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Although many studies have investigated the functions of histidine triad nucleotide-binding protein 1 (HINT1), its roles in
neurobiological processes remain to be fully elucidated. As a member of the histidine triad (HIT) enzyme superfamily, HINT1 is
distributed in almost every organ and has both enzymatic and nonenzymatic activity. Accumulating clinical and preclinical
evidence suggests that HINT1 may play an important role as a neuroplastic mediator in neuropsychiatric diseases, such as
schizophrenia, inherited peripheral neuropathies, mood disorders, and drug addiction. Though our knowledge of HINT1 is
limited, it is believed that further research on the neuropathological functions of HINT1 would eventually benefit patients with
neuropsychiatric and even psychosomatic diseases.

1. Introduction to HINT1

Proteins containing the histidine triad (HIT) motif, a con-
served HisXHisXHis sequence (in which X represents any
hydrophobic amino acid), constitute an enzyme superfam-
ily known as the HIT proteins [1]. According to enzyme
activity classification, HIT proteins can be classified into
three branches: nucleoside phosphoramidate hydrolases,
dinucleotide hydrolases, and nucleotidylyl transferases.
HIT proteins are conserved throughout evolution, and
more than 35 members of this superfamily have been found
in 29 species, including bacteria, archaea, yeast, plants, C.
elegans, Drosophila, and mammals, implying that HINT1
exerts basic and essential physiological functions [2]. The
human genome encodes seven HIT proteins, which mainly
serve as nucleoside transferases and hydrolases and can be
divided into five classes: histidine triad nucleotide-binding
protein (HINT), galactosyl-1-phosphate uridine acyltrans-
ferase, aprataxin, DCPS/DCS-1, and the brittle histidine
triad proteins [3–6].

The histidine triad nucleotide-binding protein (HINT)
(including human HINT and nonhuman Hint) is the first
class of HIT superfamily. It is now suggested that at least
one HINT gene is thought to exist in all sequenced genomes.
Three independent HINT genes encoding the HINT1,
HINT2, and HINT3 proteins are found in the human
genome. Genes encoding HINT1 proteins are localized on
human chromosome 5q31.2, with a full length of 6160 bp,
containing three exons. HINT1 mRNA is composed of
782 bp, encoding a 126-amino acid cytosolic protein mole-
cule with a relative molecular mass of approximately
14 kDa (Figure 1) [3, 7]. According to nuclear magnetic
resonance (NMR) and crystallography studies, HINT1 is
one of the purine nucleotide-binding proteins. Two subunits
constitute a homodimer structure with a binding site for
purine bases and a binding site for ribose on each subunit
(Figure 2) [1, 8, 9].

HINT1 was first described as a protein kinase inhibitor in
1990 [10] and supposed to be protein kinase C inhibitor 1
(PKCI-1) in early literature [11, 12]. Although direct or
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indirect interactions between HINT1 and protein kinase C
(PKC) were suggested, the inhibitory effects of HINT1 on
PKC are still doubtful. Therefore, PKCI-1 was renamed to
HINT1 [1]. The abbreviation PKCI is still occasionally used
in the current literature with the altered meaning of protein
kinase C interacting protein 1, which was indicated in Klein
et al.’s study [13].

2. HINT1 in Tumorigenesis

Although HINT1 is known for its enzyme activity, studies
have shown that it has additional functions unrelated to
its enzymatic activity [14], such as tumorigenesis suppres-
sion [15, 16]. Accumulating evidence indicates that HINT1
plays a role as a haploinsufficient tumor suppressor in mul-
tiple malignant diseases, but little is known about the mech-
anism [15, 16]. Several recent studies demonstrated that by
inhibiting the activities of transcription factors including
AP1 [17], TFIIH [18], MITF [19], and USF2 [20], HINT1
could regulate gene expression in the Wnt/beta-catenin
signaling pathway [21]. Therefore, it seems that HINT1
may exert potential anticancer effects as a gene transcrip-
tional regulator. Currently, studies are focusing on the clin-
ical relevance of HINT1 expression in several human
specific cancers [22–24].

