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Cardiac arrhythmia is an illness in which a heartbeat is erratic, either too slow or too rapid. It happens as a result of faulty electrical
impulses that coordinate the heartbeats. Sudden cardiac death can occur as a result of certain serious arrhythmia disorders. As a
result, the primary goal of electrocardiogram (ECG) investigation is to reliably perceive arrhythmias as life-threatening to provide
a suitable therapy and save lives. ECG signals are waveforms that denote the electrical movement of the human heart (P, QRS, and
T). The duration, structure, and distances between various peaks of each waveform are utilized to identify heart problems. The
signals’ autoregressive (AR) analysis is then used to obtain a specific selection of signal features, the parameters of the AR signal
model. Groups of retrieved AR characteristics for three various ECG kinds are cleanly separated in the training dataset, providing
high connection classification and heart problem diagnosis to each ECG signal within the training dataset. A new technique based
on two-event-related moving averages (TERMAs) and fractional Fourier transform (FFT) algorithms is suggested to better
evaluate ECG signals. This study could help researchers examine the current state-of-the-art approaches employed in the detection
of arrhythmia situations. The characteristic of our suggested machine learning approach is cross-database training and testing

with improved characteristics.

1. Introduction

The electrocardiogram (ECG) is used to measure the elec-
trical activity of the heart. In many circumstances, analyzing
the ECG signal might provide an understanding of life-
threatening cardiac disorders. These researchers are typically
disturbed with recognizing and diagnosing different types of
diseases such as arrhythmias, which are described as an
enlarged rate of heart or a disruption in the rate of a normal
person [1]. Irregularities in heart rhythm can be caused by a
variety of factors, including illness drugs, an aging heart, or
metabolic issues. Sustained ventricular arrhythmia is among
the most dangerous arrhythmias, which is frequently caused
by the destroyed heart muscle. Cardiovascular disease
(CVD) is the important cause of mortality worldwide, ac-
counting for around 31% of all deaths worldwide. The heart
is a cone-shaped organ system that pumps at regular in-
tervals to deliver blood to the internal tissues [2]. A heart

attack happens due to an obstruction in the coronary ar-
teries, which deliver blood and oxygen to the heart.
According to the World Health Organization, CVDs
constitute the major public health problem worldwide.
Various initiatives and policies are applied in more diverse
communities in recent years and offer tools, tactics, and
other resources to minimize occurrences of the first and
recurring cardiovascular actions. In the end, the ECG has
been developed to be the most widely employed biosignal for
the early diagnosis of CVDs [3]. The ECG is a schematic
illustration of the heart electrical activity that is utilized to
diagnose different heart illnesses and irregularities. For more
than 70 years, doctors have used ECG electrical signals to
diagnose heart problems, include arrhythmia and heart
attack. Figure 1 shows an ECG signal that comprises
complex P, QRS, and T waves. A U-wave could also be
present. Many heart illnesses can be identified by studying
the fluctuations of these waves. ECG technologies are both
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Figure 1: Normal ECG morphology.

harmless and affordable. However, noise and other variables
were known as artifacts that will cause jumps in the ECG
signals [4]. These artifacts can include patient physical
movements, electrode motion on the body, and external
electrical interference.

To overcome the shortcomings of the aforementioned
algorithms, an approach is suggested based on the TERMA
fusion and fractional Fourier transform (FFT) that can yield
superior results. Moving averages (MA) are useful in rec-
ognizing signals that comprise detailed occurrences, and
TERMA is mostly used in economics to distinguish the
various measures in trading [3]. As a result, these averages
can be applied to ECG data that comprise events including T
waves and P, QRS complex. These waves continue by
themselves after a given amount of time. Because of the
substantial variability in the T waves and P, QRS complex,
time-frequency studies are also significant. This explains that
moving averaging and time-frequency studies can be used to
detect these waves. Furthermore, it was demonstrated that
the suggested approach in this work outperforms the
existing techniques significantly.

An autoregressive (AR) signal model order as j, AR(j),
was used to simulate a minimum number of consecutive
ECG signals. The model parameters obtained are employed
as ECG signal characteristics and categorized using several
common algorithms for classification. The results show that
these features are well separated in the retrieved space and
give accurate classification and identification of various
cardiac diseases [5]. Moreover, sets of retrieved AR values
were used to identify specific individuals from recorded ECG
signals. Initial findings show that this method has the po-
tential to be used in various biometric situations. The rest of
the research discusses the scheme that was used to retrieve
and categorize those characteristics and some outcomes for
detection of arrhythmia and information of patient tasks [6].

