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Abstract: The use of reference genes is commonly accepted as the most reliable approach 

to normalize qRT-PCR and to reduce possible errors in the quantification of gene 

expression. The most suitable reference genes in sheep have been identified for a restricted 

range of tissues, but no specific data on whole blood are available. The aim of this study 

was to identify a set of reference genes for normalizing qRT-PCR from ovine whole blood. 

We designed 11 PCR assays for commonly employed reference genes belonging to various 

functional classes and then determined their expression stability in whole blood samples 

from control and disease-stressed sheep. SDHA and YWHAZ were considered the most 

suitable internal controls as they were stably expressed regardless of disease status 

according to both geNorm and NormFinder software; furthermore, geNorm indicated 

SDHA/HPRT, YWHAZ/GAPDH and SDHA/YWHAZ as the best reference gene combinations 

in control, disease-stressed and combined sheep groups, respectively. Our study provides a 

validated panel of optimal control genes which may be useful for the identification of 
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genes differentially expressed by qRT-PCR in a readily accessible tissue, with potential for 

discovering new physiological and disease markers and as a tool to improve production 

traits (e.g., by identifying expression Quantitative Trait Loci). An additional outcome of the 

study is a set of intron-spanning primer sequences suitable for gene expression experiments 

employing SYBR Green chemistry on other ovine tissues and cells. 

Keywords: reference genes; Ovis aries; whole blood; real-time qPCR; normalization 

 

1. Introduction 

To date, quantitative real-time PCR (qRT-PCR) is the most reliable and easy to perform technique 

to measure the expression level of a selected gene of interest (GOI) by quantifying mRNA transcripts. 

qRT-PCR is fast and the sensitivity of the method allows precise quantification of minimal differences 

in expression across a wide dynamic range even when working with limited amounts of starting 

material. However, several variables associated with the different steps of qRT-PCR experimental 

procedures can lead to considerable inter-sample variation and possibly to erroneous results: the 

different amount and quality of starting material; RNA integrity; efficiency in cDNA synthesis and 

PCR amplification; and differences between tissues or cells in overall transcriptional activity [1]. Among 

the strategies proposed to control for technical and sample variation in qRT-PCR experiments [2], the 

use of reference genes is commonly accepted as the most reliable approach to normalize qRT-PCR and 

to reduce possible errors generated in the quantification of gene expression. In this normalization 

strategy, reference genes are used as internal controls and are submitted to the same experimental 

protocol of the GOI. The expression level measured for the target gene is then normalized according to 

the values of the internal controls. It is clear, therefore, that an ideal reference gene should be stably 

expressed within the samples to be compared irrespective of experimental conditions or external 

factors, otherwise the detection of small changes become unfeasible and unreliable. A number of 

studies have well assessed that genes classically thought to be stable for their ubiquitous expression 

and involvement in cell homeostasis (e.g., GAPDH, ACTB, 18S rRNA) are not always the best reference 

genes, as they show different behaviour across various cell types and tissues [3,4]. Accordingly, a proper 

evaluation of several candidate genes should be performed before any gene expression study [2]. 

Studies aimed at identifying the most suitable reference genes in the ovine species have been 

performed in nervous tissues, spleen, mesenteric lymph node, ileum, lung and pulmonary artery [5–8]. 

However, no specific information on whole blood is currently available. A reference gene for use in 

peripheral blood mononuclear cells was selected [9], but this study was based on the analysis of the 

standard deviation of cycle threshold (Ct) and not on specifically designed algorithms. Nevertheless, 

blood is a readily accessible source of material for analysis and some attempts to identify gene 

expression markers by qRT-PCR in order to develop blood tests in sheep have been reported for prion 

diseases. For example, in 2001, Miele et al. discovered a novel erythroid-associated factor (ERAF) and 

demonstrated a dramatic decrease in expression of the specific transcript within rodent models of prion 

diseases, providing the first easily detectable molecular marker in a readily accessible tissue [10]. 

