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Abstract: Advances in accelerated magnetic resonance imaging (MRI) continue to push the bounds
on achievable spatial and temporal resolution while maintaining a clinically acceptable image quality.
Validation tools, including numerical simulations, are needed to characterize the repeatability and
reproducibility of such methods for use in quantitative imaging applications. We describe the
development of a simulation framework for analyzing and optimizing accelerated MRI acquisition
and reconstruction techniques used in dynamic contrast enhanced (DCE) breast imaging. The
simulation framework, in the form of a digital reference object (DRO), consists of four modules that
control different aspects of the simulation, including the appearance and physiological behavior of
the breast tissue as well as the MRI acquisition settings, to produce simulated k-space data for a
DCE breast exam. The DRO design and functionality are described along with simulation examples
provided to show potential applications of the DRO. The included simulation results demonstrate
the ability of the DRO to simulate a variety of effects including the creation of simulated lesions,
tissue enhancement modeled by the generalized kinetic model, T1-relaxation, fat signal precession
and saturation, acquisition SNR, and changes in temporal resolution.

Keywords: digital reference object; quantitative imaging biomarker; DCE MRI; breast MRI;
numerical simulation

1. Introduction

Quantitative imaging continues to play an increasingly important role in informing
the diagnosis and treatment of diseases including cancer. Recent advances in magnetic
resonance imaging (MRI) data acquisition and reconstruction techniques provide an oppor-
tunity to overcome the traditional tradeoffs between scan time, resolution, field-of-view,
and image quality by using highly undersampled acquisition trajectories paired with so-
phisticated reconstruction approaches. Validating and standardizing these approaches
for use in quantitative imaging is critical for a more widespread clinical uptake of these
methods. The adoption of these methods remains slow in part due to the difficulty in
validation and standardization. Addressing gaps in validation and standardization has
become a focus of several recent initiatives including the Radiological Society of North
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America’s (RSNA) Quantitative Imaging Biomarkers Alliance (QIBA), the National Can-
cer Institute’s Quantitative Imaging Network, and the International Society for Magnetic
Resonance in Medicine’s (ISMRM) study group on Reproducible Research and the Open
Science Initiative for Perfusion Imaging (OSIPI) [1–3].

Breast cancer remains the most commonly diagnosed cancer, excluding skin cancer,
in American women and is the second leading cause of cancer death [4]. Quantitative
imaging biomarkers (QIB) derived from dynamic contrast enhanced (DCE) MRI, made
possible through the use of accelerated acquisition and reconstruction techniques, have
shown promise in applications such as breast cancer detection [5], treatment planning [6]
and the evaluation of response to therapy [7]. When utilizing sophisticated pharmacoki-
netic models [8–10] to produce QIBs from DCE MRI images, the DCE acquisition must
achieve a temporal resolution of 20 s or less in order to minimize bias and variance in
the measured pharmacokinetic parameters [11]. Moreover, spatial resolution capable of
representing tumor morphology and heterogeneity, with typical in-plane resolution at
or below 1 × 1 mm2, is critical for breast cancer imaging applications [12–14]. Meeting
these competing demands requires the use and rigorous validation of accelerated MRI data
acquisition and reconstruction strategies.

Accelerated MRI data acquisition and reconstruction techniques that have been applied
to DCE MRI include parallel imaging [15], undersampling with view sharing [5,16–22], low-
rank matrix recovery approaches [23,24] and compressed sensing reconstructions [25–31].
These techniques achieve acceleration through sampling data below the Nyquist frequency.
Images of acceptable quality are recovered from undersampled data by imposing assump-
tions on the data during the reconstruction process. An accurate reconstruction of the
underlying anatomy and physiology depends upon these assumptions not being violated.
For example, view-sharing techniques have been shown to suffer from temporal blurring
due to data sharing between time points [30] and low rank approaches can fail when faced
with rapidly changing tissue kinetics or high degrees of undersampling. Establishing the
robustness and limitations of accelerated acquisition and reconstruction techniques for a
given imaging application remains difficult. In vivo studies are often limited in numbers
and the range of different physiological conditions they can represent. Furthermore, the
underlying ground truth is often unknown, making rigorous validation difficult. This
is further exacerbated in the setting of breast imaging where multiple contrast injections
cannot be performed in a day due to the contrast agent wash-out period, thus preventing
back-to-back comparisons of acquisition techniques.

