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Abstract: Indoor occupancy prediction is a prerequisite for the management of energy consumption,
security, health, and other systems in smart buildings. Previous studies have shown that buildings
that automatize their heating, lighting, air conditioning, and ventilation systems through considering
the occupancy and activity information might reduce energy consumption by more than 50%.
However, it is difficult to use high-resolution sensors and cameras for occupancy prediction due
to privacy concerns. In this paper, we propose a novel solution for predicting occupancy using
multiple low-cost and low-resolution heat sensors. We suggest two different methods for fusing
and processing the data captured from multiple heat sensors and we use a Convolutional Neural
Network for predicting occupancy. We conduct experiments to assess both the performance of the
proposed solutions and analyze the impact of sensor field view overlaps on the prediction results.
In summary, our experimental results show that the implemented solutions show high occupancy
prediction accuracy and real-time processing capabilities.

Keywords: heat sensors; multi-sensor; sensor fusion; occupancy prediction; machine learning;
artificial intelligence (AI); neural networks; smart offices

1. Introduction

Predicting occupancy plays a crucial role in managing smart buildings security, en-
ergy consumption, efficient use of the facilities, and the optimization of the automation
techniques. For many years, occupancy prediction models have been used to automate
heating, ventilation, and air conditioning (HVAC) in building management systems in
order to reduce energy consumption. Buildings use approximately 40% of the global
energy and they are responsible for almost one-third of the worldwide greenhouse gas
emissions, utilizing about 60% of the world’s electricity. It is shown that more than 50% of
the energy that is consumed in a building could be saved if occupants and their activities
were considered in the automatic processes that are related to energy consumption [1].
Indoor occupancy prediction is also very relevant in the current societal challenges that are
associated with the Covid19 outbreak where controlling, for example, human presence and
activities in non-residential buildings can prevent dense crowds.

Ambient intelligence is commonly used when referring to ambient sensor vision-
based systems that naturally blend with our everyday life [2]. One of the most important
qualities of the ambient sensors is that they do not enable personal identification. There-
fore, they can be used in non-residential buildings without interfering with any privacy
regulations. Moreover, ambient sensors are much cheaper than high-resolution cameras,
which makes it possible to distribute multiple sensors in buildings that cover large areas
without dramatically increasing the costs.

However, analyzing the data that are generated by these low-cost and low-resolution
ambient sensors for covering large areas is not exempt from challenges. For example, there
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are many challenges associated with how to fuse or integrate the data from all of these
low-resolution sensors. In this paper, we propose an Artificial Intelligence-based and, even
more specifically, a Neural Network-based (NN-based) method for predicting occupancy
from low-cost low-resolution heat sensor data. We present and describe two different
workflows for fusing multiple sensor data in order to be able to cover larger areas in our
predictions. In particular, this paper provides the following contributions:

• We propose two different sensor fusion methods to combine the multi-sensor infor-
mation, and we compare these two methods by discussing their advantages and
disadvantages for various environments and situations.

• We propose a novel NN-based occupancy prediction method for indoor occupancy
prediction while using the combined multi-sensor information.

• We discuss the advantages and disadvantages of using a NN-based occupancy pre-
diction method; instead, the earlier presented [3] machine learning (ML)-based and
computer vision (CV)-based solutions for occupancy prediction in large spaces using
multiple sensors.

• We discuss the implications of the different sensor fusion and sensor positioning
results for a potential algorithm design to solve the optimal sensor placement problem.

This paper is organized, as follows. Section 2 presents the relevant information regard-
ing occupancy prediction and multi-sensor fusion techniques for extending the prediction
models to large areas. We pay closer attention to methods that employ heat sensors in
Section 2.2, while we address earlier studies on low-resolution data processing methods us-
ing AI-techniques in Section 2.3. Section 3 outlines the objectives and research questions of
our experimental study. In Section 4, we describe the experimental environment, the sensor
placements, and the data collection scenarios. We introduce our multi-sensor data fusion
workflows and our NN-based occupancy prediction method step by step in Section 5. We
present the quantitative results of our experiments shown in Section 6. The results obtained
are discussed in light of relevant literature in Section 7. Finally, the limitations and future
work are presented in Section 8/ Section 9 concludes this paper with some final remarks.

2. Background

Indoor occupancy prediction is an active and open research topic, with multiple solu-
tions being described in the literature. Besides particular methods, several overviews and
literature studies have been published, covering the most frequent methods, advantages
and disadvantages of each method, and research challenges in the field. This section
provides a short summary of these studies.

2.1. Occupancy Prediction in Indoor Environments

Most of the papers that provide solutions to the problem of indoor occupancy pre-
diction, for instance [4,5], provide a comparison of different ambient sensors and the data
processing methods. Table 1 lists and describes the most commonly used ambient sensors,
while also providing information regarding their area coverage differences.

Passive infrared (PIR) sensors can be used to detect the presence and absence of
occupants in an office. Raykov et al. [6] used a single PIR sensor for occupancy estimation
inside a room. They trained a machine learning (ML) algorithm to learn motion patterns,
and then used the model as a feature to predict the number of occupants. However,
it is unclear whether this method generalizes well to other environments or to larger
office spaces.

A smart meter is an electronic device that records information, such as the consump-
tion of electric energy, voltage levels, current, and power factor. It can only detect the
presence or absence of people within an area, rather than providing information regard-
ing the number of people. Fan et al. [7] proposed methods for analyzing smart meter
data and they have even used forecasting techniques to estimate the future energy con-
sumption. Razavi et al. [8] proposed a smart meter-based occupancy prediction method to
estimate the number of occupants in a large building. The major challenge of the smart
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meter-based solution is that each building might have different energy needs, depending
on the activities of the occupants. For instance, if the occupants of a building are com-
puter programmers, each of them would need a computer and other electronic facilities
around. However, a building that is an art studio where the occupants do paintings,
acting, or dancing, their electricity needs would be totally different. Therefore, the main
challenges of these solutions are the calibration of the smart meters and generalization of
the developed models.

