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Background: The pathogenesis of Alzheimer’s disease (AD) remains to be elucidated.
This study aimed to identify the hub genes in AD pathogenesis and determine their
functions and pathways.

Methods: A co-expression network for an AD gene dataset with 401 samples was
constructed, and the AD status-related genes were screened. The hub genes of
the network were identified and validated by an independent cohort. The functional
pathways of hub genes were analyzed.

Results: The co-expression network revealed a module that related to the AD status, and
101 status-related genes were screened from the trait-related module. Gene enrichment
analysis indicated that these status-related genes are involved in synaptic processes
and pathways. Four hub genes (ENO2, ELAVL4, SNAP91, and NEFM) were identified
from the module, and these hub genes all participated in AD-related pathways, but the
associations of each gene with clinical features were variable. An independent dataset
confirmed the different expression of hub genes between AD and controls.

Conclusions: Four novel genes associated with AD pathogenesis were identified and
validated, which provided novel therapeutic targets for AD.

Keywords: Alzeheimer’s disease, gene, expreesion, pathway, miRNA

INTRODUCTION

Alzheimer’s disease (AD) is a common chronic and progressive neurodegenerative disease
in the aging population that is characterized by brain atrophy, progressive memory loss,
and clinical manifestations of cognitive impairment (Madore et al., 2020). Despite the great
advancement made in the treatment of AD, its pathogenesis remains largely unknown, and
no cure is currently available (Arvanitakis et al., 2019), which poses a great socioeconomic
burden to society. To date, many factors have been shown to be important contributors to
the pathogenesis of AD, such as age, genetic variants, and environmental exposure. According
to current evidence, aberrant expression of cytokines has been found to be a crucial factor

Abbreviations: AD, Alzheimer’s disease; WGCNA, Weighted Gene Co-expression Network Analysis; ENO2, enolase 2;
ELAVL4, ELAV-like RNA binding protein 4; SNAP91, synaptosome associated protein 91; NEFM, neurofilament medium.
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in AD development (Veitch et al., 2019). Hence, unraveling the
molecular basis of this disease is necessary to uncover the biology
of AD and identify novel therapeutic targets.

Previous studies have identified several genes that participate
in the pathogenesis of AD, such as IFITM3 (Hur et al., 2020),
HDACI (Pao et al., 2020), and PLA2G4E (Pérez-Gonzalez et al.,
2020), which lead to neuronal apoptosis, amyloid-p deposition,
and tau hyperphosphorylation, and finally result in neuronal loss
and neurofibrillary tangle (NFT) formation. However, there are
still many genes involved in AD pathology that remain to be
elucidated. Recently, the weighted gene co-expression network
analysis (WGCNA) has been widely used to identify clusters of
co-expressed genes with highly correlated expression patterns
based on the genetic profile of many diseases (Zhao et al., 2010).
WGCNA has also been adopted to screen crucial modules and
genes that are associated with AD pathogenesis, and several genes
have been identified and validated (Pandey et al., 2019; Shi et al.,
2020; Soleimani Zakeri et al., 2020). However, there were several
limitations in those studies, such as the small sample sizes of the
datasets, the use of differentially expressed genes instead of the
original genes, or the use of blood rather than nervous system
tissues. Therefore, the mechanisms underlying AD remain to
be explored.

In this study, we conducted a comprehensive integrative
analysis for a gene dataset with a large number of samples
from the brain tissues of AD patients and normal controls.
Our work aimed to construct a co-expression network for
the genes using the WGCNA method and to screen the
hub genes that were related to AD pathogenesis; then we
validated the robustness of the expression of hub genes using
an independent validated cohort. We also analyzed the pathways
and clinical significance of the hub genes. Our results will provide
valuable molecular information of the pathogenesis of AD and
contribute to developing potential therapeutic targets for AD in
future studies.