3. HINT1 in Neuropsychiatric Disorders

HINT1 has a wide range of distribution in various tissues
including liver, kidney, stomach, and brain in humans and
rodents [13]. HINT1 is expressed in the central nervous
system (CNS) of mice and is particularly enriched in the
olfactory sensory system, cerebral cortex, hippocampus, part
of the thalamus, hypothalamus, midbrain, pons, and medulla
oblongata [25]. The distribution of HINT1 in the CNS
provides anatomical evidence for its potential importance
in neuronal function.

atg gca gat gag att gcc aag gct cag gtc gct cgg cct ggt ggc

gac acg atc ttt ggg aag atc atc cgc aag gaa ata cca gcc aaa

atc att ttt gag gat gac cgg tgc ctt gct ttc cat gac att tcc

cct caa gca cca aca cat ttt ctg gtg ata ccc aag aaa cat ata

tcc cag att tct gtg gca gaa gat gat gat gaa agt ctt ctt gga

cac tta atg att gtt ggc aag aaa tgt gct gct gat ctg ggc ctg

aat aag ggt tat cga atg gtg gtg aat gaa ggt tca gat ggt gga

cag tct gtc tat cac gtt cat ctc cat gtt ctt gga ggt cgg caa

45
15

90
30

135
45

180
60

225
75

270
90

315
105

360
120

1
1

46
16

91
31

136
46

181
61

226
76

271
91

316
106

361
121

381

Myristyl site

Phosphorylation site

Amidation site Myristyl site

atg cat tgg cct cct ggt taa

A K A Q V A R P G GD E IM

M

M

M

A

A

A

A

A

A

K K K

K K

K K

KN NY

Y Q

Q

Q

Q

V

V

V

V V

V V

V

AR

R C

C

L

L

L L

L

LL

LL

R

R

P P

P P

G

G

G

G

G

G G

G

G

G

G

P

P

D

D T

T

D

D D D

D

D

D

E

E

E E

E

I F

F F H

H H

H

H

H W

H H

F

I I

I I

I S

S S S

S

S

II

I

I

I

⁎

Figure 1: DNA and protein sequences of human HINT1. Green boxes indicate the histidine triad (HIT) domain. The potential modification
sites of the protein are shown, including the phosphorylation site, amidation site, and myristyl site.

Figure 2: Crystal diffraction pattern of the HINT1 protein. HINT1
consists of a homodimer, each subunit of which contains two
α-helices and three β-sheets. From http://www.rcsb.org/pdb.
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3.1. Schizophrenia. The HINT1 gene is located on a genetic
locus highly associated with schizophrenia (5q31.2) [26, 27].
Schizophrenia is a common psychiatric disease with man-
ifestations of positive symptoms (hallucinations, delusions,
disorganized speech, disorganized behavior, catatonic
behavior, agitation, etc.) and negative symptoms (blunted
affect, emotional withdrawal, apathetic social withdrawal,
stereotyped thinking, attentional impairment, etc.), as well
as cognitive, affective, and aggressive symptoms [28]. The
etiology of schizophrenia is complicated, including epige-
netic changes and interactions between genetic susceptibil-
ity and environment [29].

Vawter et al. found that HINT1 was significantly
decreased in the dorsolateral prefrontal cortex (DLPFC) and
prefrontal cortex in patients with schizophrenia [30–32].
Notably, the HINT1 gene is located in the SPEC2/PDZ-
GEF2/ACSL6 region of 5q22-23, which is associated with
schizophrenia [33]. The same team then evaluated eight sin-
gle nucleotide polymorphisms (SNPs) in the HINT1 gene in
Irish study of high-density schizophrenia families (ISHDSF,
1350 subjects and 273 pedigrees) and Irish case-control study
of schizophrenia (ICCSS, 655 patients and 626 controls).
They further compared expression levels of HINT1 in post-
mortem brain samples provided by the Stanley Medical
Research Institute and concluded that mutations in the
HINT1 gene were potentially correlated with schizophrenia
[7]. Varadarajulu et al. [34] found that the expression of
HINT1 protein was upregulated in the thalamus but down-
regulated in the DLPFC in postmortem brain samples of
patients with schizophrenia compared to those of healthy
controls, consistent with results from another study in
2011 [35]. Additionally, findings from the abovementioned
studies suggest that the association between HINT1 and
schizophrenia is gender-specific and may only exist in male
patients [7, 32, 33].