Table 1. The most frequently used occupancy prediction sensors are represented with their advantages and disadvantages
when smart office applications are concerned.

Sensor Measure Capabilities Limitations

PIR [6]
It measures infrared light

radiating from objects in its field
of view.

It acts as a motion detector, therefore it
might be effective for knowing how

much activity occurs in a certain area.

The sensor doesn’t enable knowing the
number of occupants. Even dust or flies

might cause false activity detection.
Multi-sensor placement, multi-sensor data

fusion and large area coverage problems are
not solved.

Smart meter [7,8] It measures the energy
consumption.

A single sensor might help to estimate
the number of occupants within a

whole building.

Energy usage and the occupancy correlation
of each building highly depends on the

activities within the building, therefore how
to generalize a method developed for one
building to other buildings is not known.

CO2 sensor [9] It measures CO2 levels.
Only one sensor might help to estimate
the total number of occupants within a

room.

The sensor data will not be reliable when the
doors/windows are open or when a

ventilation system is working.

Heat sensor [3] It works like a very
low-resolution heat camera.

One sensor located on the ceiling can see
approximately 2.5 m2 area. It might

provide a good estimation of the
number of occupants within the field

of view.

Optimal sensor placement, multi-sensor
data fusion and large area coverage

problems are not solved. (We focus on
potential solutions in this study.)

CO2 sensors can be used in order to also obtain a rough estimation of occupancy. Ang,
Salim, and Hamilton [9] have proved that CO2 rate, illumination level and sound rate are
the top three most dominant features to detect indoor human occupancy, with the CO2
rate being the most dominant one. This work presents very interesting results, showing
an almost linear correlation between the number of people in a room and the CO2 rate.
However, the experiments were conducted in one room and larger area coverage was left
as future work. Moreover, the authors have expressed their concerns regarding the general
applicability of their proposed algorithm, for instance, to larger or smaller rooms.

Heat sensors provide images as the standard cameras do. However, ambient low-cost
heat sensors that are used for occupancy prediction provide very low-resolution images
(in our case, 8 × 8 pixels). These images show the heat of the objects that are within the
field of view. Because of the body heat, humans appear in these images like two or three
highlighted pixels, which definitely is not enough for identification. In our earlier study [3],
we provided extensive background research in the field of occupancy prediction while
using such heat sensors. In addition to that, we have proposed two novel occupancy
prediction methods using a low-resolution heat sensor. The first method was based on
the usage of traditional computer vision techniques, while the second one was based on a
machine learning based classification method that was trained with the features that we
have extracted from the heat sensor images. We have compared these two methods to
discuss their advantages and disadvantages in detail. Even though both of the methods
provided reliable results showed through our experiments conducted in a smart office, we
could not extend the algorithms to make occupancy prediction in larger areas.

An extensive literature review on occupancy prediction methods for non-residential
buildings comparing their advantages and disadvantages is presented in [10]. The authors
also offered their occupancy prediction solution employing high resolution cameras. Be-
cause the authors were aware of the privacy and security issues of their solution, they
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proposed an encryption method to store the occupancy prediction data by blocking the
pixels where people were observed. Mulia et al. [11] presented another extended review
on building occupancy methods and the frequently used sensors. They grouped existing
occupancy prediction methods in statistical and machine learning-based models. Their
review showed that, as compared to other ambient sensors, heat sensors are used in a very
limited number of applications. This is probably because other sensors (like CO2, sound,
light) can provide information regarding larger areas (like the whole room), however, a
heat sensor can only observe the occupancy in a small section of a room. When monitoring
large areas with heat sensors, the challenges of sensor fusion need to be addressed.

Chen et al. [4] provide an additional review on occupancy estimation for smart
buildings. Because different sensors have different strengths and weakness, they provide
a categorization of occupancy prediction methods based on different types of sensors.
Similarly, Saha et al. [5] present an overview of methods for occupancy prediction, but
also review those that are based on person counting and tracking within large buildings.
They focused on mathematical methods to explain different approaches in order to solve
the problem (including data collection, preparation and cleaning steps which were not
compared earlier) and explain the different quantitative analysis metrics.

Particular solutions for occupancy prediction using NNs are the works by Jiang et al. [12]
and Zuraimi et al. [13]. Jiang et al. [12] propose a NN-based solution to predict oc-
cupancy from CO2 sensors and show that it is possible to reach good accuracy values.
Zuraimi et al. [13] use a similar NN-based solution in a larger auditorium that was visited
by a large number of people. They discuss the effects of ventilation and whether the high
amount of people within the room make a linear impact on the CO2 level or not. Finally,
they elaborate on the reliability of using CO2 sensors in such large public areas where
crowds are gathered.

2.2. Multi-Sensor Fusion for Large Indoor Areas

How to fuse and integrate the data that are generated by multiple sensors is a key
challenge when predicting occupancy in large monitored areas. Sensor fusion is described
as “the combining of sensory data or data derived from sensory data such that the resulting
information is in some sense better than would be possible when these sources were used
individually” [14]. Durrant-Whyte [15] summarized the sensor fusion algorithms under
three different categories as complementary fusion, competitive fusion, and cooperative
fusion. A sensor configuration is called complementary if the sensors do not directly
depend on each other, but can be combined in order to give a more complete image of the
phenomenon under observation. This resolves the incompleteness of the sensor data. The
employment of multiple cameras, each observing disjunct parts of a room, is an example of
a complementary configuration. Generally, fusing complementary data is easy, since the
data from independent sensors can be appended to each other. Sensors in a competitive
configuration have each sensor delivering independent measurements of the same property.
Competitive configurations are used for fault-tolerant and robust systems. The reduction
of noise by combining two overlaying camera images is an example of such a configuration.
A cooperative sensor network uses the information that is provided by two independent
sensors to derive information that would not be available from the single sensors. An
example of a cooperative sensor configuration is stereoscopic vision—by combining two-
dimensional images from two cameras at slightly different viewpoints, a three-dimensional
image of the observed scene can be derived.

