These pathways were closely linked to the

development of IPF (17–21).
Verification of the risk score model in
the test set

To further validate the universality of the risk score model

from the training set, the formula was applied in the test set. The

risk score of each patient in the test set was calculated according

to the formula from the training set. Subsequently, patients in

the test set were divided into high-risk and low-risk groups based

on the median value of risk score from the training set. The

patients’ risk curve and distribution of survival status in the test

set were analyzed. We discovered that risk curve, survival status,

and heat map were similar to those in the training set

(Figures 12A–C). Likewise, we found that patients in high-risk

group had poorer OS than low-risk group in the test set
frontiersin.or
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FIGURE 8

The prognostic value of risk score model in the training set. (A) ROC curves of risk score model at 1-, 3-, and 5-year overall survival. (B) ROC
curves of clinical parameters and risk score model at 1-year overall survival.
A B C

FIGURE 9

The relationship between risk scores and clinical parameters in the training set. (A) age; (B) sex; (C) GAP index.
g
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(Figure 12D). In addition, the AUC value was 0.706 in one year,

0.818 in three years and 0.819 in five years, respectively

(Figure 13A). Furthermore, the AUC value of risk score at one

year was better than age, sex, and GAP index (Figure 13B). These

findings proved the universality and robustness of the risk score

prognostic model.
Validation of model gene expression in
clinical specimens and fibroblasts

To validate the gene expression, we performed qPCR and

western blot analysis in clinical specimens and TGF-b1-
activated human lung fibroblasts. As shown in Figures 14A–C,

the protein expression of MET was increased in IPF lung tissues

as compared with normal lung tissues. On the contrary, the
Frontiers in Immunology 10
protein expression of SH3BP4 in IPF lung tissues was decreased

as compared to the normal lung tissues, although no statistical

significance was observed. This could be due to the relative small

sample size or different types of the samples as the microarray

data were obtained from BALF cells, while our samples were

lung homogenates. The differential expression of autophagy-

related genes in the BALF may be coming from different cell

types in the BALF between control subjects and IPF patients or

from different gene expression profiles within the same types of

cells, or combination of these factors, which needs further study.

Activated lung fibroblast are the principal effector cells of

progressive fibrotic process in IPF (22). TGF-b1, a well-known

pro-fibrotic factor, was used to activate fibroblasts. Similar as in

IPF lung tissues, we found an upregulated MET expression and

downregulated SH3BPE expression in the TGF-b1-activated
fibroblasts (Figures 15A–E). These results are consistent with

the microarray data analysis.
A

B

FIGURE 10

Immune cells and immune-related functions of the two risk groups in the training set. The proportion of 22 types of immune cells (A) and 13
immune-related functions (B) were analyzed in the high-risk and low-risk group. *p<0.05; **p<0.01; ***p<0.001.
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Discussion

IPF is a progressive lung disease with a poor prognosis.

Molecular signatures of gene expression from lung tissue are

associated with prognosis of IPF (23). Nevertheless, genomic
Frontiers in Immunology 11
signatures are not widely applied in clinics as lung biopsy is an

invasive and unpleasant operation. Bronchoalveolar lavage

(BAL) is a medical procedure that sterile saline solution is

injected into lung and then collected by a bronchoscope (24).

BAL fluid exhibits biochemical changes due to lung diseases and
FIGURE 11

GSVA enrichment analysis between the two risk groups in the training set.
A

B

DC

FIGURE 12

Validation of risk score model in the test set. (A) Distribution of risk score per patient. (B) Survival status of each patient. (C) An expression
heatmap of the two genes. (D) Kaplan-Meier survival curve analysis of IPF patients divided into the high-risk and low-risk groups.
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external factors (24). The analysis of cells in BAL fluid may be

conducive to diagnose and treat lung diseases, even assess the

prognosis of patients with lung disease (25). Therefore,

establishment of a multi-gene prognostic model based on the

BALF cells is necessary to predict the prognosis of patients

with IPF.

In this study, a total of 165 autophagy-related DEGs was

determined between IPF BAL samples and normal BAL samples

in the GSE70866 data set. Among the 165 DEGs, 39 DEGs were
Frontiers in Immunology 12
further identified to be related to prognosis of patients with IPF

in the training set. Subsequently, we constructed a two-gene risk

score prognostic model based on the LASSO and multivariate

Cox regression analyses and further validated it in the test set.

Moreover, this risk score model could serve as an independent

indicator for patients with IPF. Additionally, the ROC curve

indicated that this risk score model had a reliable and effective

prediction accuracy. Finally, we found an increased MET

expression and decreased SH3BP4 expression in both IPF lung
A B

FIGURE 13

The prognostic value of risk score model in the test set. (A) ROC curves of risk score model at 1-, 3-, and 5-year overall survival. (B) ROC curves
of clinical parameters and risk score model at 1-year overall survival.
A

B C

FIGURE 14

The expression of two model genes in HC and IPF lung tissues. (A–C) The protein expression of MET and SH3BP4 in healthy control and IPF
lung tissues was detected by western blot assay. HC, healthy control. *p<0.05. NS, not significant. n=6.
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tissues and TGF-b1-activated human lung fibroblasts, consistent

with the microarray results. These findings may aid clinicians in

identifying high-risk patients and designing individualized

treatment strategy for them.