MATERIALS AND METHODS

Dataset Selection

A flow chart of study design, data preparation, and analyses
in this study is shown in Figure 1. The human AD
tissue mRNA expression data of the GSE118553 dataset
(Patel et al., 2019) was downloaded from Gene Expression
Omnibus (GEO) database. This dataset has 401 brain tissue
samples, consisting of 167 AD tissues, 134 asymptomatic
AD tissues, and 100 normal brain tissues. Individuals with
intact cognition but neuropathology consistent with AD were
diagnosed with asymptomatic AD (Patel et al, 2019). The
brain tissues include the cerebellum, entorhinal cortex, frontal
cortex, and temporal cortex. The platform of this dataset was
GPL10558 (Illumina HumanHT-12 V4.0 expression beadchip).
We also downloaded the GSE109887 dataset (Lardenoije
et al., 2019), which has 40 AD tissues (middle temporal
gyrus) and 32 normal brain tissues, as an independent
validated dataset, and the platform was GPL10904. For
the GSE1297 dataset (Blalock et al, 2004) with 22 AD
tissues (middle temporal gyrus) and nine normal brain

tissues, we used the GPL96 platform (Affymetrix Human
Genome UI33A Array) to analyze the clinical significance of
hub genes.

Data Preprocessing for the Selected

Datasets

After the expression matrixes of the four GEO datasets
were downloaded, the probes of each dataset were mapped
to gene symbols using the corresponding platform. Probes
with more than one gene or empty probes were removed.
If there were numerous probes mapped to the same gene
symbol, their mean value was selected as the gene expression
value. For the GSE118553 dataset, which was used to conduct
co-expression analysis, there are 47,325 probes in the Illumina
array platform; after the duplicated and empty probe gene pairs
were removed, 20,764 probe-symbol pairs remained. To ensure
the robustness of the network construction, we selected the genes
for which the mean expression was only more than 1/5 of the
average expression.

Weighted Gene Co-expression Network

Analysis for Alzheimer’s Disease Dataset
WGCNA was performed on the GSE118553 dataset to
identify significant modules and genes that were associated
with the pathogenesis of AD. First, the soft-thresholding
(B value) was set based on scale-free topology criterion to
construct a correlation adjacency matrix. Then, the dynamic
tree cut method was used to identify different modules.
During module selection, the adjacency matrix was converted
to a topology overlap matrix (TOM), and modules were
detected by cluster analysis. Sample clustering was performed
to analyze the relationship between gene expression and
clinical features. The trait-related genes were extracted
from the module that had significant correlations with
clinical features and with high within-module connectivity.
The WGCNA was implemented using R-Studio (version
3.4.2) software.

Gene Function Enrichment Analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses were used to analyze
the function involving the status-related genes. GO analyses
included biological process (BP), molecular function (MF), and
cellular component (CC). KEGG analysis was used to identify
the significant pathways in which genes were enriched. The
“clusterProfiler” package (Yu et al., 2012) was used to conduct
the GO and KEGG analyses. p-value < 0.05 was considered
statistically significant enrichment.

Protein-Protein Interaction Network

Construction and Hub Gene Selection

The trait-related genes were selected from the specific modules
based on the results of WGCNA. In this study, we selected
the genes significantly associated with the status of AD as
interesting genes and named them as status-related genes. The
status-related genes were input to the STRING online tool
to construct a protein—protein interaction (PPI) network, and
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FIGURE 1 | Flow chart of study design, data preparation, and analyses in this study.

then the network was visualized using Cytoscape software. The
hub genes of the status-related genes were further screened
and visualized using cytoHubba plugin (Chin et al., 2014) of
Cytoscape software.

Gene Set Enrichment Analysis for the Hub

Genes

Gene Set Enrichment Analysis (GSEA) method determines
whether the pathways were randomly distributed at the top or
bottom of the detected genes. We used the GSE118553 dataset
as background gene sets to perform GSEA for each hub gene.
Pathways were considered statistically significant with levels of
adjusted p-value < 0.05. The “clusterProfiler” package (Yu et al.,
2012) was used to conduct the GSEA.