In the field of smart offices and buildings, most of the research studies for occupancy
prediction have used multi-sensor fusion methods, not for fusing the same type of sensors,
but for fusing different types. The reason is that ambient sensors provide limited reliability
with their low-resolution, small field of view, and less reliable information, which might
be affected by environmental changes. Each sensor has some unique properties and
limitations for occupancy estimation and detection. The fusion of multiple sensor types
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can boost the performance of occupancy estimation and detection by taking advantages
and compensating the limitations of each sensor.

Many advanced sensor fusion algorithms have been proposed in the literature for the
problem of occupancy prediction. We believe that most of these solutions fall under the
competitive sensor fusion category. For instance, Candanedo and Feldheim [16] proposed
an occupancy detection system while using environmental CO2 sensors, light, temperature,
and humidity. Mao et al. [17] fused information coming from CO2 and light sensors in order
to predict occupancy of a large building. They used the prediction results for automation of
the heating, ventilation, and illumination facilities of the building rooms. Abade et al. [18]
used multiple and different type of ambient sensors to develop a machine learning-based
solution to predict occupancy; they employed outdoor and indoor thermal sensors, as
well as indoor CO2 sensors. The indoor sensors were randomly distributed; therefore,
sensor distribution was not discussed in their work. The synchronized multi-sensor data
from both indoor and outdoors were used for training a classifier that can estimate the
indoor occupancy. Yang et al. [19] used similar multi-sensor data input of a larger indoor
environment and trained a NN (Radial Basis Function, RBF). Wang et al. [20] used a
similar multi-sensor system for estimating the cooling demand of indoor environments. A
relevant interesting review in this regard is the work presented by Ahmad et al. [10], which
summarizes the most commonly used ambient indoor sensors in multi-sensor occupancy
prediction applications. The authors concluded that there is no single method or sensor
that is identified as the best way to estimate indoor occupancy. Therefore, there is still a
need for simplified, secure, energy efficient, and highly accurate methods for multi-sensor
occupancy prediction.

To the best of our knowledge, multi-sensor based occupancy prediction in large areas
only using heat sensors (and not other sensor types) has not been addressed in previous
studies. While most of the previously proposed algorithms fall in the competing fusion
category, we believe that our study falls in both the complementary and cooperative fusion
categories: complementary fusion, since one sensor sees the areas that are not seen by
other sensors and cooperative fusion, since the overlapping sensor views are used for
improving the image qualities in those areas (not relying on one sensor more than another
like competing fusion methods do). We introduce the details of our suggested solutions in
Section 5.

2.3. Using AI Techniques for Occupancy Prediction from Low-Resolution Sensors

In the last decade, AI-based models, and especially convolutional NNs (CNNs),
have been frequently used in order to solve computer vision problems because of their
capabilities of learning the best parameters of the optimal solution to a good generalization.
However, in most of the studies, these models are trained with high-resolution images that
hold features that can represent fine features (like corners, edges, and texture) of the objects
within. Cai et al. [21] used a CNN model to classify very low-resolution (9 × 9 pixel size)
camera images. Even though their input resolutions were close to our heat sensor images,
RGB bands of the normal camera image still provided sharper details about the objects
within the images. Chevalier et al. [22] used remote sensing images as low-resolution
image examples, since the objects, like airplane and cars, are only represented with few
pixels within these images. Even though their images were grey scale (i.e., no RGB bands
were available), they still contained sharper object features than heat camera images which
vaguely represent object borders. Chevalier et al. [22] compared a classifier that was
trained with images having less than 50 × 50 pixel resolutions with another classifier that
was trained with images having higher than 100 × 100 pixel resolutions. They showed
that the performance decreased when the input image resolutions become smaller. To
the best of our knowledge, we have not seen examples of NN based classifiers that were
trained with 8 × 8 pixel size heat sensor images. Therefore, in this paper, we tackle the
challenge of investigating potential NN-based solutions for predicting occupancy while
using low-resolution sensor data.
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3. Aim and Objectives

Even though several solutions exist for occupancy prediction, there are several chal-
lenges that are still unresolved, for instance, the performance is still far from satisfactory for
many applications [4], the images used from heat sensors are normally of high resolution,
and the sensor fusion solutions are typically of competing fusion type, as we showed in
the previous section.

Thus, in this study, we aim at achieving three overall goals:

• To propose a new NN model to predict occupancy in real-time using fused low-
resolution heat sensor data.

• To use multiple heat sensors and suggest new fusion techniques (both collaborative
and cooperative) in order to predict occupancy in large areas.

• To analyze and understand the impact that the sensor field of view overlap has on
occupancy prediction accuracy.

In the following sections, we introduce the data sets, the proposed solutions, and the
experiments that were conducted in order to answer these questions.

4. Scenario and Data

We selected a meeting room at our department for multi-sensor data collection (see
Figures 1 and 2). We used six low-cost and low-resolution heat sensors (8 × 8 pixels each)
for data acquisition [23]. In Figure 1, we provide a view of the meeting room with chairs
and sensors annotated where the experimental data for this study were collected. The
photo that is shown in Figure 1 was taken to the rightmost side of the floor plan seen in
Figure 2. In our previous work [3], we provided an example of how the viewing area size
(at the table level) for one sensor was calculated by using the field of view angle and the
ceiling height information. Herein, we used the same simple triangulation technique in
order to calculate the view area of each sensor at the table height level:

s = 2 · (tan(v/2) · h) (1)

where s is one side of the viewing area, v is the field of view angle, and h is the height from
the sensor chip to the tabletop surface. Our measurements were h = 176.5 cm and v = 60◦,
resulting in s ≈ 170 cm. These variables can be seen in Figure 3. Figure 2 shows the room
empty, while Figure 4 illustrates the sensor setup during the different data collection steps.
In Figure 4, the field of view of each sensor is also illustrated with a larger square around
the sensor position.