Sufficiently realistic numerical phantoms or digital reference objects (DRO) offer a
known ground truth to which advanced reconstruction methods can be compared. Highly
detailed numerical phantoms have been developed for MRI image analysis applications in
the brain [32–40], liver [41,42], prostate [41], and for cardiac applications [43–45]. Specific
DROs for breast imaging analysis have also been developed including those for mam-
mography [46–49], computed tomography (CT) [50], breast tomosynthesis [47], and breast
microwave imaging [51,52]. To date, there has been less work on the development of a nu-
merical phantom for breast MRI applications. Le et al. described a digital phantom as part
of their work in accelerated DCE breast imaging [53]. However, no DRO has been described
that provides a more realistic simulation of the spatially and temporally complex imaging
environment encountered in DCE breast imaging. Such features can be critically important
in assessing the performance of more sophisticated acquisition and reconstruction methods
that exploit spatial-temporal correlations such as compressed sensing.

In this work, we describe the development of a simulation framework in the form of a
breast DRO for use in analyzing and optimizing DCE breast MRI acquisition and recon-
struction techniques. The phantom includes characteristics important to DCE breast MRI,
such as simulated enhancing lesions of different sizes and shapes surrounded by normal
fibroglandular breast tissue with varying levels of background parenchymal enhancement
(BPE) [54] and non-enhancing fat tissue. Prior studies have demonstrated the utility of
the phantom in the validation of novel acquisition and reconstruction methods [31,55–61];
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however, this is the first publication to provide a detailed description of the development,
architecture, and functionality of the phantom. The objective of this numerical phantom
is to provide a tool for simulating a realistic DCE breast MRI imaging environment that
allows simulation results to be compared to a known “truth” in a highly controlled setting.

2. Materials and Methods
2.1. Breast MRI DRO Overview

A DRO was constructed using a modular design to readily allow users to test the
following imaging scenarios:

1. Different MRI input images including anatomy and chemical species content
2. Different coil sensitivity profiles
3. Contrast enhancement based on user desired kinetic models
4. Simulation of MRI physics
5. Simulation of k-space sampling in both time and space.

The DRO was designed to consist of four modules that provide control over specific
aspects of the simulation platform. These include (1) the Anatomy Module, which contains
specific tissue distributions and properties, (2) the Physiology Module, which controls
interactions within the Anatomy Module, (3) the MRI System Module, which contains
the MRI scan settings to be simulated, and (4) the Simulator Module, which produces the
simulated k-space data. An overview of the DRO modules as well as their inputs and
outputs are shown in Figure 1.
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are described in greater detail below. Example simulations were performed to demon-
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Figure 1. Overview of the structure of the digital reference object (DRO) for simulation of breast
dynamic contrast enhanced (DCE) MRI. The DRO is split into four modules, each of which manages
different aspects of the simulation. The Anatomy Module contains functions for setting up and
managing the appearance and behavior of the tissues to be simulated. A simulation may contain
more than one class of tissue, for example water- and fat-based tissues. Interactions between tissues,
as well as responses common to all tissues such as the vascular input function, are managed by the
Physiology Module. Parameters related to the MRI scan settings to be simulated are managed by
the MRI system Module. These inputs are provided to the Simulator Module that then generates the
final simulated k-space data.

Each of these modules is currently implemented using MATLAB [62] and are available
for download at https://github.com/lchenze/DRO_Breast_DCE_MRI. The modules are
described in greater detail below. Example simulations were performed to demonstrate the
functionality of each module.

https://github.com/lchenze/DRO_Breast_DCE_MRI
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2.2. Anatomy Module

An anthropomorphic representation of the breast is obtained using in vivo image data
collected from volunteers undergoing breast MRI. As the breast contains a heterogenous
distribution of fat and fibroglandular tissue, the DRO is set up to operate on separated fat
and water images. Different chemical species, such as fat and water, are treated as different
tissue classes by the Anatomy Module. Each tissue class is assigned a unique spectral
model that defines the precession of the MRI signal. The fat and water separated anatomical
images define the spatial extent of each chemical species. Tissue classes may be further
divided into tissue subtypes with each subtype having a unique T1 and T2 value, as well as
relevant physiological or model specific parameters to be used by the Simulator Module
described below. Examples of potential water tissue subtypes include breast fibroglandular
tissue and the muscle of the chest wall. The spatial extent of each tissue subtype is defined
by a three-dimensional mask that is the same size as the parent tissue.