The next task is to determine and characterize any CVD
in an ECG signal. The classification process consists of two
steps: extraction of features and classifier model selection.
Using a database of MIT-BIH arrhythmia, many scholars
have focused on the ECG signals classification. Previous
research used a variety of preprocessing models, methods of
feature extraction, and classifiers, some of which are covered
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in this research [7]. Discrete wavelet transform (DWT) is
utilized to retrieve characteristics like the R peak and RR
interval, and multilayer perceptron (MLP) has been utilized
in the methods of classification. Similarly, the R peak region
and RR interval are identified using db4 DWT; a feedfor-
ward neural network (FFNN) is developed with back-
propagation to identify ECG signals. In classification,
various classifiers were utilized, including support vector
machines (SVM), neural networks, AdaBoost, and Naive
Bayes [8].

2. Literature Review

The study in [9] evaluated irregular heartbeats, including
heart failure, cardiac arrhythmias, and sinus rhythms. The
electrocardiogram (ECG) is an important and widely used
tool for detecting and classifying cardiac infractions. A heart
ECG signal analyzes the heart’s electrical activity and pro-
duces waveforms that can be used to diagnose cardiac ab-
normalities. As a result of this research, it is possible to
classify arrhythmias with greater accuracy and a shorter
SVM classifier with discrete wavelet transform (DWT) is the
machine learning technique used in this study. From the
MIT-BIH and BIDMC databases, seventy-three percent of
the composed signals are divided into training and testing
sets, with 70:30. DWT was used to extract a total of 190
features. Due to its flexibility to alter the window size based
on frequency, DWT as a solution SVM classifier was used to
classify the retrieved characteristics. For analysis, the find-
ings used a testing set, and to visualize the final results, we
used a model that has a 95.92 percent performance accuracy.

According to [10], heart-related illnesses (CVDs) have
been responsible for a large number of deaths worldwide
over the previous few decades, making them the world’s
leading cause of mortality. In recent years, many researchers
have used a variety of machine learning algorithms to help
the medical industry and healthcare providers diagnose
heart-related problems. In conclusion, this study provides an
overview of numerous models that focus upon these
methods and methodologies. Naive Bayes, random forest
(RF), k-nearest neighbor (KNN), decision trees (DT),
support vector machines (SVM), and ensemble models are
popular models, particularly among researchers.

In [11], to diagnose cardiac disease, the clinical and
pathological data were combined in a sophisticated way. As a
result of this complexity, clinical practitioners and re-
searchers are very interested in developing a method for
predicting cardiac disease that is efficient and an algorithm
for guessing heart disease status depending on the clinical
information is presented in this research. There are three
steps to this strategy. In the beginning, choose 13 significant
clinical variables, such as age and gender, type of chest pain,
treetops and levels of cholesterol, fasting sugar in the blood,
resting ECG, maximum rate of heart, and exercise-induced
angina, old peak, and slop. To detect cardiac disease based on
these clinical parameters, an algorithm based on artificial
neural networks (ANN) is created. Approximately 80% of
the predictions are right on target. As the last step, a user-
friendly heart disease prediction system (HDPS) was
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developed. As a result of methods, a patient’s heart condition
can be accurately forecasted. As a result of this work, the
HDPS system was developed, which is a revolutionary
technology that may be employed in this method.

In [12], it was reported that mortality and morbidity
from heart disease (HD) are on the rise in modern society.
As a vital yet difficult task that must be completed precisely
and efficiently, medical diagnosis automation would be
extremely beneficial. There is a shortage of doctors in many
parts of the world because not all doctors are equally adept in
every subspecialty. In addition to enhancing medical
treatment, an automated medical diagnosis system would
also reduce the cost. In this research, a coactive neuro-fuzzy
inference system (CANFIS) was employed to build a new
technique for preventing heart illness. The proposed
CANTFIS for new diagnostic analysis combines an autono-
mous neural network system with a descriptive fuzzy-based
method. Focusing on its training efficiency and accuracy
rate, the proposed CANFIS algorithm is found to have
significant ability in detecting cardiac disease.