A total of six different data sets was collected; Table 2 shows details of such data sets.
Data1−3 used a distance of 180 cm between each sensor, whereas Data4−6 used a 120 cm
distance between each sensor. The total overlap can then be calculated as:

o = 1 − d
s

(2)

where o is the overlap and d is the distance between the sensors. Each data set corresponds
to a recording over 5 min., where the two participants switched seats every minute (or
entered or left the room), resulting in different occupancy values for each time interval
(denoted t0−4). In Table 2, we have tabulated the details regarding our multi-sensor data
set. ID numbers of the active sensors, their field of view overlap percentages, the total
number of occupants within the room, and the total number of the data frames from each
sensor are presented.
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Figure 1. Setup of the test room. The numbered multiple heat sensor are seen on the ceiling. The
chairs are numbered in order to keep the occupant positions in the data set for validation.

c4 c0c2

c7 c5 c1c3

c6

Table
3.20 m ×1.00 m

6.36 m

2.84 m

0.91 m

1.69m

Figure 2. Floorplan of the room used in the study showing seats c0–c7.

Ceiling

Table

Floor

Sensor

h

v

s

Figure 3. Side view of the room, showing the relationship between field of view, height to the table,
and viewing area.
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c4 c0c2

c7 c5 c1c3

c6

0.725 m

0.31 m

1.20 m 1.80 m 1.80 m

1.80 m

1.56m

s4 s2 s0

s1s3s5

(a) Data1

c4 c0c2

c7 c5 c1c3

c6

0.725 m

0.31 m

3.00 m 1.80 m

1.80 m

1.56m

s2 s0

s1s3

(b) Data2

c4 c0c2

c7 c5 c1c3

c6

0.725 m

0.31 m

4.80 m

1.80 m

1.56m

s0

s1

(c) Data3

c4 c0c2

c7 c5 c1c3

c6

0.725 m

0.91 m

2.40m 1.20 m 1.20 m

1.20 m

1.56m

s4 s2 s0

s1s3s5

(d) Data4

c4 c0c2

c7 c5 c1c3

c6

0.725 m

0.91 m

3.60m 1.20 m

1.20 m

1.56m

s2 s0

s1s3

(e) Data5

c4 c0c2

c7 c5 c1c3

c6

0.725 m

0.91 m

4.80 m

1.20 m

1.56m

s0

s1

(f) Data6

Figure 4. Data collection setups. Each sub-figure shows the setup of the sensors in each of the six different data collections;
the corresponding data sets are referred to as data1−6. The sensors are shown as grey rectangles. Each sensor’s viewing area
is illustrated by an opaque blue square. Subfigures (a–c) show sensor setup with no overlap, while subfigures (d–f) show
sensor setup with overlap.
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Table 2. The multi-sensor data set acquired with six sensors as represented in Figure 1. The “Sensors”
and the “Occupancy” columns indicate the sensor IDs that were active and the total number of
occupancy within the room. “Total frames” column shows the number of frames that were collected
from each different sensor at six different data acquisition attempts.

Data ID Sensors Overlap (%)
Occupancy

Total Frames
t0 t1 t2 t3 t4

Data1 0, 1, 2, 3, 4, 5 0 1 2 2 2 1 301

Data2 0, 1, 2, 3 0 1 2 2 2 1 300

Data3 0, 1 0 0 1 2 a 2 1 301

Data4 0, 1, 2, 3, 4, 5 29.5 1 2 2 2 1 303

Data5 0, 1, 2, 3 29.5 1 2 2 2 1 305

Data6 0, 1 29.5 0 1 2 a 2 1 301
a One person is standing.

5. Methods

In this section, we describe the mathematical steps towards solving the occupancy
prediction challenge while using multi-sensor low-resolution thermal images. We provide
our approach with a flow chart that is composed of modules in order to make our steps
clear and reproducible. In order to solve the challenging multi-sensor data fusion problem,
we considered two possible approaches, Method A and B, as illustrated in Figure 5. Those
are described hereafter.

Sensor 0

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Fusion Prediction Occupancy
measure

(a) Method A

Sensor 0

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Fusion Occupancy
measureSplit

Patch 1

Patch 2

Patch 3

Patch 4

Patch 5

...

Pred.

Pred.

Pred.

Pred.

Pred.

...
(b) Method B

Figure 5. The two different multi-sensor data fusion methods used in our study, Method A and B.
(a) Multi-sensor information is fused and resized to the network size before applying the prediction
algorithm. (b) Multi-sensor information is fused first; afterwards, the fused image is split into a
certain size of new images where the prediction results are obtained from each of them individually.

5.1. Method A

In Method A, the 8 × 8 pixel readings from each sensor are fused into a single “image”
for each time-unit (timestamp) where participants are stationary. Each sensor sends 8 × 8
pixel readings which are annotated with a timestamp. Each pixel is a temperature reading
in the unit of 1

10
◦C ranging from 0 ◦C to 80 ◦C. Because the same timestamps of each

sensor are considered when this joint image is created, the sensor synchronization problem
has to be solved in this process as well (see details in Section 5.4). The fused image is
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then resampled to 64 × 64 pixels while using bicubic interpolation to be used as input for
our NN-based occupancy prediction module (a CNN-regression network), which returns
a single value prediction of the occupancy in the room for each timestamp. We have
illustrated the overall method in Figure 5a.

5.2. Method B

The second approach, Method B fuses the sensors’ data just as described in Method
A but with the difference that, before prediction, the image is split into several smaller
patches for individual prediction. This split is custom selected for each of the two sets
of data with different amount of overlap in order to split each seat into their own patch.
The per-patch prediction is carried out with the same network as in Method A. Method B
is meant to emulate prediction of an unspecified number of “images”; when expanding
occupancy prediction for larger rooms. This method might be favourable, since more
sensors can be added and individual prediction can be applied to each sensor. The reason
for using per-seat prediction and not the raw per-sensor prediction is that we do not have
pixel segmentation labels of the occupancy for each frame, but we do know which seats
were occupied for each timestamp. See Figure 5b for a flowchart of this method.