The results obtained from clinical studies are further
supported by studies of HINT1 knockout (KO) mice.
Barbier and colleagues [36] demonstrated that compared
with wild-type (WT) mice, HINT1 KO mice were more
sensitive to acute amphetamine- (AMPH-) induced hyper-
locomotor behavior. Quantitative microdialysis of the
kinetics of dopamine (DA) in the striatum or nucleus
accumbens (NAc) showed that presynaptic DA neuro-
transmission in these regions did not underlie the
AMPH-induced behavioral phenotype of KO mice. How-
ever, systemic administration of apomorphine, a dopamine
receptor agonist, significantly increased KO mouse loco-
motor activity, suggesting that the postsynaptic DA trans-
mission may be dysregulated in KO mice. Considering
that schizophrenia is often accompanied by dopaminergic
system hyperfunction [37] and the hyperactivity induced
by AMPH represents the positive symptom-like behavior
in rodent models for schizophrenia [38], HINT1 KO mice
appear to be a useful genetic animal model for studying
schizophrenia. Furthermore, we found that HINT1 plays
a role in a social isolation (SI) mouse model, characterized
by behavioral abnormalities similar to those in schizophre-
nia, and potential interactions among HINT1, N-methyl-
D-aspartate receptor (NMDAR), and DA type 2 receptor

(D2R) may underlie the schizophrenia-like behavioral def-
icits induced by SI [39, 40].

3.2. Inherited Peripheral Neuropathies (IPNs). IPNs, which
affect the peripheral nervous system (PNS), are neuromuscu-
lar and neurodegenerative disorders characterized by dis-
rupted communication between the CNS and body. As one
of the most common inherited neuromuscular disorders,
the prevalence of IPNs is approximately 1 in 2500 [41]. IPNs
include a large group of disorders involving multiple genes
and complex phenotypes, so the correct diagnosis of each
genetic subtype is a thorny problem for clinicians. At present,
more than 100 different subtypes of IPNs have been iden-
tified, each with its own specific clinical features, patho-
physiology, and prognosis. The unidentified mutations
make it difficult to apply molecular diagnosis, and there-
fore, clinical features and developmental patterns are cur-
rently used to direct identification of genetic subtypes in
patients with IPNs.

One study showed that mutations of HINT1 may be a
cause of distal hereditary motor neuropathies [42]. In addi-
tion, Zimoń et al. [43] identified eight different mutations
of the HINT1 gene in a cohort of 50 autosomal recessive
axonal neuromyotonia (ARAN) patients with neuromyoto-
nia (NM) from 33 unrelated nuclear families. NM is cha-
racterized by delayed muscular relaxation after voluntary
contractions, induced by overexcited motor axons in the
PNS [44]. In order to analyze the association between HINT1
and ARAN patients with NM, Zimoń and colleagues [43]
screened patients and found a mutation rate at 11% in irrel-
evant patients with autosomal recessive peripheral neuropa-
thy, which was 76% in ARAN patients with NM. Thus,
there is a robust causal genetic association between HINT1
and ARAN patients with NM. However, Horga et al. did
not detect variation of the HINT1 gene by direct sequencing
of 152 patients with IPNs in England and Spain, indicating a
regional specificity in this association [45–47].