The study in [13] presents a hybrid approach for optimally
classifying cardiac arrhythmias and selecting their properties.
The Genetic Method was utilized to optimally pick the
characteristics in the suggested model, and the Decision Tree
(DT) algorithm was utilized to extract the feature to organize
and build the system. The planned method is utilized to
categorize information into normal and pathologic categories,
a 16-class arrhythmias collection. This can employ the UCI
arrhythmia database, as well as selectivity, sensitivity, accu-
racy, and mean Sen-Spec parameters, to evaluate the effec-
tiveness of the projected scheme to that of similar approaches.
The suggested method’s effectiveness in both two-class and
16-class modes greatly enhances the accuracy, sensibility,
average sensitivity, and specificity metrics when compared to
similar approaches. In terms of accuracy, sensitivity, and the
mean Sen-Spec parameters, our approach achieved values of
86.96 percent, 88.88 percent, and 86.55 percent for the two-
class model and 78.76 percent, 76.36 percent, and 78.69
percent for the 16-class model classification. The values listed
above are the highest for the UCI arrhythmia database.

3. Methodology

The ECG categorization system developed in this article may
be divided into four major stages, as shown in Figure 2. The
following are the stages:

(i) Preprocessing ECG
(ii) Detection of QRS and segmentation signal
(iii) Extraction of parameter
(iv) Extracted parameter classification and clustering

3.1. ECG Preprocessing. 'The preprocessing objective stage is
to increase an overall ECG quality signal so that it can be
analyzed and examined more accurately. The reduction of
baseline deviations and the other patterns in a raw signal
produced by the power line intrusions and the artifacts was
the first stage in the ECG analysis process [14]. Background

drift is an unnecessary minimum-frequency movement in
ECG that can affect with analysis of the signal, resulting in
incorrect and misleading clinical interpretation. Its spec-
trum content is typically much below 1Hz, but higher
frequencies may be present during intensive exercise.

Filtering is among the most popular ways for removing
excessive noise and baseline drift from ECG readings. In the
past, both FIR and IIR filter types were effectively used for
this task, with lower and higher rates of cutoff in the 0.8 Hz
and 40 Hz ranges, respectively. A cutoff frequency greater
than 0.8 Hz has been documented to alter the waveform of
ECG significantly, and it should be evaded. Bandpass fil-
tering is utilized in this work to minimize and eliminate the
noise disturbance that usually appears in ECG readings. The
bandpass ECG filter has a lower cutoft frequency of 5 Hz and
a higher cutoff wavelength of 40 Hz.

3.2. Detection of QRS. The QRS complex was the single
greatest critical element of the ECG signal. For such a QRS
complex, the start and delay of the QRS complex, as well as
the P and T waveforms, are all defined. Most QRS recog-
nition algorithms are built mainly on a filtering step trailed
by the averaging based on a threshold value [15]. This
threshold is being used to differentiate between the back-
ground and the QRS complex and is based on the ECG
signal’s top position. Other techniques based on machine
learning include the method of P-spectrum, a powerful way
of detecting periodicity derived from data discontinuity.

3.3. Extraction of the Parameter. At the next level of the
system, AR modeling of the two or more consecutive ECG
beats using the discrete variant of an AR signal model of
order j, AR(j), is used after an individual heartbeat detection
for each ECG signal. Each dataset’s order j is determined by
examining the variance of forecast errors as a function of
basic functions j. Modeling two consecutive ECG beats
identified using the filter bank method briefly mentioned in
the preceding section yielded good results in this study [16].
The estimated model’s coefficients are subsequently
employed as classification signal characteristics in the design
and system period. A signal sequence as k(v) will be de-
scribed by the AR model in the following equation:

k(v)=x1k(v—1)+x2k(v—2)+x]-k(v—j)+s(v). (1)

The model coefficients, commonly defined as the param-
eters of autoregressive, utilized in the classification model are
Xy (f=1,2,...,j) and &(v) is a white noise sequence, tech-
nology process with a zero mean, and variance 2. In equation
(2), the calculated autoregressive model is now regarded as a
p-point predictions filter, only with actual output k(v) pre-
dicted from the preceding (j — 1) AR processes target value.

J
=Y x5jv-i), (2)
i=1

where X (f =1,2,..., j) characterize the assessed limits of

the AR design.
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FIGURE 2: Proposed ECG main blocks.