The splits to obtain per-chair patches are 2 × 6 for Data1−3 and 2 × 5 for Data4−6, see
Figure 6 for more details.

c4 c0c2

c7 c5 c1c3

c6

0.725 m

0.31 m

1.20 m 1.80 m 1.80 m

1.80 m

1.56m

s4 s2 s0

s1s3s5

Patch 0

Patch 1

Patch 2

Patch 3

Patch 4

Patch 5

Patch 6

Patch 7Patch 9

Patch 8Patch 10

Patch 11

(a) Splits for Data1−3.

c4 c0c2

c7 c5 c1c3

c6

0.725 m

0.91 m

2.40m 1.20 m 1.20 m

1.20 m

1.56m

s4 s2 s0

s1s3s5

Patch 0

Patch 1

Patch 2

Patch 3Patch 5Patch 7

Patch 4Patch 6Patch 8

Patch 9

(b) Splits for Data4−6.

Figure 6. Illustration of how the data sets are split to obtain per-seat patches in Method B.

5.3. Sensor Fusion

In both Method A and Method B, the sensors are first fused. First, the overlay from
Table 2 is translated into pixels. 0% is translated as overlay = 0 (pixel) and 29.5% is
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translated as overlay ≈ 2 (pixels). Knowing the number of sensors, their resolution, their
placement, and their overlap, the final resulting shape can be calculated using Equation (3).

8 · columns − overlap · (columns − 1)× 8 · rows − overlap · (rows − 1) (3)

where columns and rows are calculated, as given in Equations (4) and (5) for our 2 × 3 set
up of the sensors, given the n number of sensors listed in Table 2.

rows =
⌈n

2

⌉
(4)

columns = 2 (5)

Once the final shape is known, the sensors are placed in position in separate layers.
These layers are then fused into a single layer, where each overlapping pixel is averaged,
while non- overlapping pixels retain their values (see Figure 7). This method requires that
the distance between sensors is known beforehand and it has not been tested for missing
data in the resulting image.

Sensor 0
Layer 0

Sensor 1
Layer 1

. . .

Sensor 5
Layer 5

NaN-aware
mean

NaN value
Raw sensor heat value
Averaged sensor heat value

Figure 7. An example of sensor fusion for Data4.

5.4. Sensor Synchronization

Each sensor transmits information roughly once every second. However, this may
vary in some cases. In practice, what we observed was that the different sensors used
during the same data collection occasion had missing values for one second and multiple
values for the next second. Hereafter, we describe how we solved this challenge. First,
we made sure that, for each recording, we allowed some seconds before performing the
occupant placement. Subsequently, we ensure that all of the sensor data for a certain data
collection had the same starting timestamp and ending timestamp. At this point, each
sensor’s data had different amounts of entries, even though they should be equal if the
sensor would have had a steady rate of one frame per second. We converted all the sensor
data to uniform lists for further fusion by stepping through the timestamps, second-by-
second, from the start time to the end time, to which the sensor data had previously been
limited to. For each timestamp, we checked whether each sensor had any data entry, and
picked those values. If any sensor did not have any entry, we checked whether the previous
timestamp yielded any entry for the given sensor, and repeated until found. If we did
need to check previous timestamps and a timestamp was found to contain multiple entries,
then the last of those entries was chosen (the closest one to the second we were looking
for). If a timestamp was found for the current timestamp we were looking for (not looking
backwards), the first entry was always selected.

5.5. Predicting Occupancy Using a CNN Regression Network

We built a predictive model employing a Convolutional Neural Network (CNN) that
has as a goal to give a single output, i.e., how many people there are in the observed input.
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Because we trained a regression network, we set the optimization criteria as the Mean
Square Error (MSE/L2-norm) between the target and the output.

The network consisted of seven down-convolutions with a leaky rectified linear unit
(ReLU) of slope −0.2 followed by 3 fully connected linear layers that predict a single value
with a normal rectified linear unit at the very end. Leaky ReLU is known as the most
popular extension of the ReLU activation function, which has frequently been used in
the literature. Leaky ReLU relaxes the classical ReLU function by also allowing small
negative values to contribute to the results. Even though using a leaky ReLU activation
function instead of the classical ReLU does not make a significant impact on the opti-
mization performance, earlier research has shown that, while using leaky ReLU NNs, the
convergence is slightly faster, which is perhaps due to the difference in gradient among the
two rectifiers [24]. No normalization layers were employed in the network, as they did not
grant any increased performance during early experimentation.

The network used an input of 64 × 64 × 1, which means that all of the inputs need to
be resized to this resolution; this was done by applying bicubic resampling. This can be a
disadvantage for Method A, since the network has to learn to classify for 6 quite different
looking shapes, even though they are resized, whereas Method B has a more uniform size
of resampled images.

Method A is trained to detect 0–2 people per input data, while Method B is only
trained to detect 0–1 people, one per seat. There is also the special case for t2, where one
person is standing between sensor 0 and sensor 1, this person is counted as 0.5 for patch 0
and patch 1.

For both of the methods, all the temperatures are standardized while using the per-
pixel mean and standard deviation of the entire dataset during both training and evaluation.
During training, augmentation was also employed: random rotation, flipping, and shear-
ing.

5.6. Training the CNN Regression Network for Occupancy Prediction

For each occupancy time t0–4, there is a label with how many people there is in the
whole frame. Each time t has a label for the whole collection of sensors. That is, if there is a
subject at sensor s0 and nowhere else, the whole combined frame for the data sequence
gets the same label. Each time that t also has a transit period where there is no label, in this
period the test subjects are switching seats. Therefore, these data are removed, either due
to it being hard to judge where and when a person is visible, or that the test subjects are in
transit, so they can go out of view from the sensors.

Each time that t is roughly 60 s. When subtracting the transition frames, we have
around 55 frames ± 3 frames. The first three minutes (t0−2) are used for training the CNN
model and the last two minutes (t3−4) are used for evaluation. During training, 60% of the
data is further divided into training (85%) and validation (15%). During training, the data
are retrieved in random order with the model having no temporal knowledge between the
training frames. After each training session, the model is tested on the validation data in
order to see the progress made between epochs. We train the model for 1000 epochs, and
then select the weights for the model that performed the best on the validation set. When
training is complete, we evaluate our model with the evaluation set using the measures
mean squared error, mean absolute error, accuracy, and confusion matrices.