Zimoń and colleagues also evaluated the expression
levels of HINT1 in mouse tissues, such as heart, lung,
and liver [43]. The results showed that HINT1 was
enriched in the sciatic nerve in mice, indicating that
HINT1 is a vital component of the function of PNS. Fur-
thermore, they implemented in vivo genetic complementa-
tion analysis by using HINT1 deficit yeast strain (BY8-5c
from Saccharomyces cerevisiae strain) and then analyzed
HINT1 expression levels in lymphoblastoid cell cultures
from affected individuals and irrelevant controls, respec-
tively [43], identifying that mutations of HINT1 belong to
loss-of-function mutations. Thus, a new genetic subtype
was defined based on this functional mutation, namely,
autosomal recessive axonal neuropathy with neuromyoto-
nia (ARAN-NM) [43]. Even so, by using knockout mice,
Seburn and colleagues demonstrated that HINT1 knockout
mice may be useful for studying the biochemical activities
of HINT1, but these mice do not provide a disease model
or a means for investigating the basis of HINT1-
associated neuropathy and neuromyotonia [48]. Therefore,
further investigation is needed to determine whether
HINT1 functions are species-specific.
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3.3. Mood Disorders. Mood disorder is featured by obvious
and sustained episodes of mania or depression with the clin-
ical manifestations of major depressive disorder (MDD) and
bipolar disorder (BP) [49].

Elashoff et al. [50] performed a meta-analysis of 12
microarray studies and concluded that expression of HINT1
was decreased in postmortem brains of patients with BP. A
study using HINT1 KO mice demonstrated that KO mice
showed decreased depression-like behavior and enhanced
cognitive ability. Additionally, KO mice showed abnormali-
ties in the tail suspension test (TST), which could be allevi-
ated by acute administration of the mood-stabilizer valproic
acid (VPA) [51]. Increased corticosterone secretion in
HINT1 KO mice was also observed [51]. These behavioral
and endocrine changes indicate that HINT1 participates
in emotional regulation in the CNS, and its absence may
lead to manic-like behavior. Furthermore, another study
using HINT1 KO mice suggested HINT1 KO mice exhib-
ited behavioral and molecular alterations paralleling those
described in BP patients. Thus, HINT1 KO mice could be
used as an appropriate model for studying BP and may
help identify novel targets and drugs to treat this mental
disorder [52].

Interestingly, Martins-de-Souza et al. [53] screened dif-
ferential protein expressions in the DLPFC of postmortem
brains from 24 patients with MDD and 12 controls and
detected increased expression of HINT1 in patients with
MDD without psychotic symptoms. Moreover, in a study
using the chronic mild stress (CMS) depression model to
explore the antidepressant effect of oleamide, proteomics
analysis showed that the expression level of HINT1 protein
in the hippocampus of the CMS group was increased [54].
These results indicate that in different episodes of mood dis-
orders, HINT1 works exactly the opposite.

3.4. Anxiety Disorder. There is currently a shortage of clinical
studies on the association between HINT1 and anxiety disor-
der, and results from preclinical studies are not consistent.
Barbier et al. [36] conjectured that anxiolytic-like behaviors
were included in HINT1 deficiency-induced emotional alter-
ations [51]. While Varadarajulu et al. studied the behaviors of
male HINT1 KO mice in a battery of tests. They concluded
that HINT1 KO mice exhibited increased anxiety-like behav-
ior compared with that inWTmice [55]. What is more, Jack-
son et al. [56] found that in male HINT1 KO mice, the acute
administration of nicotine resulted in production of anxiety-
like responses rather than its anxiolytic effects, and adminis-
tration of diazepam failed to induce anxiolytic responses.
However, the anxiety-like behaviors described above were
not observed in female HINT1 KO mice, further supporting
the aforementioned existence of gender differences in the
behavioral impact of HINT1. All results from the anxiety
studies were controversial, probably because of deviations
in methods, experimental equipment, and animal age (e.g.,
Wang et al. often use older animals than Varadarajulu et al.).