Background parenchymal enhancement [54,63] (BPE) is frequently observed after
contrast administration during in clinical breast exams and has the potential to obscure
lesions of interest. To simulate this physiological effect, the Anatomy Module contains a
method to divide the fibroglandular tissue subtype into regions that can be assigned unique
physiological or model specific parameters to produce the desired level of background
parenchymal enhancement in the Simulator Module. In actual breast exams, the amount of
BPE is highly variable from patient to patient [64]. The DRO, therefore, allows the fraction
of the fibroglandular tissue assigned to the BPE region to vary from 0 to 100%. The selection
of voxels assigned to the BPE region is weighted such that fibroglandular tissue in the
upper outer quadrants of the breast are more likely to be included in the BPE regions,
reflecting what is seen in vivo [65].

2.3. Physiology Module

The Physiology Module controls the interactions between different tissues and contains
parameters related to physiology, such as the vascular input function which describes the
expected concentration of the gadolinium contrast agent in the vascular space over time
following injection. The generation and insertion of simulated lesions into the breast
DRO is controlled by the Physiology Module as lesions can be inserted into any location
in the breast.

The Physiology Module contains methods to generate four generalized lesion shapes
(round, lobulated, irregular and spiculated) representing the four different classes of
mass morphologies defined in the Breast Imaging Reporting and Data System (BIRADS)
lexicon [54]. The round, lobulated and irregular lesion morphologies are generated using a
series of randomly placed overlapping spheres. The spicules used in the spiculated lesion
morphology are generated using the methodology presented in de Sisternes et al. [48].
User input is required to define certain lesion characteristics such as size and location,
while other features, such as the number and length of spicules, may be user controlled
or assigned pseudo-randomly at the time of lesion generation. The spatial extent of the
lesion tissue subtype is defined by a three-dimensional mask, similar as to what is done
for other tissue subtypes, but the voxels contained in the mask are assigned new grayscale
values matching the mean and standard deviation of the fibroglandular tissue in the base
anatomical images. This is done to allow lesions to be placed in regions of the breast
containing fat tissue.

Lesions may be made up of several tissue subtypes with each tissue subtype rep-
resented by a unique set of modeling parameters. A homogeneously enhancing lesion
is represented by only one tissue subtype, while a heterogeneously enhancing lesion is
represented by two or more. The spatial extent of a heterogeneously enhancing lesion
tissue subtype may be defined manually by the user or a pseudo-random assortment of
voxels within the lesion can be assigned to the tissue subtype by the Physiology Module.
Rim-enhancement is a clinically meaningful form of heterogeneous enhancement associated
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with malignancy. To simulate rim-enhancement, the outer edges of a lesion are assigned to
a separate tissue subtype by the Physiology Model.

2.4. MRI System Module

The MRI system Module contains the parameters required to generate the desired
MRI signal. The MRI signal magnitude (Si) is determined using the steady state spoiled
gradient echo (SPGR) signal model, ignoring T2* effects:

Si = S0

sin α
(

1 − e−TR/T1
)

1 − e−TR/T1 cos α
(1)

where S0 is the equilibrium magnetization signal intensity, α is the flip angle, TR is the
repetition time, and T1 is the longitudinal relaxation time of the tissue. S0 is assumed to
be the signal intensity defined in the Anatomy Module. User input is required to define
the parameters for flip angle and TR as well as other relevant MRI parameters including
field strength, bandwidth, k-space sampling pattern, desired fat suppression method if
implemented at the time of data collection, and contrast agent relaxivity, if applicable. Coil
sensitivity maps may be included to allow for the simulation of parallel imaging.

The user supplied k-space sampling pattern can either be Cartesian or non-Cartesian
and must be paired with a timing vector defining the start time of each TR. At the time
of simulation, Cartesian data points are obtained using a standard fast Fourier transform
(FFT). In the case of Non-Cartesian data, the DRO will use the 3D non-uniform Fourier
Transform described by Greengard et al. [66] and implemented by Ferrara [67]. The user
may also designate the use of an alternate transform function such as the 3D non-uniform
Fourier Transform implemented by Fessler [68]. Additional scan parameters such as the
echo time (TE), the number of echoes, the maximum k-space frequency and the spacing of
k-space data points are controlled implicitly by the k-space sampling pattern supplied by
the user.