5.7. Model Training Settings

When training the model, we employed the commonly used AdamW optimizer. The
following settings where applied when training the model; test percentage = 0.15 (amount
of data used for testing during training), batch size = 100, learning rate = 0.00001, weight
decay = 0.00001, beta1 = 0.9, beta2 = 0.999, epochs = 1000. The model shape can be seen in
Figure 8. The leaky ReLU layers had a negative slope of 0.2.
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Figure 8. The Convolutional Neural Network (CNN) regression network architecture. It consists of seven convolution
layers, followed by three fully connected layers.

6. Experimental Results

Our model is lightweight, which implies a fast training and inference speed. This is
due to our input data being of low dimensionality and low resolution. We also chose a
limited amount of convolutional and linear layers to decrease the model complexity. The
training and inference were evaluated on both an Nvidia GTX 1070 and an Nvidia RTX
3090. On both graphics cards, the training phase (of 1000 epochs) for Method A was around
30 min., while the training phase of Method B was around 97 min. On both graphics cards
for both methods, inference took around 2 ms at most. Predicting multiple sensors in
parallel was only limited to available graphics memory and it did not increase inference
time. The low inference time means that 500 sensors could even be predicted in sequence
and still be considered as real-time, given the sensor capture rate of one frame per second.

Inference was also examined on two CPUs, AMD Ryzen R7-2700X and an Intel Core
i9-9900K. For both CPUs, inference took around 50 milliseconds at most. With previous
calculations in mind, 20 sensor batches could be processed in parallel per second, where
the batch number is dependent on the number of CPU threads. Whether a GPU or a CPU
was used for inference, we could still perform prediction in real-time with our given set up.

We compare the CNN-based method’s detection results with a manually labelled
multi-sensor evaluation set (t3−4) to assess the performance of our methods. The confusion
matrices that are shown in Figure 9 provide the performance of our solution based on the
number of occupants predictions at six different attempts. In such a figure, the perfor-
mances for True Positive, False Positive, and False Negative predictions can be seen for
each predicted class (0 people, one people, two people). Along the diagonal (starting at the
top-left corner) is the True Positives for each class, along the rows we can obtain the False
Negatives for each class (excluding the True Positives) and, along the columns, we can get
the False Positives for each class (excluding the True Positives). Note that the usage of the
classes 0, 1, and 2 people present in the confusion matrices is due to those being the only
three classes that were predicted by our model. The target classes were only one or two
people present, but for one data (data2 using Method B), 0 people present was sometimes
inaccurately predicted. The model is capable of predicting even more "classes" (i.e., 3, 4, 5,
..., ∞), but the confusion matrices are limited to just the classes that are predicted for the
given evaluation data.

In these confusion matrices, we notice one significant anomaly in the results of Data1
and Data4 when they are processed with the fusion Method A. During the data collection
process of Data1 and Data4, the computer that captured the multi-sensor data was standing
on the table below sensor 5. This resulted in a small hot-spot that might have affected the
results of Method A. Interestingly, this does not seem to be the case for Method B. This could
be explained by the different sensor data fusion and different training scheme employed
for the Method B compared to the Method A. This anomaly appears to be significant for
the rest of the data for Method A. Method B does not have such large deviations in the
predicted results, which shows that it might be a more robust approach when comparing
both methods.
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Figure 9. Occupancy prediction confusion matrices for method A and method B. The top six confusion matrices represent
validation results for try 1–6 for both methods. The lower three represent the cumulative confusion matrices for the
aforementioned confusion matrices. At each confusion matrix, horizontal and vertical 0, 1, and 2 numbers indicate the
number of the predicted and the real occupant numbers, respectively.
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6.1. Comparing the NN-Based Method with Earlier Published Methods

In the following subsections, we describe the comparison of our new NN-based
occupancy prediction algorithm with the machine learning (ML) and computer vision
(CV)-based methods proposed in our previous study [3]. As we mentioned earlier, these
previously suggested two methods were designed for single sensor data processing. There-
fore, in order to be able to process multi-sensor data with these solutions, we used two
sensor fusion methods, Method A and B, as illustrated in Figure 5. We have replaced the
NN-based prediction module of Method A and Method B with the CV and ML-based pre-
diction modules, respectively. However, we did not achieve reliable occupancy prediction
results and we concluded that both of the fusion methods do not seem to be a good fit for
the earlier published solutions. In the following subsections, we provide more details of
the comparisons.

6.1.1. Comparison with the Computer Vision–Based Method

The previously proposed CV-based method is designed to work when an empty room
recording of a heat sensor is available. This empty room recording is used for removing
the noise artifacts that might be coming from other warm objects in the environment (like a
radiator, computer, screen, a hot drink, or a surface heated by direct sunlight).

In the multi-sensor data set (Table 2), an empty room recording was only available at
the Data6 recording attempt during the time period represented with the t0 label. Hence,
we used this specific time period data for the background compensation step of the CV-
based method and we used the whole Data6 time stamps for testing the CV-based method.
First, we selected the sensor data fusion Method A, replacing the NN-based prediction
module with the CV solution. Unfortunately, we did not obtain a high occupancy prediction
performance, as we did in the single sensor experiments published. When we made the
comparison, we calculated a RMSE value of 1.85. This means that, at each time stamp,
the predictions provided approximately two persons extra or less than the real value. We
believe that the main cause of this high error and low performance of the multi-sensor
based CV system comes from the background compensation step of the algorithm. The
purpose of the background compensation step is to correct each pixel value if there is any
noise coming from other heated objects in the room. However, after applying the fusion
method, as described for Method A, the fused image pixels do not contain the original
background value (because of the image resizing operation) and, therefore, the background
noise at any specific point cannot be compensated.