3.4. Classification. The collected ECG signal characteristics
were classified and recognized using various classification
techniques. The multidimensional matrices carrying the
calculated autoregressive parameters for every beat of the
recorded ECG signal are a characteristic of this work. The
k-nearest neighbor method is among the most commonly
used approaches in bioinformatics and other fields due to its
simplicity, although attention must be given while picking
the model of order k as appropriate dimension measures. To
the next stage of this study, the electrocardiography iden-
tifying patient characteristics was addressed and evaluated
using linear (LDA) and quadratic (QDA) discriminant
analysis classifiers employed in a different bioinformatics
application.

3.5. Heartbeat Classifier. An echo state network (ESN) is
used to create the suggested heartbeat classifier. It divides the
analyzed electrocardiogram records’ heart rates into two
groups depending on morphological features: VEB+ and
SVEB+. Normal (N) and supraventricular ectopic (S or
SVEB) heartbeats were both classified as SVEB+. In contrast
to VEB + heart rate, which has a ventricular source or ab-
errant morphology, those heart rates have a regular mor-
phological characteristic and a supraventricular source.
Ventricular ectopic beats (V or VEB) and fusion beats were
included in the VEB + category (F).

Figure 3 depicts the complete procedure in schematic
form. There is a clear distinction between the two phases:

(i) Stage 1: feature extraction, filtering, heartbeat seg-
mentation, and heartbeat detection are all part of the
first phase of ECG recorded analysis. In this ap-
proach, we integrate morphological and time pauses
among heart rates.

(ii) Stage 2: classification between SVEB+ and VEB+-
classes, to execute this classifying assignment, we utilize
an ensemble of ESNs with ring topology. Further in the
article, we go over the classification technique in phase
two in greater depth, as shown in Table 1.

3.6. Feature Extraction and ECG Processor. Minor pre-
processing of the original ECG recordings is required to
achieve arrhythmia categorization. The basic methods are
included in the analysis of ECG records in this framework.

3.6.1. ECG Filtering. To adjust the foundation and eliminate
undesirable high frequencies noises, every ECG recordings
are processed in a bandwidth » (Hz) € [0.5, 35]. With
conventional technique, a Butterworth high-pass filter (with
a cutoff frequency of v, = 0.5Hz) and a 12th-order limited
impulse response filter (35 Hz, at 3 dB point) were utilized.

3.6.2. Resampling of ECG Signals. ECG transmissions were
analyzed at a monitoring frequency of 260 Hz. Utilizing the
PhysioToolkit application programme, the AHA dataset
(260 Hz) is kept at its normal recording frequency, while the
MIT-BIH AR dataset (350 Hz) is normalized to 260 Hz.

3.6.3. Computation of the RR Interval. The RR interval is
measured as the period among succeeding heart rates. The
duration comparison of heartbeat i and the preceding
heartbeat (i—1) is represented by the RR interval linked with
heartbeat i, RR (i)

3.6.4. Heartbeat Detection. Annotated coordinates offered
by datasets were employed to estimate the placement of
heart rates. The annotating position in the MIT-BIHAR
database is at the highest of the QRS complex’s localized
edges. The identification of beats is outside the focus of this
research. There have also been reports of extremely effective
automatic beat recognition systems.

3.6.5. Normalization of Segmented Heartbeats. Every seg-
mented heart rate is normalized among [1, 1]. This scalability
technique yields a signal that is unaffected by the frequency
of the initial ECG recordings.

3.6.6. Heartbeat Segmentation. Every database’s indicated
position is used to segment the ECG signals. The segmented
heart rates are 250 milliseconds long (65 samples per second
at 250 Hz) and are centered on the annotated place.

Every heart rate is characterized by a collection of
properties once the ECG recordings have been processed.
Because we want to construct a rapid and real-time heartbeat
classification, one of the key objectives of selecting pa-
rameters in this system is to prevent difficult characteristics
with a large computing expense. As a result, we concentrate
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TaBLE 1: The training (DS1) and testing (DS2) sets’ heartbeat class
distributions.

SVEB + class VEB + class
Database

N S \% F
AHA (DS1) 159,688 15,086 293
AHA (DS2) 157,998 15,866 448
MIT-BIH AR 45,794 954 3,796 425
MIT-BIH AR 44,189 1,945 3,217 392

on straightforward methods for extracting characteristics. In
our example, we display it with the actual waveform of every
heartbeat between the heart rate points. Every beat’s actual
information was provided by an equivalent number of
samples from every side of the beat identification position.
Every pulse is displayed as a d — dimensional vector at the
conclusion of the preprocessing and extraction of features
phase, with three characteristics related to the RR intervals
and 65 morphological features that are basically a sampling
of the ECG waveform around the point indicated for every
heart rate. The categorization technique takes this
d — dimensional vector (d=62) as inputs.