More recently, analysis of blood by qRT-PCR from sheep experimentally infected with scrapie 
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revealed that the extent of differential expression of ERAF in peripheral ovine blood may be 

insufficient to provide a discriminatory diagnostic test [11]. However, the lack of a set of validated 

reference genes for sheep whole blood did not allow for the proper normalization of gene expression 

data and, in this study, glycophorin C (GYPC) was arbitrarily chosen as normalizer based on its higher 

expression in the human erythroid lineage. Moreover, the use of a single gene to normalise expression 

is no longer considered sufficient [12–15]. Vandesompele et al. (2002) demonstrated that errors of up 

to 20-fold in expression data can be generated by the use of only a single reference gene [1]. 

The aim of the present study was to identify a set of reference genes to be used for normalizing 

qRT-PCR from ovine whole blood. We designed 11 PCR assays for commonly employed reference 

genes belonging to various functional classes and then determined their expression level in whole 

blood samples from control and disease-stressed sheep, both separately and combined, in order to 

select genes whose stability was unaffected under stress conditions. The geNorm and NormFinder 

applets [1,16] were used for validating the reference genes; sample processing and experiments were 

carried out according to the Minimum Information for Publication of Quantitative Real-Time PCR 

Experiments (MIQE) guidelines [17]. 

2. Results and Discussion 

2.1. Expression Level of Candidate Reference Genes 

Preliminary qRT-PCR experiments carried out to set up optimal reaction conditions showed that all 

candidate reference genes were expressed in ovine whole blood. qRT-PCR optimisation was 

performed using pooled cDNA samples in parallel with sheep genomic DNA. All primer pairs spanned 

two exons, generating melt-curve profiles specific to cDNA and genomic DNA amplification. While 

this strategy entailed much more effort in primer design and reaction optimisation, it assured specific 

amplification of mRNA transcripts by avoiding/recognizing interference of genomic DNA in 

quantification. Actually, in most cases DNAse treatment does not completely eliminate genomic DNA 

contamination, especially when RNA extraction is performed using reagents based on mono-phasic 

solution of phenol and guanidine isothiocyanate (personal observation). Gene-specific amplification 

was confirmed for all selected genes by a single-peak in melt-curve analysis and subsequent sequencing 

of amplicons. The determined reference gene sequences have been submitted to the GenBank database 

under the accession numbers JN811677-JN811687. 

The highest expression was obtained with ACTB, B2M and RPL19 with Ct averages of 14.64, 15.82 

and 15.95, respectively, whereas the lowest expressed gene was GYPC (mean Ct, 27.50). For all 

analysed genes, the relative standard curve gave correlation coefficients greater than 0.985 and 

efficiencies between 90 and 110%. 

To select the optimal set of reference genes, expression values of the candidate genes were 

submitted to analysis by the geNorm and NormFinder applications. 
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2.2. GeNorm Analysis 

Table 1 reports the expression stability values (M) of the candidate reference genes in control, 

disease-stressed and combined sheep groups as calculated by the geNorm applet. The M values are 

used to rank genes on the basis of their stability: high M values indicate increased gene expression 

variability, whereas the most stable genes should exhibit M values <1.5 [1]. All studied genes reached 

acceptable stable expression with low M values, less than 1.5. Based on M value ranking, SDHA 

appeared to be the most stably expressed gene in control sheep with an average M value of 0.316, 

followed by YWHAZ and HPRT. In disease-stressed sheep, the overall stability of the candidate genes 

was lower and YWHAZ was the most stably expressed gene with an average M value of 0.624, 

followed by GAPDH and SDHA. When data from the two groups were combined, SDHA and YWHAZ 

resulted to be the most stably expressed genes with average M values of 0.591 and 0.593, respectively. 

However, after stepwise exclusion of the worst-scoring reference genes, recalculation of the new  

M values indicated that SDHA/HPRT, YWHAZ/GAPDH and SDHA/YWHAZ represented the most 

suitable gene combinations in the control, disease-stressed and combined sheep groups, respectively  

(Figures 1A, 2A and 3A).  