The prognostic model in the present study was composed of

two autophagy-related genes (MET and SH3BP4). Receptor

tyrosine kinase MET, also known as c-MET, is a receptor of

hepatocyte growth factor (HGF) (26). It has been reported that

HGF/c-MET signaling pathway participates in multiple cellular

processes, including cell survival, proliferation, motility, invasion

and metastasis (27). In addition, MET is tightly linked to the

process of autophagy (28–30). A number of studies have indicated

that MET is closely involved in fibrotic diseases. Marquardt et al.

reported that lack of c-MET can promote carbon tetrachloride-

induced liver fibrosis in mice (31). Another study has shown an

increased MET expression in lung fibroblasts from patients with

pulmonary fibrosis as compared with lung fibroblasts from normal

people (32). Moreover, MET has been implicated in driving

profibrotic phenotypes and leading to pulmonary fibrosis (33,

34). Activation of lung fibroblast plays a major role in the

pathogenesis of IPF (22). TGF-b1 has been considered as the

main growth factor involved in the differentiation of lung

fibroblasts into myofibroblasts (35). In agreement with previous

studies, we found that MET expression was upregulated in both

IPF lung tissues and TGF-b1-activated human lung fibroblasts,

indicating that MET may promote the progression of IPF. SRC

homology 3 domain-binding protein 4 (SH3BP4), also known as
Frontiers in Immunology 13
transferrin receptor trafficking protein (TTP), was first discovered

in human corneal fibroblasts (36). SH3BP4 affects autophagy

process by negatively regulating Rag GTPase- mTOR complex 1

(mTORC1) signaling pathway (37). Besides, SH3BP4 negatively

regulates Wnt signaling via modulating b-catenin’s subcellular

localization, thus suppressing tumor development (38). Kim

et al. reported that SH3BP4 is a direct target gene of miR-125b

and is negatively regulated by miR-125b (39). In another study,

upregulated miR-125b was found in both human cardiac fibrosis

and TGF-b-treated human cardiac fibroblasts (40). Consistent with

the microarray data, we observed decreased expression of SH3BP4

in IPF lung tissues and TGF-b1-activated human lung fibroblasts.

We speculated that SH3BP4 is a negative regulator in the

occurrence and progression of IPF and the underlying

mechanism needs to be further elucidated.

Increasing evidences indicate that immune cells are linked to

the development of IPF (1, 19, 41, 42). Kreuter et al. reported that

increased monocyte count was related to elevated risks of IPF

progression, hospitalization and mortality for patients with IPF

(43). Another study also indicated that high absolute monocyte

count is an IPF specific marker of mortality and poor outcomes

(44). Macrophages play important roles in IPF. Single-cell

transcriptomic analysis identified a distinct population of

profibrotic alveolar macrophages exclusively in patients with

pulmonary fibrosis (45). Also, accumulation of CD163+ and

CD204+ macrophages in lung leads to worse clinical course in

IPF patients (46). Consistent with these studies, we found a higher
A B

D EC

FIGURE 15

The expression of two model genes in human lung fibroblasts. Human lung fibroblasts were treated with 10ng/ml TGF-b1 for 48h. (A, B) The
mRNA expression of MET and SH3BP4 was detected by qPCR. (C–E) The protein expression of MET and SH3BP4 was detected by western blot
assay. *p<0.05; **p<0.01. n=5.
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amount of monocytes and macrophages in high-risk group than

low-risk group, indicating that the elevated monocytes and

macrophages may be related to the progression of IPF. We also

found a reduced amount of resting memory CD4+ T cells in BALF

of the high-risk group as compared with the low-risk group,

indicating that resting memory CD4+ T cells may exhibit a

protective role in IPF. Besides, significant differences in APC co-

stimulation, CCR, HLA, parainflammation and type II IFN

response were identified between the high-risk and low-risk

groups. The exact role of these immune cells in the pathogenesis

of IPF awaits further study.

There are limitations in the present study. First of all, the

construction and validation of prognostic model were based on the

retrospective data from GEO database, and the sample size in

cohort was relatively small. Thus, a prospective study of large

sample size is necessary to identify its clinical application. Second,

clinical information was not complete in the data set, such as

patients’ therapy approaches, laboratory test, lung function data

and so on, therefore, the significance of prognostic model was

restricted. Last but not least, the association between risk score and

immune activity needs to be further explored in basic experiments.
Conclusion

In summary, our study identified a novel risk score

prognostic model of two autophagy-related genes, providing a

new approach to predict the prognosis of IPF patients.
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