Correlation Analysis of Hub Genes With

Clinical Features
The clinical information in the GSE1297 dataset included the
stage of the disease, NFT value, Braak stage, Mini-Mental State

Examination (MMSE) score, sex, and age. The associations
of hub genes with clinical features were analyzed using
Student’s t-test, ANOVA test, or Pearson’s correlation analysis in
R-Studio software.

RESULTS

Identification Hub Genes Associated With
Alzheimer’s Disease Using Weighted Gene

Co-expression Network Analysis

After data preprocessing, 9,797 normalized genes profiled
from the GSE118553 dataset with 401 samples (including
AD, asymptomatic AD, and controls) were incorporated into
the WGCNA method. The soft-thresholding power was set
as 10 with the scale free index R®> as 0.85 (Figure 2A).
Next, the modules were constructed using a dynamic tree-cut
algorithm, and 12 modules were established (Figure 2B). Then,
by integrating the clinical features with the modules, the

Frontiers in Aging Neuroscience | www.frontiersin.org

November 2020 | Volume 12 | Article 605961


https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles

Hu et al.

Gene Underlying AD Pathogenesis

-0.5

FIGURE 2 | Weighted gene co-expression network analysis (WGCNA) for the GSE118553 dataset. (A) The soft-thresholding powers and the scale-free fit index. (B)
Dynamic dendrogram of all genes clustered based on a dissimilarity measure. (C) Heatmap of the correlation between module eigengenes and clinical features of
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relationship of clinical features with modules was presented,
and the green module was mostly associated with the status
of AD (Figures 2C,D). Thus, the genes in this module were
selected, and the status-related genes were screened based on
the selection criteria (selected criteria were set as the module
membership >0.8 and the gene significance >0.2). Finally, we
obtained 101 status-related genes that significantly associated
with AD. Therefore, these status-related genes were used in the
subsequent analyses.

Functional Enrichment Analysis for

Trait-Related Genes

The GO analysis revealed that the 101 AD status-related
genes were mainly involved in the BP of axonogenesis,
modulation of chemical synaptic transmission, and
regulation of trans-synaptic signaling. The CC component
enriched for axon, presynapse, and synaptic membrane
genes, and the MF revealed structural constituents of the
cytoskeleton, cation-transporting ATPase activity, and active
ion transmembrane transporter activity genes. The KEGG
pathway analysis revealed that these genes mainly involved the
dopaminergic synapse, synaptic vesicle cycle, and GABAergic
synapse (Figure 3).

Selection of Hub Genes From Trait-Related
Genes Using Protein-Protein Interaction

Network Analysis

The 101 AD status-related genes were used to construct a PPI
network based on analysis using the STRING online tool. Then
the PPI network was visualized by Cytoscape software, and the
hub genes of the network were screened using the cytoHubba
plug-in. Ten hub genes were identified, including SNAP25,
ENO2, ELAVL4, GAP43, SNAP91, SYP, BSN, NEFM, and NEFL
(Figures 4A,B). Among them, six genes (SNAP25, KIFIA,
GAP43, BSN, SYP, and NEFL) have been widely investigated in
AD in previous studies (Tien et al., 2011; Agostini et al., 2019; Jia
etal., 2020; Ren et al,, 2020; Wang M. et al., 2020). Therefore, we
selected the remaining four hub genes (ENO2, ELAVL4, SNAP91,
and NEFM) to analyze their role in AD. The expression of the
four genes is shown in Figure 4C.