3.7. Waveform of ECG. ECG patterns are traces of the heart’s
electrical system and play an important role in the diagnosis
method for analyzing physical health. A typical ECG trace is
comprised of a P wave, QRS complex, and T wave during
every ventricular contraction [17]. Arrhythmias are ab-
normal heartbeats that arise when the usual pattern of
electrical impulses in the heart is disrupted. Arrhythmias can
happen in both the lower and upper heart chambers, but
ventricular arrhythmia will be experienced.

As previously stated, artifacts and noise in signals must
be eliminated to identify P, QRS, and T waves. To identify P,

QRS complex, and T waveforms, the traditional wavelet
transform-based filtering technique is utilized to eliminate
noise and artifacts. To improve detection accuracy, TERMA
and FFT are combined machine learning methods that were
utilized to identify the ECG signals and evaluate if there is
any CVD. The next subsections go over the specific duties in
further depth.

3.8. Signal Filtering. The ECG signals were nonstationary,
which means that resonance frequency varies over a period
of time. Also, the noise and objects contaminating the ECG
signal were nonlinear, with a time-dependent probability
density. Time localization is not possible with traditional
Fourier transform techniques, but it is possible with DWT.
As a result, DWT is more capable of dealing with nonsta-
tionary signals [18]. The first step is to use DWT to eliminate
the average drift. To do so, first, compute the wavelet’s core
frequency, R, (also known as the F, factor), which ranges
from 0 to 1 based on the signal’s resemblance to the chosen
waveform.

Daubechies-4 (db4) has the greatest R_ factor, equal to
0.7, for ECG signals. Then, at each level, the pseudofre-
quency, R, is determined using the following equation:

_ RcRs

Ra 2ﬂ

, (3)

where a and R, are the ECG signal’s gauge and selection
frequency, respectively. The majority of the baseline drift
occurs at 0.5Hz. The scales equivalent to various pseudo-
frequencies will be easily computed using (3) for the MIT-
BIH Fs=360. Up to scale 9, which corresponds to R, =0.5,
should be decomposed. As a result, the db4 wavelet divides
the ECG signal into approximation and detailed coefficients
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up to scale 9. To find a baseline signal drift-free, the esti-
mated coefficients related to the drift baseline were elimi-
nated, and the signal was rebuilt using IDWT.

3.9. Fusion Algorithm to Detect R Peaks. At the R peak in
ECG signal, there was greatest change in the frequency. The
time localization can be compromised when using the
Fourier transform of the ECG data. FFT should be used to
the noise-free information in this stage to transform it in the
time-frequency domain. The FFT operation includes chirp
multiplying, chirp inversion, and another chirp multipli-
cation, as shown in the arrangements [19]. Rotation of the
information with a higher value is comparable to getting
closer to the transmitter resonant frequency; however,
moving that with a reduced amount is equal to moving away
from the signal’s resonant frequency, which is equivalent to
getting closer to the signal’s temporal domain. Time local-
ization is crucial when it comes to R peak detection. Using
the hit-and-trial techniques, it was discovered that the pa-
rameter of o = 0.01 boosts R peaks properly and makes
them difficult to recognize. By squaring each sample after
applying FFT, then the R peak was increased more. Fol-
lowing the enhancement, the two MAs depending on event
and cycle are determined:

j
MAevent (n) = UL Z a(n+1i),
1 j=—j
] (4)

MA e (n) = UL Z a(n+c).
2 i=—
MA is represented as moving average, U, is determined
by the length of the QRS complex, and U, is determined by
the length of the heartbeat. The augmented signal’s mean (u)
is determined and increased by factor (f); the optimum
parameter value was determined using the hit-and-miss
approach. The output value was applied to MA ;. producing
threshold values and is represented by y = fu. The MA .
values were compared to the relevant threshold values. One is
assigned if MA,,., (1) is greater than the nth criterion. A new
vector is created if zero is not provided. This produces a
stream of nonuniform distribution rectangular pulses.
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Finally, illustrated in Figure 4, the pulses with widths
equal to U, are the blocks that include the anticipated event.
The R peak value for every block is the high value in the
accompanying improved signal. This procedure is described
in depth. After applying the suggested technique, the R peaks
were accurately recognized.