To determine the optimal number of reference genes needed to calculate a normalization factor 

(NF), geNorm measures the pairwise variation between two sequential NFs with an increasing number 

of reference genes. A cut-off value of 0.15 is usually considered acceptable; it indicates that the control 

gene combination ensures satisfactory stability and that an additional gene need not be included. In the 

panel of candidate genes studied here, the use of two genes as references proved to be sufficient for 

accurate normalization in all sheep groups (Figures 1B, 2B and 3B). 

Table 1. Candidate reference genes for normalization of qRT-PCR ranked according to 

their expression stability by the geNorm applet. 

Control sheep 

(n = 18) 

Disease-stressed sheep 

(n = 10) 

Combined groups 

(n = 10 + 10) 

Gene symbol 
Stability value 

(M) 
Gene symbol 

Stability value 

(M) 
Gene symbol 

Stability value 

(M) 

SDHA 0.316 YWHAZ 0.624 SDHA  0.591 

YWHAZ 0.342 GAPDH 0.634 YWHAZ  0.593 

HPRT 0.344 SDHA 0.667 ACTB 0.596 

RPL19 0.361 ACTB 0.701 G6PD 0.666 

B2M 0.362 B2M 0.720 GAPDH 0.681 

ACTB 0.377 G6PD 0.740 GYPC 0.698 

GYPC 0.412 GYPC 0.848 RPL19 0.746 

TFRC 0.455 RPL19 1.000 B2M 0.760 

G6PD 0.486 HPRT 1.188 HPRT 0.882 

PGK1 0.498 PGK1 1.466 TFRC 1.158 

GAPDH 0.579 TFRC 1.485 PGK1 1.295 
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Figure 1. Gene expression stability analyzed by the geNorm software in control sheep. 

(A) Average expression stability measure (M) of control genes during stepwise exclusion 

of genes with relatively higher variable expression among the samples; (B) Determination 

of the optimal number of control genes for normalization calculated on the basis of the 

pairwise variation (V) analysis; V values under 0.15 threshold indicate no need to include 

further reference genes for calculation of a reliable normalization factor. 
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Figure 2. Gene expression stability analyzed by the geNorm software in disease-stressed 

sheep. (A) Average expression stability measure (M) of control genes during stepwise 

exclusion of genes with relatively higher variable expression among the samples; 

(B) Determination of the optimal number of control genes for normalization calculated on 

the basis of the pairwise variation (V) analysis; V values under 0.15 threshold indicate no 

need to include further reference genes for calculation of a reliable normalization factor. 
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Figure 3. Gene expression stability analyzed by the geNorm software in combined control 

and disease-stressed sheep. (A) Average expression stability measure (M) of control genes 

during stepwise exclusion of genes with relatively higher variable expression among the 

samples; (B) Determination of the optimal number of control genes for normalization 

calculated on the basis of the pairwise variation (V) analysis; V values under 0.15 threshold 

indicate no need to include further reference genes for calculation of a reliable 

normalization factor. 
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2.3. NormFinder Analysis 

NormFinder ranks a set of candidate genes according to their expression stability measure (ρ) based 

on the similarity of their expression profiles. Lower values are assigned to the most stable genes. Table 2 

reports the results of the NormFinder analyses. The ranking appears to be consistent to the one 

previously determined using geNorm. SDHA, YWHAZ and HPRT still occupy the highest positions in 

control animals, with stability values of 0.068, 0.125 and 0.132, respectively; while YWHAZ, GAPDH 

and SDHA shows the highest stability values in disease-stressed sheep (ρ values = 0.046, 0.064 and 

0.188, respectively). When expression data from control and disease-stressed animals were combined, 

the resulting ranking confirmed SDHA and YWHAZ in the top positions with stability values of 0.093 

and 0.096, respectively, followed by ACTB (ρ value = 0.099). TFRC and PGK1 are equally defined as 

the least reliable controls by both software and in all sheep groups. 

Table 2. Candidate reference genes for normalization of qRT-PCR ranked according to 

their expression stability by the NormFinder applet. 