The MRI System Module allows for simulation of a chemically selective fat saturation
pulse as described in Foo et al. [69]. For the purpose of the simulation, the system is
assumed to be in the steady state and the flip angle of the data acquisition pulse is assumed
to be small. The equilibrium longitudinal magnetization of the fat signal prior to each
inversion pulse (MzEq) is then calculated as:

MzEq =

(
1 − e(−

TRIR
T1

)
)

1 − e−
TRIR

T1 cos αIR

(2)

where TRIR is the repetition time of the periodic inversion (IR) pulse, T1 is the T1 value as-
signed to the fat tissue, and αIR is the flip angle of the IR pulse. The amount of longitudinal
magnetization for the fat tissue available prior to each imaging excitation pulse (Mz(t)) is
then calculated as:

Mz(t) = 1 − MzEq cos αIRe−tpulse/T1 (3)

where tpulse is the time since the last inversion pulse. Mz(t) is then applied as a scaling
factor to Si given in Equation (1) to calculate the final fat signal magnitude following the
imaging excitation pulse.

2.5. Simulator Module

The Simulator Module produces simulated k-space data for a DCE breast MRI scan
based upon the data contained in the Anatomy, Physiology and MRI System Modules.
An overview of the processing performed by the Simulator Module is shown in Figure 2.
The Simulator Module takes the base anatomical images, including any simulated lesions,
from the Anatomy Module. Image space processing is performed first to produce the
desired image contrast of the MRI images at time t = 0 for the simulation. This includes
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operations such as applying appropriate pre-contrast MRI signal intensity based on the
parameters contained in the MRI System Module (field strength, flip angle and TR) and
the Anatomy Module (T1 relaxation time), and applying weighting required to simulate
individual coil elements using sensitivity maps provided by the MRI System Module. If
coil sensitivity maps are included, the remainder of the processing is performed separately
for each coil element. Next, dynamic k-space processing is applied separately for each
tissue class and each tissue subtype. The appropriate voxels belonging to a single tissue
subtype are isolated and transformed into k-space.
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simulated k-space output. Tissues contained in the Anatomy Module, such as fat and water, are
broken down into their tissue sub-types and processed separately. Static image space based processing,
including applying T1 weighting consistent with the selected MR System parameters, is applied first.
The Fourier transform is applied; then dynamic processing is applied in Fourier space. Dynamic
processing may either operate on the data over the course of a single TR such as signal precession, or
may operate over several TRs such as the simulated contrast uptake curves. Finally, the k-space data
from all tissues and tissue sub-types are recombined and returned to the user for reconstruction.

K-space processing is performed in a series of steps. First, the desired k-space data
points are generated using the appropriate Fourier transform. Next, dynamic changes
occurring within a single TR are applied by multiplying the k-space data by a weighting
function with real and imaginary components. Such processes would include signal
precession due to different spectral models (i.e., precession of the fat signal) or signal
decay due to T2* effects. Finally, the k-space data are multiplied by a weighting function
corresponding to the contrast enhancement curve model specified by the user and the
modeling parameters assigned to each tissue type. K-space data from each sub-tissue and
tissue class are then combined to produce the final k-space data array. White Gaussian
noise is added to the data, in a channel-by-channel fashion for multi-coil data, and the data
are returned to the user as an array containing data for each k-space point specified in the
sampling pattern. In the case of multiple coil elements, an array of data is returned for each
coil element.