When we used the CV-based prediction method within Method B (by replacing the
NN-based prediction module with the CV-based solution), we, unfortunately, obtained
even much higher errors than with Method A, showing unreliable results. First, since
the sensors in Data6 have overlapping field of view, the overlapping pixels are fused by
calculating the mean of the pixel values. In this way, the original pixel values of each frame
and also the background calculation frames are lost. Thus, the background compensation
method cannot counterbalance the noise effects, since it does not know the original pixel
values and the noise effects. Secondly, if a person is sitting between two sensor views,
then the slight impression of the person in each sensor is not sufficient heat to predict
occupancy (creating a maximum of one highlighted pixel in each image patch after the
splitting process).

6.1.2. Comparison with the Machine Learning-Based Method

Finally, we have compared the new NN-based method with the previously proposed
ML-based solution. To do so, once again, we considered both Method A and Method B as
fusion techniques. Because, in our previous work, we have already trained a ML model
that can make occupancy predictions, we have simply replaced this trained module with
the NN-based prediction module. In Method A, we noticed that the deformed (fused and
resized) input image does not provide similar feature characteristics to the single sensor
data that we have used for training the ML based model. Thus, the algorithm was not
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able to make any meaningful predictions. The ML based model needed to be re-trained
by creating a big data set. We have avoided this highly time consuming process since
we also did not expect this solution to provide more accurate results than the NN-based
solution which has learned which kind of features to look for in fused images. Secondly,
we considered Method B and tried our pre-trained ML module instead of the NN-based
prediction module. Again, we noticed that the ML model needed to be re-trained in order
to learn the situations when a person sits between two sensors for different field of view
overlap ratios. For similar reasons as with Method A, we have decided to rely on the
NN-based prediction module that has already learned such special situations.

7. Discussion

In the following sub-sections, we discuss the advantages, applicability, and limitations
of the proposed solutions. We also address the influence of sensor field of view overlap on
the performances.

7.1. Comparing the NN-Based Methods with the Traditional CV- and ML-Based Methods

There are various CV- and ML-based occupancy prediction techniques for processing
low-resolution heat sensor data in the literature. In order to compare the solutions that
are presented in this paper with these types of methods, we used our earlier CV- and
ML-based solutions presented in [3] with the multi-sensor data sets used in this study.
To do so, we replaced our previous CV- and ML-based prediction modules with the NN-
based prediction module in Method A and Method B. We list our observations from this
comparison, as follows:

• When the CV-based method is used with Method A, because of the lost original
pixel values during the fusion process, the method could not compensate the back-
ground noise artifacts coming from each individual pixel. Therefore, the CV-based
method provided inaccurate predictions after the unsuccessful background noise
compensation step.

• When the CV-based method is used with Method B, again the method could not
successfully compensate the background noise because of the lost original pixel values
for the overlapping pixels. Once again, the CV-based method provided inaccurate
predictions due to the unsuccessful background noise compensation.

• When the CV-based method is used with Method B, even when the sensors’ field of
views do not overlap, the occupancy predictions could not be made correctly when
the occupants appeared between two sensor field of views.

• When the ML-based occupancy prediction method is used with Method A, the previ-
ously trained occupancy prediction model could not make any successful occupancy
prediction, since the fused image did not provide features which are similar to the
features which were extracted from single sensor data during the training process.

• When the ML-based occupancy prediction method is used with Method B, we ob-
served that, for different sensor field of view overlaps and for different occupant
sitting positions (appearing between two sensor field of view or not), the ML-based
method needed to be re-trained to learn the features of such specific cases.

In summary, we have not achieved a reliable solution by simply replacing the pre-
viously developed CV-based or the ML-based prediction modules with the NN-based
prediction solution that is presented in this paper. We do not want to imply that these two
traditional solutions are obsolete when they are compared to a NN-based solution. As we
have shown in our earlier article with extensive experiments [3], these two methods present
good performances (that are comparable to the NN-based method) while using data that
were collected with a single heat sensor. However, these two methods come with their
respective advantages and disadvantages, as we have discussed in detail in [3]. We believe
that these traditional methods would require fewer data to be trained as compared to the
NN-based method. However, the proposed multi-sensor fusion methods do not seem to
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be suitable to be used with the traditional techniques by simply changing the prediction
module.

We see that the main reason for having high performance from the proposed NN is
that it learns how to assess the fused sensor information, according to the comparison made
with the previous CV-based and the ML-based methods. The multi-sensor fusion process
of the Method A and the fusion followed by the split module in Method B distort the real
values of the original sensor pixel information, as we have explained in Section 5.3. The
CV-based method relies on the spatial accuracy of the input image and the real heat values
of each pixel, therefore, it cannot count occupants in the distorted fusion images. The
ML-based method similarly relies on the heat related features extracted from the raw sensor
images, therefore, again, this method cannot find meaningful features to label the scene
with the number of occupants. Nevertheless, the proposed NN can learn how to extract
meaningful information from a distorted multi-sensor data; therefore, it works reliably.

7.2. Choosing a Reliable Method to Observe Occupancy with Multi-Sensor Data

We have proposed two different fusion methods, as illustrated in Figure 5. Whereas
they differ in the prediction phase, they share the same initial fusion step, where overlap-
ping areas are averaged from a manually measured distance. We deem this initial fusion
step necessary for any kind of multi-sensor set up, at least when the sensor areas overlap.
This is because it is necessary not to count a person in the overlap area twice.

From the results, we speculate that Method B is not only the most reliable method
when it comes to performance, it is also, in theory, more generalizable for irregular sensor
setups and for covering much larger office spaces. Because Method A needs to look at the
entire fusion “image” of all sensors, it needs a full N × M array of sensors (in this experi-
ment 2 × 3, 2 × 2, 2 × 1) and it quickly becomes unfeasible when adding further sensors.

Method B has the benefit of performing per-sensor predictions where the sensor set
up can be completely irregular. It should be noted that we have only tested Method B in a
very basic setting, where, instead of predicting per sensor (and having multiple classes),
we have predicted smaller patches of only 0 or 1 people present (and 0.5/1.5 in a very
special case).