3.5. Pain and Analgesia. The human μ-opioid receptor
(MOR), a G protein-coupled receptor (GPCR), is the molec-
ular target of morphine-induced analgesia and opiate-related

addiction. Guang et al. [57] first discovered the specific inter-
action between HINT1 and the C-terminus of human MOR
using a yeast two-hybrid system. This interaction reduced
the desensitization and phosphorylation of MOR. Mean-
while, increased basic pain threshold and enhanced
morphine-induced analgesic effects were found in HINT1
KO mice. However, the dose-response curve indicated that
KO mice exhibited a greater extent of tolerance to
morphine-induced analgesia than WT mice. In addition,
our group and Garzon’s research team revealed that HINT1
deficiency could induce abnormalities in the hot-plate test,
formalin-induced inflammatory pain, and CCI-induced neu-
ropathic nociception [58–60]. In particular, Garzon and col-
leagues demonstrated that the inhibitor of HINT1 enzymatic
activity, guanosine-5′-tryptamine carbamate (TpGc), signifi-
cantly enhanced morphine antinociception and alleviated
mechanical allodynia but prevented the development of tol-
erance to opioids [61]. These results show the negative regu-
latory effect of HINT1 in MOR-mediated morphine-induced
analgesia. However, an association study of 2294 patients
with cancer pain did not find a correlation between SNP
mutations in the HINT1 gene and opioid dose [62].

3.6. Drug Addiction. Association analysis from two indepen-
dent samples indicates that mutations in the HINT1 gene are
associated with phenotypes of nicotine dependence. Further
analysis of mRNA expression in human postmortem brain
showed that smoking status and phenotype were associated
with HINT1 expression [63]. Chronic nicotine administra-
tion elevated HINT1 expression in mouse NAc, which could
then be reversed by a nicotine antagonist, mecamylamine,
after 24 hours or drug withdrawal after 72 hours [63]. These
results show a genetic association between HINT1 and nico-
tine dependence. Jackson et al. [64] employed the condi-
tioned place preference (CPP) reward test and conditioned
place aversion (CPA) test to evaluate emotional and somatic
symptoms after nicotine withdrawal. Significant CPA after
withdrawal was found in both HINT1 KO and WT mice. In
HINT1 KO mice, however, nicotine failed to induce signifi-
cant CPP and somatic withdrawal symptoms (e.g., hyperal-
gesia) were alleviated. This study could further support the
conclusion that HINT1 plays a role in regulating behaviors
associated with nicotine reward and withdrawal. However,
in an open-label randomized trial of nicotine replacement
therapy (NRT) covering 374 nicotine-dependent smokers,
the results do not support the relationship between HINT1
gene mutation and smoking cessation [65].

Relatively few studies have examined the role of HINT1
in addiction induced by other abused drugs. Romanova
et al. [66] found that after a single injection of cocaine,
HINT1 peak intensities increased significantly in the medial
prefrontal cortex (mPFC) of low cocaine responder (LCRs)
rats in the open field test. Previous studies showed that the
LCRs were more sensitive to cocaine-induced behavioral
sensitization compared to high cocaine responders (HCRs)
[67, 68]. Increased cocaine CPP [69] and self-administration
motivation [70] exhibited by LCRs suggests that LCRs are
sensitive to cocaine addiction. Thus, HINT1 is highly
expressed in the susceptible phenotype of cocaine addiction.
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Our recent study has demonstrated that the HINT1 pro-
tein, particularly in the NAc, also plays a vital role in
methamphetamine-induced CPP [71].

3.7. Down’s Syndrome (DS). Weitzdoerfer et al. [72] used
two-dimensional gel electrophoresis and mass spectrometry
to analyze proteins in cortical tissue from aborted human
fetus. They found that different kinds of early life proteins,
including HINT1, that participate in neural differentiation,
neural migration, and synaptic transmission were deficient
in DS.

3.8. Brain Aging. Brain aging is one of the major high risk
factors for many neurodegenerative disorders such as Alzhei-
mer’s disease (AD). Nevertheless, the molecular mechanisms
of brain aging are complicated and still unclear. Rassoul et al.
[73] analyzed differential transcriptome expression in the
temporal cortex of the primate Microcebus murinus. Of 695
different genes identified among young healthy animals, old
healthy animals, and AD-like animals, approximately 1/3
showed the same expression changes in healthy aging ani-
mals and AD-like animals, including the downregulation of
HINT1 and HINT2. These findings indicate the possible con-
tribution of HINT1 in the biological process of brain aging.