3.10. Detection of P and T Peak Using Fusion Algorithm.
TERMA employs a complex threshold to identify P and T
peaks. Using a reduced threshold, we were able to minimize
the algorithm’s overall processing complexity. The R peaks
are removed in the first phase of the algorithm, allowing the
P and T peaks to be more noticeable. In the noise-free signal,
30 samples (0.083 s) were well earlier than the R peak and the
60 samples (0.166 s); then, the R peak value was set to 0 [20].
For any CVD, the probability of the P and T waves in the
specified interval was practically nil. The signal was replaced
in a time-frequency plane using the FFT to boost the P and T
peaks after the QRS interval was removed. Blocks of interest
were formed in the same way as in the following step, as
illustrated in Figure 5, utilizing two moving axes:

1 d
MA e () = - Y a(n+d),

3 =

(5)
MA .. (n) = UL Z a(n+e).

4 j=—¢

W3 is determined by the frequency of the P wave, W4 is
determined by the QT interval, d =U; - 1/2, and e =U, -
1/2 W421. The P wave duration in a fit individual will be
(100 + 20) ms; then, the QT interval will be (400 + 40) ms.
Instead of using a standard size window to identify P waves,
a minimum window is used to account for unique char-
acteristics of the arrhythmias. The measurements were just
the values of the next moving average, as opposed to the R
peak detection. One is assigned if the initial average was
higher than the comparable next moving average. A new
vector is created if the zero is not get assigned. This pro-
duces a stream of nonuniform rectangular impulses. Fi-
nally, to separate the created blocks from blocks containing
P and T peaks, a threshold depending on the intervals of PR,
RR, and RT was used. The highest power of the block is
referenced as the P peak if the gap is between the highest
benefits of the block and the nearest R peak on the specified
PR interval. If the difference only between the appropriate
dosage of the component and the closest R peak is below a
prescribed RT period, the highest values of the blocks were
referred to as as T peak.

3.11. Machine Learning Supervised Algorithms. The catego-
rization of ECG signals is a crucial and difficult endeavor. It
will deliver a great deal of information about a patient’s
CVDs without the need for cardiology. Only a specialist is
needed to connect the inquiries, and also machine learning-
based system will detect a patient’s CVDs immediately [21].
This method can quickly identify people that require rapid
medical intervention. The MLP and SVM supervised
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learning techniques are employed for the classification in
this study and explained temporarily in the subcategories
below.

3.12. SVM Classifier. In regression and classification issues,
the SVM algorithm can be employed. Information is dis-
played in the space of I-dimensional in SVM, with 1 being the
variety of attributes. Following the graph of the information,
classification is carried out by locating a hyperplane, dis-
tinguishing between several classes [22]. The hyperplane is
optimized via maximization of the margin. The hyperplane
that is nearest to the nearest information points between the
other hyperplanes is picked. The ratio that indicates the issue
is fixed by the SVM:

J j
max,o < Z ‘Xg - % Z agahnghI(Ag’Ah)>’ (6)
g-h=1

g=1
subject to
J
; APy =0, )
a;<W, g=12,...,],

where a, > 0 are the Lagrangian multipliers, W is denoted as
constant, and K (X, X,) is a kernel function, where Ay Ay
are the input features, p,, p;, are class labels. The Gaussian
radial basis function is a widely popular kernel.

2
K (X, X,) =exp —M.
20

(8)

In higher-dimensional environments, the number of
sizes exceeds the number of models and the SVM is par-
ticularly successful.

3.13. Multilayer Perceptron Classifier. Artificial neural net-
work (ANN) methods identify zones using an approach that
mimics human brain functions like comprehending,

learning, problem-solving, and decision-making. Three
layers make to the ANN model. The input image is the initial
layer, and the number of neurons in this sheet are deter-
mined by input parameters [23]. The output layer is the final
layer, with the hidden neurons representing the number of
the output classes. The hidden layers exist among the hidden
layer and the output layer. MLP is a feedforward neural
ANN subclass used during this study.

4. Results and Discussion

This segment is divided into four sections that are focused on
recognition of arrhythmias, detection of the peak, cross-
database training and testing, and classification, respectively.