Control sheep 

(n = 18) 

Disease-stressed sheep 

(n = 10) 

Combined groups 

(n = 10 + 10) 

Gene symbol 
Stability value 

(ρ) 
Gene symbol 

Stability value 

(ρ) 
Gene symbol 

Stability value 

(ρ) 

SDHA 0.068 YWHAZ 0.046 SDHA 0.093 

YWHAZ 0.125 GAPDH 0.064 YWHAZ 0.096 

HPRT 0.132 SDHA 0.188 ACTB 0.099 

B2M 0.146 ACTB 0.220 GAPDH 0.167 

RPL19 0.155 B2M 0.229 RPL19 0.175 

ACTB 0.174 G6PD 0.248 G6PD 0.184 

GYPC 0.201 GYPC 0.397 HPRT 0.188 

TFRC 0.245 RPL19 0.540 GYPC 0.190 

G6PD 0.271 HPRT 0.702 B2M 0.212 

PGK1 0.282 PGK1 0.915 TFRC 0.274 

GAPDH 0.354 TFRC 0.941 PGK1 0.280 

2.4. Evaluation of the Analysed Reference Genes  

We examined the expression of 11 genes in ovine whole blood by using two commonly accepted 

softwares (geNorm and NormFinder). Both software algorithms are frequently used and freely 

available but have a different working rationale. NormFinder selects out of a set of potential reference 

genes one single best-performing reference gene that shows the least variation within the analysed 

group. GeNorm focuses on pairwise comparisons of reference gene expression in the experimental 

samples and so is less appropriate for identifying co-regulated genes [18]. To avoid possible bias, 

we therefore selected the candidate reference genes on the basis of differences in their 

physiological functions. 
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To investigate the influence of the animal health status on the stability of the candidate reference 

genes, the analyses were performed in whole blood of control sheep and of sheep showing disease 

symptoms after clinical evaluation. Moreover, disease-stressed animals were sampled and analysed 

twice in order to monitor gene stability in disease-stressed sheep not only at different time points, but 

also under heat stress conditions, which, in association to disease status, really represent an extreme 

situation (see the Experimental Section for details on animal selection and sampling procedure). In all 

sheep groups, the results obtained with geNorm and Normfinder were consistent although not identical, 

as similarly reported elsewhere [19–22]. SDHA and YWHAZ can be considered the most stably 

expressed genes in ovine whole blood ranking at the top positions in the control and  

disease-stressed sheep, both when they were analysed separately and when they were combined. SDHA 

and YWHAZ stability appears to be reliable as it was affected neither by disease status alone nor in 

association with heat stress. Moreover, geNorm indicated SDHA/YWHAZ as the best reference gene 

combination in the control and disease-stressed sheep joined datasets, a situation likely to fit most 

experimental contexts involving case and control animals; however, the SDHA/YWHAZ combination 

would be suitable for normalization of gene expression data also in studies carried out under 

physiological conditions, as these two genes demonstrated high stability in the control sheep group as 

well. Although data in sheep are still limited, SDHA appears to have good stability in this species as it 

was included in the reference genes required for reliable normalisation in several tissues (cerebrum, 

spleen, mesenteric lymph node and ileum). Similarly, YWHAZ was included in the optimal panel of 

reference genes to be used in the cerebellum, obex and ileum [5]. HPRT expression stability was 

evaluated only in the lung and pulmonary artery of brainstem death and control sheep, but it performed 

poorly as reference in both tissues on separate and combined analyses [7]. Actually, HPRT ranked as 

the third most stable gene of the control group in sheep whole blood, but its stability strongly 

decreased under disease conditions, emphasizing that proper validation of reference genes in a cell 

type or tissue of interest and under different experimental settings is mandatory before reporting  

qRT-PCR results. B2M showed stable expression in one study on human leukocytes from 13 healthy 

donors [1]. B2M also had stable expression in a large study in which 526 human whole blood samples 

represented healthy individuals and six disease groups [23]. In sheep, however, B2M is outperformed 

by other genes and demonstrates suboptimal suitability as reference gene in whole blood. In humans, 

GYPC expression is considerably higher in erythroid lineage cells than in non-erythroid cells [24]. 