2.6. Example Simulations Using the Breast DRO
2.6.1. Simulation 1

The Anatomy Module described above was used to perform a simulation with the
settings given below. Base anatomical images for the DRO were generated from volunteers
imaged with a T1-weighted, chemical shift encoded (CSE) sequence. The DRO is relatively
insensitive to the exact acquisition parameters used to generate the base anatomical images
as long as the output images include a reasonable representation of the fat and water
tissues present. The base anatomical images utilized in this work were acquired as follows:
volunteers were imaged on a 1.5T scanner (Optima 450w, GE Healthcare, Waukesha, WI,
USA) using an 8-channel breast array (GE Healthcare). This study was approved by the
Institutional Review Board (IRB) at our institution and complied with the Health Insurance
Portability and Accountability Act (HIPAA). T1-weighted, CSE images were obtained and
processed using the vendor-supplied versions of two-echo CSE-MRI [70] (VIBRANT Flex,
GE Healthcare) or three-echo CSE-MRI [71] (IDEAL, GE Healthcare). Settings similar
to those used in standard clinical breast exams at our institution were used including a
32 × 32 cm2 axial field of view, 0.83 mm × 0.83 mm in-plane spatial resolution, through-
plane resolution of 1.6 mm and a flip angle of 10 degrees. The excitation volume in the
superior/inferior direction was customized for each subject to include all their breast
tissue. Separate fat and water images were reconstructed from these sequences and further
processing was performed to remove noise while preserving edge information using an
adaptive template filter that optimizes the filter shape and coefficients on a voxel-by-voxel
basis as described by Ahn et al. [72]. To simulate proton density weighting, these images
were scaled to produce approximately equal signal levels in the fat and fibroglandular
tissues. These images served as the base anatomical reference for the Anatomy Module.
The Anatomy Module was then set up as follows: the fat tissue was assigned a nine-peak
spectral model corresponding to human subcutaneous fat [73] and a T1 value of 296 ms,
as described in the literature, for breast adipose tissue at 1.5T [74]. The water tissue was
assumed to be completely on-resonance. The water tissue was divided into skin, muscle
and fibroglandular tissue subtypes, using a previously described breast segmentation
algorithm [75], and assigned T1 values of 887 ms [76], 1130 ms [77], and 1266 ms [74],
respectively, based on values reported in the literature. Simulated regions of BPE were
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added to the fibroglandular tissue representing minimal, mild, moderate, and marked
levels of enhancement.

2.6.2. Simulation 2

Simulations were performed using the functionality of the Physiology Module de-
scribed above. Four lesions, one for each morphologic type, were inserted into the simulated
breast tissue. Lesion enhancement characteristics were defined by the three parameter
Generalized Kinetic Model (GKM) [8], which is defined as:

Ct(t) = Ktrans(Cp(t)⊗ exp
(
−kep(t)

))
+ vpCp(t) (4)

where Ct(t)is the tissue contrast agent concentration, Cp(t) is the vascular input function,
Ktrans is the volume transfer constant between the blood plasma and the extravascular
extracellular space (EES), kep = Ktrans/ve is the transfer rate constant between the EES and
the blood plasma, ve is the fractional EES and vp is the fractional plasma volume. The
vascular input function Cp(t) was simulated using the publicly available dispersion model
described by Barboriak et al. [78]. Lesion parameters were assigned as follows: diameters of
1 cm, 1.25 cm, 1.25 cm and 1.5 cm for the round, lobulated, irregular and spiculated lesions,
respectively, and all lesions were assigned to have homogeneous spatial enhancement
following the curve, specified by Ktrans = 0.08 min−1, ve = 0.4, and vp = 0.

2.6.3. Simulation 3

The MRI System Module was set up to simulate two different types of fat suppression.
The simulation was initially set up as described for Simulation 1 above. The simulation
was first performed using a chemically selective fat saturation pulse with a flip angle
of 100 degrees and a TR of 500 ms. The simulation was performed a second time with
no fat saturation applied. Data were collected with an echo time of 2.2 ms and 4.2 ms,
corresponding to the opposed-phase and in-phase echo times for imaging at 1.5T. These
echo times are typically used for reconstructions making use of a two-echo CSE-MRI
approach to generate fat and water separated images.

2.6.4. Simulation 4

The Simulator Module was used to simulate varying levels of complex noise. The
simulation was initially set up as described for Simulation 1. Three sets of output data were
collected, one with no simulated noise, one with white Gaussian noise added to produce
an SNR of 30, and one with white Gaussian noise added to produce an SNR of 15. SNR
settings were selected to allow for a visual appreciation of the different noise levels in the
resulting reconstructed images.