4. Potential Role of HINT1 in Neuroplasticity

As reviewed thus far, HINT1 is implicated in diverse neuro-
logical and neuropsychiatric diseases. Related to the latter,
our studies have revealed that HINT1 is involved in SI mice
model, which could induce behavioral abnormalities related
to the core symptoms of certain neuropsychiatric disorders
[39, 40]. Neuropsychiatric disorders are a class of diseases
closely related to the environment and genetics. One of the
core problems in neuropsychiatric disorders is abnormal
changes in neuroplasticity [74]. Therefore, it could be
hypothesized that HINT1 may play an important role related
to neuroplasticity in neuropsychiatric disorders. Thus,
HINT1 is a potential promising neuroplasticity mediator in
neuropsychiatric diseases.

Actually, on one hand, HINT1 could trigger apoptosis
independent of its enzymatic activity [14], while there is little
research on the exact role of HINT1 in apoptosis. On the
other hand, a growing body of evidence suggests that HINT1
acts as a molecular switch regulating the interaction and
functional association between GPCRs and NMDARs. For
example, HINT1 could stabilize the interaction between
MOR/cannabinoid receptor type 1 (CNR1) and NMDARs,
promoting (e.g., MOR) or reducing (e.g., CNR1) its
glutamatergic activity (Figure 3) [57, 59, 60, 75–83]. HINT1
protein may also participate in conveying information medi-
ated by GPCRs to different signaling pathways, especially the
glutamate NMDAR-mediated neurotransmission and func-
tional neural plasticity, such as long-term potentiation
(LTP) [60, 76, 84]. Moreover, our accepted study indicated
that under both basal and chronic immobilization stress con-
ditions, compared to WT mice, HINT1 KO mice expressed
more hippocampal BDNF [85], which is also a key molecule
engaged in neuroplasticity [86, 87]. However, to understand
the specific role of HINT1 in neuroplasticity, more in-depth
study is needed.

5. Summary and Prospect

Since HINT1 was discovered to be involved in a variety of
biological phenomena, the research interest in this protein
has been increasing. Though many studies have aimed to elu-
cidate its roles in cell physiology, the complete range of func-
tions of HINT1 is yet to be determined. The known functions
of HINT1, such as tumor suppression, nucleoside transfer-
ase, and hydrolase functions, are only a tiny fraction of the
whole picture. Currently, treatments for human neuropsy-
chiatric diseases rely on a very limited selection of drugs
and therapies, primarily because of our superficial knowledge
of the pathogenesis of these diseases. Reviewing the available
literature on HINT1, we found that HINT1 is highly related
to many neuropsychiatric diseases including schizophrenia,
mood disorder, drug addiction, and so on, and HINT1 may
participate in neuropsychiatric diseases as a potential neuro-
plastic mediator. While many studies describe the correlation
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Figure 3: The pattern of HINT1 interacting with GPCRs. (a) HINT1 interacts with the C-terminus of μ-opioid receptor (MOR). HINT1 also
interacts with the NR1 subunit of NMDAR. To prevent opioids from producing an excessive reduction of neuronal excitability, NMDARs are
recruited to the MOR environment, where they become activated to restrain opioid signaling. In this context, HINT1 stabilizes the functional
interaction between MOR and NMDAR. (b) HINT1 may also associate with cannabinoid receptor type I (CNR1). CNR1 can negatively
regulate NMDAR function when the receptor is coupled to HINT1.
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between HINT1 and neuropsychiatric diseases, few of them
describe specific mechanisms. Thus, further study of HINT1
would be of potential value for expanding basic research,
diagnosis, and treatment of neuropsychiatric and even psy-
chosomatic diseases.
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