GYPC was therefore used by Brown et al. (2007) to normalize qRT-PCR analyses of erythroid markers 

in sheep whole blood [11]. In our study, however, both geNorm and NormFinder classified GYPC in 

the bottom half of the stability ranking under both control and disease conditions, showing that 

ubiquitously expressed genes would provide a more relevant comparison for measuring erythroid gene 

expression. In control sheep, GAPDH resulted in being the gene with the highest degree of individual 

variation in expression level. This finding was not surprising, as GAPDH can be regulated under a 

large number of physiological states and is generally not considered a good reference gene [25,26]. 

Nevertheless, GAPDH ranked as the second most stable gene in the disease-stressed and the  

combined sheep groups. Taylor et al. (2008) found that the levels of GAPDH transcription were the 

most stable of the genes tested in ovine peripheral blood mononuclear cells during infection with 

Mycobacterium avium subsp. paratuberculosis [9]. This finding is consistent with our results 

indicating stability of GAPDH in whole blood under disease condition. However, it must be taken into 
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account that Taylor’s results could also be attributable to a characteristic of the specific cell type or to 

the fact that the study based its observations on analysis of the standard deviation of Ct values and not 

on specifically designed algorithms. 

A distinctive point of our study is the major effort put into primer design with the aim to validate 

only oligos spanning at least one intron. This aspect has been neglected in the previous works on 

reference gene validation in sheep, probably because of the lack of ovine genomic DNA sequences 

available in the public databases. Indeed, we were able to retrieve intron-spanning primers from 

previous publications for only three genes (PGK1, SDHA and G6PD) among those included in our 

study. Nevertheless, this approach is highly recommended in combination with DNAse I treatment to 

avoid/recognize co-amplification of contaminating genomic DNA [1], since spurious PCR signals 

could affect the selection of reliable references by mimicking individual variation with lower stability 

scores. Also, when searching RTPrimerDB, a reference database for qRT-PCR primers [27–30], we 

noted that among 8329 real-time PCR primer sets for 5758 genes of 26 organisms available at the time 

of writing, only 16 SYBR Green assays were deposited under Ovis aries. Importantly, therefore, an 

additional outcome of our study is a set of validated primer sequences suitable for gene expression 

experiments based on SYBR Green chemistry to be carried out with other ovine tissues and cells. 

3. Experimental Section 

3.1. Sample Collection, Nucleic Acid Extraction and cDNA Synthesis 

Fresh whole blood samples were collected into EDTA tubes from 28 Biellese sheep belonging to 

three different farms. The animals included in the study were unrelated. Sheep were submitted to 

clinical evaluation by a veterinarian and categorized as control animals (n = 18), not showing any 

clinical sign, and disease-stressed animals (n = 10). Specifically, they had chronic diarrhoea (n = 5), 

lameness (n = 2), abscesses (n = 2) and respiratory syndrome (n = 1). The blood samples from  

disease-stressed sheep were collected twice: the first sampling was carried out in August, when the 

environmental temperature was of 35 °C, and the second in September with an environmental 

temperature of 26 °C. Every sampling was preceded by clinical evaluation of sheep to confirm disease 

status. The blood samples were immediately transferred to the lab and submitted to nucleic acid isolation. 

Total RNA was extracted using the QIAamp RNA Blood Mini Kit (Qiagen) according to the 

manufacturer’s instructions. Contaminating genomic DNA was removed by on-column treatment of 

each sample with DNase I (Qiagen). Purity, concentration and integrity of total RNA were assessed 

using two independent techniques. RNA purity and concentration were evaluated by absorbance 

readings using a NanoDrop ND-1000 spectrophotometer (Thermo Fisher Scientific). RNA quality was 

determined with an RNA 6000 nano LabChip Kit in the Agilent Bioanalyzer 2100 system. Quality was 

evaluated using the RNA Integrity Number (RIN) [31].  