2.6.5. Simulation 5

In the final simulation, a single simulated spiculated lesion with a diameter of 2 cm
in the longest direction was inserted into the fibroglandular tissue. The lesion was as-
signed to display rim enhancement with the edges of the lesion following a washout
enhancement curve defined by Ktrans = 0.5 min−1, ve = 0.3, and vp = 0 while the interior of
the lesion displayed slower uptake and persistent enhancement, as defined by the curve
Ktrans = 0.08 min−1, ve = 0.4, and vp = 0. A rectilinear Cartesian sampling pattern consisting
of a 256 × 256 × 100 encoding matrix and a TR of 7.8 ms acquired in 3.3 min per time
frame was simulated to represent a conventional MRI acquisition without acceleration.
This simulation was repeated with 3.3 min time frames but all the simulated k-space data
were produced using the temporal information at the center of the time frame, which is
what the data would look like if all k-space information could be acquired instantaneously.
This represents the true or gold standard enhancement behavior for the simulation. An
additional pair of simulations were performed where it was assumed the same sampling
pattern could be acquired in 30 s.
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3. Results

The four modules of the breast DRO allow a customized simulation of a breast DCE
simulation to be set up and run. The results of the simulations below demonstrate the
functionality of each of the modules.

3.1. Simulation 1

Figure 3 shows the output of the Anatomy Module using base anatomical images from
three volunteers. In this implementation, the fat tissue was treated as one uniform tissue
throughout the volume of interest. The water tissue was divided into skin, muscle, and
fibroglandular tissue subtypes, as shown in Figure 3. The masks used to define the extent
of the different tissues are continuous, allowing a voxel to be represented as a mixture of
fat and water tissue. Water tissue subtypes are represented by a combination of binary and
continuous masks, allowing for some features to be a weighted combination of different
tissue subtypes and others to be strictly one tissue type.
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Figure 3. Base anatomical images for three different datasets. Images used to generate the water
tissue are shown in the top row while images used to generate the fat tissue are shown in the middle
row. The water tissue was divided into three tissue subtypes: muscle, skin, and fibroglandular tissue,
as shown in the tissue map in the bottom row. Fat is a distinct tissue from the water tissue but is
included in the tissue map for clarity.

Figure 4 shows the results of applying simulated BPE to dataset 1 from Figure 3.
The BPE is represented as multiple, concentric water tissue subtypes all contained within
the region occupied by the fibroglandular tissue. Each BPE subtype is represented by
its own unique modeling parameters, producing different enhancement profiles in the
Simulator Module.
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Figure 4. Simulated Breast Background Parenchymal Enhancement (BPE). The image space repre-
sentation of the water tissue is shown in (a). Regions corresponding to specific tissue sub-types of
the water tissue are displayed in the corresponding colormaps (b–e). Fat is a distinct tissue from the
water tissue but is shown in the color maps for clarity. BPE is a tissue sub-type of the fibroglandular
tissue and was preferentially assigned to the regions of fibroglandular tissue in the upper outer
quadrants of the breast. Simulated regions of BPE representing minimal (b), mild (c), moderate (d)
and marked (e) BPE are shown.

3.2. Simulation 2

The four simulated, enhancing lesions are shown in Figure 5. Lesions were preferen-
tially placed in the fibroglandular tissue but allowed to extend into the fat tissue, as can be
seen with the spiculated lesion.
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depicted. A 3D model of the lesion morphology is shown in the top row. The middle row shows
a 2D cross section of the lesion taken through the center of the lesion. The bottom row shows the
same central slice of the lesion as it appears inserted into the base anatomical images contained in the
Anatomy Module. Lesions are shown as enhanced to make them more visually apparent.

3.3. Simulation 3

Figure 6 shows the results of simulations performed using two different approaches
to removing the fat signal. Dataset 1 from Figure 3 was used as the base dataset for the
simulation. In Figure 6a the simulated fat signal is largely suppressed with low levels of
fat signal leaking through in the fat regions. Figure 6b,c show the simulated fat tissue at
different echo times. In Figure 6b, the fat and water are in phase. In Figure 6c, the fat
and water have opposing phases resulting in the characteristic India-ink artifact at the
tissue interfaces.
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Figure 6. Simulation results utilizing different approaches for fat saturation. (a) The results of
chemical fat saturation using a periodic inversion pulse is simulated. Simulated (b) in-phase and
(c) opposed-phase images appropriate for use in two-echo CSE approaches using the same dataset
are also shown.
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3.4. Simulation 4

Figure 7 shows the results of adding complex, white gaussian noise to dataset 1 from
Figure 3. Complex noise is added to the k-space data prior to the k-space data being
returned to the user. Once reconstructed, the simulated white Gaussian noise is seen both
in the simulated breast tissue and in the background, as shown in Figure 7.
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Figure 7. Addition of simulated complex Gaussian noise. The top row shows the simulated breast
images with (a) no additional simulated noise, (b) simulated complex white Gaussian noise added to
produce and SNR of 30, and (c) simulated white Gaussian noise added to produce an SNR of 15. The
same images are shown below (d–f) with image intensity set to allow visualization of the noise in the
background. All images within a single row are displayed using the same color scale.