While we believe that Method B is superior, it is not clear that is the case for all possible
set ups. For example, Method A outperformed Method B for the four sensors set up (data2
and data5), even if only barely. This might suggest that Method A is more suitable for the
very specific case of an N × N sensor array set up.

7.3. Influence of the Sensors Field of View Overlap on the Prediction Performance

Our experimental results show that having a higher overlap in a small area increases
the precision of the occupancy prediction results; however, higher overlap creates a negative
impact when a larger area is covered with more sensors. This might be good news when
the sensor costs for covering large areas are concerned. Our experiments show that it is
possible to install the sensors sparsely and observe the occupancy with high precision
accuracy.

8. Future Work
8.1. Robustness to the Environmental Changes

In our study, the data collection environment did not have any windows and it
was artificially illuminated. This is quite common in business buildings. Therefore, in
this study, we have not analyzed the effect of weather and illumination changes on the
performances of our algorithms, as we did in our earlier study [3]. In such earlier work,
we employed eXplainable AI (XAI) methods to interpret the performance of the feature
extraction methods in an ML-based algorithm in order to predict occupancy when the sun
illumination changed within a 24 h recording in a smart office room with large outside
windows. Therefore, we are planning to carry out a similar analysis with the multi-sensor
setting and the current CNN solution in the future.
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8.2. Prediction Models Considering the Occupancy Dynamics

A few occupancy dynamics observational studies have been presented in the literature.
In the future, we are planning to apply the algorithms presented here to even larger areas,
such as large business spaces or a university building with many offices, meeting rooms,
and classrooms. In such cases, we believe that we will be looking for more predictive
models to estimate the future occupancy states of each room when the activity on other
building areas is known.

8.3. Optimized Training for CNNs

For configurations, such as in Method B, the network could be trained using multiple
objectives. In this study, we trained the network on each individual seat patch and later
summarized the predictions to a single value. While the network was trained only to
predict each seat patch, they could also be trained to accurately predict a summarized
value. An objective like this (perhaps with additional information about the position of the
sensors) could possibly solve the challenge of sensor overlap in an unsupervised manner.

In this study, we use a single network architecture for both Method A and B. It could
be worth exploring the use of smaller networks that do not require a 64 × 64 input. While
bicubic interpolation could be useful for the network, up-scaling might only be needed to
a resolution of 16 × 16 if at all. This would make the inference speed even faster, which
makes the network viable for edge devices.

8.4. Optimal Sensor Placement

Another important open research topic is to find a reliable and practical algorithm
in order to solve the optimal sensor placement problem. The position and number of
sensors are vital for building occupancy estimation. In the literature, only a few works
have been carried out to investigate the optimal sensor placement for the task of building
occupancy estimation and detection. A systematic and theoretic analysis of optimal sensor
placement is an urgent and challenging task, where further research is required. In light
of our experimental results regarding the impact of the field of view overlaps between
different sensors, in the future, we would like to investigate this challenge and propose
optimal sensor placement solutions. We would like to test our algorithms in buildings that
have more complex floor plan geometries and buildings that have restrictions regarding
sensor placements.

8.5. More Extensive Data Collection

The data used in this study were limited to 0–2 people visible at any time and only
using regular N × M sensor setups. The result was that our evaluation dataset, while being
aimed for regression, only contained two different target classes: one or two people present
(see t3, t4 in Table 2). Note that the training dataset contained more classes, and both of the
methods are capable of predicting any non-negative real number (which is often rounded
to an integer). Having the opportunity to record better data, for larger rooms, with more
participants could give further insight into the viability of our proposed methods. This is
especially true for Method B, where a larger and better annotated dataset could make sure
that the method generalizes better.

8.6. Data Cleaning and Compression

Finally, we would like to address several issues that are highly common when real-life
data and applications are considered. One of these issues regards missing data due to
a broken sensor or due to a synchronization problem that might happen to one or more
sensors. We need to modify our workflow in order to deal with such a challenge. First,
we would need to add algorithms that could determine whether the sensors are working
properly and are sending synchronized data or not. Secondly, we would need to re-design
the fusion and prediction modules in order to provide reliable results.
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Another issue regards the increasing amount of data when the data acquisition is
carried out in large buildings 24 h a day. In order to deal with the associated challenges
of large amounts of data, we would need to, for example, look for suitable data cleaning
(removing data that are not useful) and data size reduction methods.

9. Conclusions

In this paper, we have proposed two different multi-sensor fusion methods and an
NN-based prediction solution, in particular, a CNN, in order to determine the occupancy
of large indoor environments using low-resolution and low-cost heat sensors. We have
discussed the advantages and disadvantages of different sensor data fusion methods
when considering their impact on the prediction performances and their extendibility
possibilities.

The experimental results of our solutions show high-performance accuracy and real-
time prediction capabilities. We also analyze the impact of field view overlaps, undertaking
experiments to observe the prediction performance when the field of view overlap spams
from zero to higher values. We believe that our suggested solutions, the experimental
designs, and obtained results contribute to finding occupancy prediction solutions for
future smart spaces.

One of the major limitations of the proposed study is that it needs modifications if it
was to be used in offices with complex floor plans (such as L-shaped, U-shaped, triangle, or
other geometries that are not square or rectangle). The proposed sensor fusion algorithms
are capable of dealing with square or rectangle office floor plans when the sensors are
installed in a rectangular grid structure. Thus, in our future work, we would like to study
these two related challenges: (1) developing sensor placement optimization algorithms to
suggest the best sensor positions to cover any office floor plan and (2) improving the sensor
fusion methods in order to be able to predict occupancy for complex office floor plans that
might also imply complex sensor placement distributions. Finally, two possible extensions
of this work are to consider more crowded spaces and different environmental conditions
that affect the data, such as exposure to variations of daylight through windows.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CNN Convolutional Neural Network
FN False Negative
FP False Positive
HVAC Heating, Ventilation, and Air Conditioning
IoT Internet of Things
ML Machine Learning
NN Neural Network
PIR Passive Infrared
ReLU Rectified linear activation function
TP True Positive
XAI eXplainable AI
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