The mean total RNA concentration was 96 ng/µL while A260/A280 and A260/230 ratios ranged 

from 1.99 to 2.04 and 2.02 to 2.16, respectively. Therefore all samples were pure, free from protein 

and organic pollutants derived from RNA extraction. The RIN obtained for all samples ranged from 

7.2 to 8.2 with a mean value of 7.6.  
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Total RNA (500 ng) was reverse transcribed using a High Capacity cDNA Reverse Transcription 

Kit (Applied Biosystems) according to the manufacturer’s protocol in a final volume of 20 µL. The 

cDNA was subsequently stored at −20 °C. Pooled cDNAs were then used in preliminary experiments 

to evaluate primer performance and specificity and for PCR protocol optimization. Subsequently, the 

expression profile of the selected genes was analysed in each cDNA sample separately. 

3.2. Selection of Genes and qRT-PCR Primer Design 

We selected 11 genes belonging to various functional classes and frequently used as references  

in qRT-PCR gene expression experiments: β-actin (ACTB); tyrosine 3-monooxygenase/ 

tryptophan 5-monooxygenase activation protein, zeta polypeptide (YWHAZ); hypoxanthine 

phosphoribosyl-transferase I (HPRT); transferrin receptor (TFRC); succinate dehydrogenase complex, 

subunit A (SDHA); β-2-microglobulin (β2M); phosphoglycerate kinase I (PGK1); glyceraldehyde-3-

phosphate dehydrogenase (GAPDH); glucose-6-phosphate dehydrogenase (G6PD); ribosomal protein 

L19 (RPL19); and glycophorin C (GYPC). Specifically, GYPC was included into the panel because of 

its expression in the erythroid lineage and because it was used in a previous study as normalizer to 

quantify the expression of erythroid genes in sheep blood [11]. 

Primers for PGK1, SDHA and G6PD were based on previous publications [5,7]. The other primers 

were designed using Primer3 software [32] by aligning ovine sequences available in GenBank with 

bovine and human homologous genes. Primers were selected to produce amplicons spanning two 

exons and their specificity was tested using ovine pooled cDNA and genomic DNA in preliminary 

PCR assays. The PCR products were subsequently run on 2% agarose gel to check for size specificity 

and, eventually, sequenced. 

Table 3 summarises primers information including sequences, product size, putative exon position, 

estimated size of the amplicon, efficiency of RT-PCR (E) and correlation coefficients (R2). 

Table 3. Details of primers and amplicons of the 11 candidate reference genes used for 

qRT-PCR analyses. 

Gene 

name 

Primers sequences 

(forward/reverse) 

Spanned 

exons 

Amplicon size 

(bp) 

PCR 

efficiency 

(%) 

R
2
 

ACTB CCAACCGTGAGAAGATGACC 2nd 97 102.1 0.999 

 CCAGAGGCGTACAGGGACAG 3th    

GYPC ATCAACATCGCTGTCATTGC 3th 117 106.7 0.994 

 CTCGTTGGTGTGGTATGTGC 4th    

RPL19 AGCCTGTGACTGTCCATTCC 2nd 126 102.0 0.998 

 ACGTTACCTTCTCGGGCATT 3th    

GAPDH CTGGCCAAGGTCATCCAT 7th 86 104.1 0.997 

 ACAGTCTTCTGGGTGGCAGT 8th    

YWHAZ AGACGGAAGGTGCTGAGAAA 2nd 123 100.0 0.998 

 CGTTGGGGATCAAGAACTTT 3th    

PGK1 ACTCCTTGCAGCCAGTTGCT 3th 101 109.9 0.991 

 AGCACAAGCCTTCTCCACTTCT 4th    
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Table 3. Cont. 