Analysis of Clinical Significance of Hub
Genes in Alzheimer’s Disease Using
Another Independent Dataset

The clinical features of the GSE1297 dataset were extracted.
To examine the associations of hub genes with the clinical
features, we first compared the gene expression of different sexes
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with status. The results showed that NEFM was differentially
expressed in different status of AD; namely, ENO2 and ELAVL4
were differentially expressed in different sexes of AD patients,
while the expression of remaining genes showed no significant
difference in these clinical features (Figure 5). The correlations
between hub genes and clinical phenotype were calculated by
Pearson’s correlation analysis. As Table 1 shows, only NEFM was
remarkably correlated to the age of AD patients (p < 0.05), while
the other genes have no significant correlation with the NFT
score, Braak stage, MMSE score, age, and PMI score (p > 0.05).

Validation of Hub Genes in Alzheimer’s
Disease Using Another Independent

Dataset
To validate the expression of the four hub genes with AD, we used
another microarray dataset (GSE109887), which included 40 AD

and 32 normal tissues. The results revealed that the four hub
genes in AD tissues were notably down-regulated compared with
normal tissues in this validated dataset, demonstrating that these
hub genes were all involved in the pathogenesis of AD (Figure 6).

Gene Set Enrichment Analysis for the Hub

Genes

In order to identify the specific pathways that each of the
four hub genes were involved in, we conducted the GSEA
using the GSE118553 dataset as the background gene set. As
Figure 7 illustrates, SNAP9I, NEFM, and ELAVL4 were all
involved in AD pathways; ENO2 was involved in a cancer
pathway and the PI3K-AKT pathway; the latter pathway has
also been reported in AD (Wang C. et al, 2020). These
results confirmed the significant association of the four genes
with AD.
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TABLE 1 | Correlations of hub genes with the clinical features (p-value). network. We screened the genes that were related to the
ENO2 SNAP91 NEFM ELavia  clinical features and identified 101 genes that were remarkably
related to the status of AD. By using Cytoscape and its

Braak 0.467 0.220 0.388 0.458 . . .
Age 0.061 014 0.035 0.295 plug-in, 10 hub genes were identified. We then analyzed
MMSE 0.402 0.085 0.779 0.665 four hub genes regarding which there is little knowledge
NFT 0.544 0.074 0.319 0.070 in AD. The pathways of the four hub genes involved were

determined, and the results indicated that these genes were
all associated with AD pathways. Then, these hub genes

Note. MMSE, Mini-Mental State Examination; neurofibrillary tangle.

were validated using an independent AD cohort, and the
DISCUSSION clinical feature analyses clarified the associations of these genes
with AD.

In the present study, we performed comprehensive analyses on
an AD dataset with a larger sample size. We constructed the
gene co-expression network underlying AD pathogenesis and
identified several gene modules clustered in this co-expression

Previous studies have discovered several pathways related to
AD pathogenesis. For example, Wang and Wang (2020) analyzed
differentially expressed genes in brain tissues and blood of
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AD patients compared with corresponding healthy individuals,  pathogenesis. In the present study, we identified that the BPs
and they found that MAPK and Wnt signaling pathways were  of 101 AD status-related genes were enriched in synaptic-
significantly enriched in the hippocampus, temporal gyrus, and  related signaling pathways, which is in agreement with our
frontal gyrus. Sun et al. (2019) revealed that cancer-related knowledge of the etiology of AD that synaptic failure is the
and apoptosis pathways were considerably associated with AD  pathological basis of cognitive impairment, the cardinal sign of
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AD (Selkoe, 2002). These results also confirmed the reliability of
our study.

Among the four hub genes (ENO2, ELAVL4, SNAPII,
and NEFM), although their function has been documented
in other diseases, little is known regarding their role in AD.
Enolase 2 (ENO2) has been found in mature neurons and is
linked to brain iron accumulation-associated neurodegeneration
(Takano et al., 2016). Previously, evidence has shown that the
ENO2 gene promoter drives high-level transgene expression in
differentiated neurons throughout the central nervous system of
transgenic zebrafish (Bai et al,, 2007). Friedreich’s ataxia (FA)
is a neurodegenerative disease, and a recent study showed that
ENO?2 is a marker of mitochondrial function and/or myelination
status in FA patients (McMackin et al., 2019). In addition,
expression of ENO2 was reportedly linked to prognosis for
several cancers, including colorectal cancer (Pan et al., 2020),
lung cancer (Liu et al., 2020), and pancreatic cancer (Zheng
etal., 2020). These results demonstrated that ENO2 is involved in
several diseases, and its role in AD warrants further exploration.