3.5. Simulation 5

The set-up for Simulation 5 is illustrated in Figure 8a–c. A simulated spiculated
lesion displaying rim-enhancement with a washout enhancement curve surrounding a
central region with a slower uptake and more persistent enhancement over the course
of the simulation was placed in the fibroglandular tissue. Figure 8d,e show the results
when sampling the simulated data every 3.3 min, a frame rate that could be achieved with
conventional encoding techniques without including acceleration techniques of any kind.
The first post-contrast time frame was centered such that the enhancing rim reached its max
value as the center of the k-space was being sampled while the higher spatial frequencies
were acquired when the lesion showed lower levels of enhancement. As seen in Figure 8d,
this averaging of temporal information across the time frame leads to an underestimation
of the rim enhancement as compared to the true level of enhancement shown in Figure 8e.
The effects of temporal averaging are also seen in the center of the lesion, with the lesion
core showing greater enhancement in Figure 8d than is seen in Figure 8e, which shows the
true level of enhancement. Figure 8f,g show the results when the simulation was performed
with 30 s time frames. In reality, full resolution frame rates on the order of 30 s cannot be
achieved without the use of accelerated imaging techniques, but they can still be explored
using the DRO. In the 30 s per frame simulation, the impact of temporal averaging is greatly
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reduced due to the shorter acquisition time. As expected, much more accurate curve shapes
can be reproduced with the shorter time frames.
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Figure 8. Simulation set up (top row) and results produced for running a simulation consisting of
(a) a simulated enhancing spiculated lesion (b) inserted into the fibroglandular tissue and (c) display-
ing a persistently enhancing center region surrounded by rim enhancement with a characteristic
washout curve. The simulation was run with 3.3 min time frames where a single frame is made up
of k-space lines acquired at different points over the course of the time frame, as represented by
the red overlay on the plot in (d). Enlarged images of the region contained in the red box in (c) are
shown below the plot for each time point. A corresponding truth dataset (e) consisting of k-space
data generated temporal data from the center of the time frame only is generated for comparison.
The simulation was repeated (f) with 30 second time frames and (g) corresponding truth dataset
generated at the center of each time frame.

4. Discussion

This work described a framework for generating a numerical breast DRO for use in
analyzing and optimizing DCE breast MRI data acquisition and reconstruction techniques.
The DRO consists of four modules which control different aspects of the simulation in-
cluding the appearance and physiological behavior of the breast tissue, as well as the MRI
system settings and parameters. These modules are combined into a pipeline to produce
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simulated k-space data of a DCE breast exam. The DRO uses images from in vivo breast
MRI exams to form a base anatomical model for the simulation. Each tissue in the breast
DRO is assigned a unique set of parameterized model inputs to allow for the simulation
of different physiological responses. In this work, fat and water images were used as the
base anatomical model and the overall fat fraction was calculated on a voxel-by-voxel
basis. Fat was modeled using a 9-peak model for subcutaneous fat and tissue parameters
were defined using literature values for T1 relaxation and modeling parameters consistent
with the GKM. However, other parameters are possible or entirely different models may
be chosen to represent these behaviors. Features of interest such as breast BPE and sim-
ulated lesions representing common morphological shapes have been incorporated into
the DRO independently of the base anatomical model, allowing the simulation of these
features with their own model specific parameters. The spatial distribution of the modeling
parameters assigned to the simulated lesions can produce homogeneous, heterogenous
or rim enhancement behavior. The simulated DCE acquisition is controlled through user
defined selections for MRI parameters including TR, flip angle, field strength, acquisition
trajectory and acquisition timing information. The final output of the DRO is simulated
k-space data, which can be reconstructed via a method of the user’s choice. Unlike in vivo
testing, the underlying enhancement characteristics of the breast DRO are known, allowing
for analysis of the errors introduced by the chosen acquisition or reconstruction method.