HPRT TTTATTCCTCATGGACTAATTATGGA 2nd 71 99.8 0.987 

 CCACCCATCTCCTTCATCAC 3th    

TFRC TTCTGGGCAGACCTCAAATC 4th 106 100.9 0.991 

 CAGCTTCACGTGGGACATAA 5th    

SDHA CATCCACTACATGACGGAGCA 4th 90 99.8 0.996 

 ATCTTGCCATCTTCAGTTCTGCTA 5th    

G6PD TGACCTATGGCAACCGATACAA 10th 76 103.0 0.990 

 CCGCAAAAGACATCCAGGAT 11th    

B2M CTGTCGCTGTCTGGACTGG 1st 86 98.9 0.997 

 TTTGGCTTTCCATCTTCTGG 2nd    

3.3. Quantitative RT-PCR 

All PCR reactions were performed in a 25-µL final volume containing 2× Brilliant II SYBR Green 

Master Mix (Stratagene), 300–900 nM of each specific primer and 1 µL of cDNA. PCR amplification 

was run on a Mx 3005P QPCR System (Stratagene) using 96-well optical plates under the following 

conditions: 10 min at 95 °C for polymerase activation, and 40 cycles of 3-segment amplification  

with 30 s at 95 °C (for denaturation), 30 s at 56–60 °C, and 40 s at 72 °C for elongation. Primer 

concentration and annealing temperatures were optimised to individual genes; specifications are 

available from the Authors upon request. A dissociation step was added after elongation to ensure that 

the desired amplicon was detected. The dissociation step eliminates non-specific fluorescence signal 

and ensures accurate quantification of the desired product. Finally, a melting curve was produced to 

confirm single gene-specific peaks and to detect primer/dimer formation by heating samples from  

60 to 95 °C. PCR efficiencies were calculated using a relative standard curve derived from a pooled 

cDNA mixture (a 10-fold dilution series with five measuring points). All experiments were replicated 

twice for each gene with triplicate sample runs within each replication and a no-template control was 

included using water instead of cDNA.  

3.4. Data Analysis 

qRT-PCR data were analysed for reference genes expression stability using two different statistical 

algorithms: geNorm version 3.5 [1] and NormFinder version 0.953 [16] according to the developers’ 

recommendations. Raw quantification cycle (Ct) values were converted to relative quantities using the 

comparative Ct method as input data for the two applets. Preliminary analyses performed separately on 

qRT-PCR data from disease-stressed animal sampled at different time points and under different 

environmental temperatures (August and September) retrieved consistent results. Therefore Ct values 

were averaged after inter-run calibration according to Hellemans et al. [33] and submitted to subsequent 

data analysis. The combined analysis was performed processing samples from ten randomly chosen 

control sheep together with the disease-stressed sheep and then joining expression results in a 

combined dataset. 
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4. Conclusions 

A number of studies have been carried out to identify reliable reference genes in specific tissues in 

various species [34–38]. In sheep, analyses of expression stability of candidate reference genes are 

limited to a restricted range of tissues [5–8] and data on ovine whole blood were still lacking. However, 

peripheral whole blood is attractive because of its accessibility and usefulness in monitoring several 

physiological and pathological conditions. As regards disease status, blood certainly represents the best 

tissue for in vivo test development since collection is non-invasive and easy to perform. For example, 

the identification of differentially expressed genes acting as indirect in vivo markers in blood would 

represent a major breakthrough for the diagnostics of non-conventional agents (like prions) which 

currently cannot be detected by standard methods as the diagnosis still rely on post mortem 

investigations. This study provides a panel of optimal control genes for use in qRT-PCR studies in 

sheep whole blood. The two softwares tested, based on different algorithms and analytical procedures, 

produced highly comparable results. SDHA and YWHAZ represent good reference genes for gene 

expression studies in sheep peripheral whole blood, unaffected by disease status and heat stress 

conditions, and the geometric mean of these two stable genes is an accurate normalization factor [1]. 

Our results may be useful for the identification of genes differentially expressed in a readily accessible 

tissue, with the potential of discovering new physiological and disease markers and as a tool to 

improve production traits (e.g., by identifying expression Quantitative Trait Loci (eQTLs) [39,40]. 
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