ELAV-like RNA binding protein 4 (ELAVL4) has been
found to interact with other transcripts linked to AD, such
as APP and B-site APP-cleaving enzyme 1 (BACEI), and to
increase the half-lives of these mRNAs (Kang et al, 2014).
Expression of ELAVL4 protein was increased in mutant motor
neurons and co-localized with mutant FUS in cytoplasmic
speckles with altered biomechanical properties (De Santis et al.,
2019). As one of the downstream targets of protein kinase C
(PKC), ELAVL4 could modulate the stability and translation of
specific target mRNAs involved in synaptic remodeling linked
to cognitive processes (Talman et al., 2016). Taken together,
ELAVL4 is linked to the pathogenesis of neurodegenerative
diseases, including AD, and could possibly be a therapeutic target
for AD.

Synaptosome associated protein 91 (SNAP91), also known
as AP180, has been shown to be significantly increased in
schizophrenia compared with normal controls (Fromer et al.,
2016). In an integrated analysis of whole exome sequencing and
copy number evaluation in Parkinson’s disease (PD), loss of
function and missense changes in SNAP91 were observed in PD
patients (Yemni et al., 2019). SNAP91 was also found to promote
release site clearance and clathrin-dependent vesicle reformation
in mouse cochlear inner hair cells (Kroll et al., 2020).

Neurofilament medium (NEFM) is relevant to the elongation
of neuronal structures (Pezzini et al., 2017). In a larger cohort
with 367 amyotrophic lateral sclerosis (ALS) patients and
101 controls, plasma NEFM levels were significantly elevated
in ALS patients compared with controls (Higgmark et al,
2014). NEFM was also down-regulated in ZF-like aldosterone-
producing adenomas and contributed to a DIR/D2R imbalance
(Maniero et al., 2017). The above evidence indicates an
association of both SNAP91 and NEFM with neurodegenerative
diseases; however, their association with AD has not been
reported previously, and their roles in AD still require
further investigation.

In this study, we analyzed the pathways of four hub genes
and the results indicated that these pathways were associated
with AD or other neurodegenerative diseases, demonstrating

their key roles in these diseases. In the validation analysis, the
four hub genes all showed significantly different expression
between AD and normal brain tissues, suggesting the robustness
of our results. However, in the analysis of hub genes with
the clinical features, we found that the associations were
varied, indicating the different roles of these genes in the
development of AD. We speculate that these results might
be due to the small sample size and different brain tissues
(middle temporal gyrus) of the GSE1297 dataset compared
with the GSE118553 dataset; hence, these results still need
to be validated in a larger sample size and using the same
brain tissues.

There are several limitations to this study. First, the
GSE118553 dataset contains data from two brain region
tissues (cerebellum and cortex); although these two tissues are
involved in the pathogenesis of AD, the robustness of our
results was reduced due to the mixture of data. Second, the
tissues of the validated cohort were different from those of
the initial analysis; thus, the results need to be validated in
another cohort using the same tissues. Third, since this study
was a bioinformatics analysis, the roles of ENO2, ELAVL4,
SNAP91, and NEFM need to be validated in in vivo and
in vitro experiments.

CONCLUSION

The present study identified the novel association of four genes
(ENO2, ELAVL4, SNAP9YI, and NEFM) with AD pathogenesis by
using gene co-expression network analysis based on the clinical
and pathological status of disease. The roles the four genes were
also identified. These results highlight the molecular mechanism
underlying AD and will assist in finding novel therapeutic targets
for AD.
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