Researchers within the quantitative imaging community, including the RSNA asso-
ciated QIBA and the ISMRM associated OSIPI groups, have described the need for the
development and use of validation tools, including numerical simulations, to characterize
the repeatability and reproducibility of quantitative imaging biomarkers [1–3]. The breast
DRO described in this work has already been used to validate a few specific novel acquisi-
tion and reconstruction strategies [31,55–60], however, it can be readily used for alternative
novel DCE approaches. The use of numerical simulations is particularly important in
settings such as breast imaging where relatively long contrast agent wash-out times require
many hours to a day between consecutive injections, preventing evaluation of agreement
between different acquisition strategies. Recent awareness of gadolinium deposition has
raised additional concerns around contrast agent usage during the development of novel
imaging methods [79]. These challenges are even more relevant in the setting of multi-
center trials when attempting to characterize differences between vendor specific DCE
implementations where relevant spatial-temporal sparsity must be controlled for.

In creating a DRO such as the digital breast phantom, compromises must be made
between realism and computational complexity. The DRO includes several important
features that are seen in vivo, including intra-voxel mixtures of fat and fibroglandular
tissue, normal enhancing breast BPE, and enhancing lesions. While all these features
provide a more complex simulation environment for testing and validation purposes,
they do not represent the true complexity seen in vivo. The spatial distribution of the fat
and fibroglandular tissue is determined from breast MRI images, and is thus limited by
the resolution of original acquisition. Higher resolution images would provide greater
complexity but would also increase memory usage and computation time. The included
simulated lesions are relatively simple and stylized. They are not intended to exactly mimic
those seen in vivo, as might be desired in applications investigating a human reader’s
ability to detect lesions. Instead, they provide dynamic high and low spatial frequency
information to allow for analysis of the ability of an accelerated imaging method to capture
both the spatial and temporal features of interest. Realistic enhancing lesions have been
produced in DRO’s through the incorporation of in vivo imaging data from enhancing
lesions, as described by Bosca et al. [36]. If more realistic enhancing lesions are required, the
same process may be applied to the DRO presented in this work. Additional compromises
were made between the complexity of the representation of spatial and temporal features
of the breast imaging environment and the computational complexity of the simulation
pipeline. All dynamic processing is performed in k-space on a tissue-by-tissue basis as
described in the methods section. This allows for the efficient simulation of both rapid
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temporal processes, such as fat signal precession following the excitation pulse, and long
duration processes, such as simulated enhancement. This approach also limited the number
of Fourier transforms required, which increased the speed of the processing pipeline.
However, this limits the ability of this DRO to efficiently simulate spatially varying effects
such as B0 and B1 inhomogeneities and non-ridged patient motion. Such effects are not
currently included in the DRO. Despite these compromises, the framework presented
here still provides a reasonably realistic, complex enhancing environment allowing for the
visualization and analysis of the impacts of different sampling and reconstruction strategies,
which would be challenging or impossible to directly compare in vivo. Insights gained
from analyses such as these may help guide further in vivo validation efforts of accelerated
MRI techniques in preclinical or clinical models.

One of the strengths of the DRO framework is the flexible and modular design. The
same base anatomical image set can be used to simulate a variety of imaging conditions. The
current implementation only includes base breast images from three volunteers. However,
future efforts will aim to add additional data from different body habitus as well as
coil sensitivity maps from different coils geometries. A comparison of different imaging
methodologies in the presence of motion is often hampered by the need for reproducible
movement patterns, but numerical simulations have been used to characterize novel
imaging methods in body imaging applications [42,45,80]. Motion studies have been
performed in the setting of conventional prone imaging [81] as well as supine imaging [82],
and we aim to include motion capabilities into the breast DRO in the future. Although this
manuscript focuses on the clinical application of breast imaging, the modules for the base
images and contrast enhancement patterns are extensible to other clinical settings [60].

5. Conclusions

We have described the design of a breast DRO that serves as a framework for analyzing,
optimizing, and comparing accelerated DCE breast imaging acquisition and reconstruction
algorithms. While the current work is focused on breast MRI, the same process could be
used to create DRO’s for DCE in other areas of the body. The use of such DROs could aid in
the optimization and validation process of accelerated DCE MRI sequences and help guide
in vivo validation efforts.
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