4.1. Recognition of Arrhythmias. To assess the effectiveness of
the proposed scheme, an ECG set of results containing three
different types of ECG signals has been used. The dataset
contained normal ECG signals (NR) from Politecnico of
Milano VCG/ECG Data on Young Normal Subject, ar-
rhythmia (AR) from the MIT-BIH Arrhythmia Database,
and ventricular arrhythmia (VAR) again from MIT-BIH
Malignant Ventricular Arrhythmia Database. Every kind
was represented by 20 half-hour records of two-channel
outpatient ECG data, although the testing just took minutes
for each person. After the beat recognition and signal
separation steps, AR parameters are produced for each
extracted group of beats. The frequency of beats in each band
and also the number of AR parameters collected for each
team could all have an effect on the performance of the
classifying program. The effective classification was achieved
for 1-5 beats in the band and 2-4 AR variables. This shows
the performance of the two beats per set with AR order p
values of two and three in this study. Figure 6 depicts the
error values for different AR-type orders for both pre-
processed and raw ECG signals. However, more difficult
procedures are normally employed to decide the model
order; the modeling error plot’s breakpoint (“knee”) is being
used to choose a model or models.

The “knee point” position in Figure 6 is of lesser risk,
which is determined to be adequate for such heavily pro-
cessed ECG signals with an AR basis function of 2 or 3.
Making extra orders has no discernible effect on modeling
error or classification process accuracy. For processing ECG
signals, the discontinuity in this chart is immediately evident
(2 or 3); however, the same spot in the raw ECG plot is more
difficult to identify. It is also worth noting that the modeling
error for the processed signal is substantially smaller than
the error modeling acquired when modeling the raw ECG
data.

Furthermore, the variation of recovered variables should
really be observed, as evidenced by the size of related feature
clouds in AI feature space. When comparing the variations
of the information clouds to distinguish between the two
arrhythmias, the dimensionality of the data cloud associated
with daily ECG signals is comparatively small, also with
ventricular arrhythmia cloud containing the maximum
variation and dispersion of image features.
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FiGURE 6: AR model for order selection.

4.2. ECG Detection of Peaks. The P, R, and T peaks are
discovered in the initial portion of the simulation using our
proposed FFT-based approach, and the suggested algorithm
is validated across all 48 records in the MIT-BIH. This re-
search makes use of Lead II (MLII) data. Because our ap-
proach is not affected by the magnitude of the waveforms,
any following information will be helpful for the detection of
the peak. Furthermore, the performance can be evaluated
using various metrics described in the literature, including
positive predictivity, failure rate, and sensitivity as follows:

iti dictivity (+PP) P
ositive predictivi =,
posttive precictivity FP + TP
TP + FP
fail te (Frr) = , 9
ailure rate (Frr) TP (9)
TP
itivity (ST) =+
sensitivity (ST) N1 TP

where TP means true positive, FN represents false negative
considered as marked peaks not discovered by the system,
and FP represents false positive as the peaks identified by
method but not simply present. If a peak is discovered within
a 30 ms of the annotation peak, it is well defined as TP. This
evaluated TP, FN, and FPs to measure the algorithm’s
efficiency.

4.3. CVD Classification. In the next portion of the exper-
iment, the ECG signals are categorized according to their
CVDs. For all simulations, 70% of the selected features
were used to train a machine learning model, while 30%
was kept for test results. As a result, various features were
retrieved from the waveforms for classification. The col-
lected features were then sent into the SVM and MLP
classifications, which were used to categorize the input
ECG signals as regular, PVC, APC, LBBB, RBBB, and PACE
heartbeats. The following performance measures were
utilized to evaluate the proposed classifier’s effectiveness to
that of the current ones:
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1 TN + TP
r racy = .
OV Ay = TN+ TP + EN + FP
TP
=
e = P TP
(10)
.. TP
recision = ————,
precision = e+ TP

recall x precision
f1—score =2, ———————,
recall + precision

where TN stands for true negative, which means that the
person has a CVD and the classifier indicates that the in-
dividual is not normal.

4.4. Testing and Training Database. The MLP classifiers are
trained using the MIT-BIH arrhythmia collection and
subsequently evaluated on the INCART22 and SPH23 da-
tabases in St. Petersburg to classify the normal, RBBB, and
PVC heartbeats. The sample rates in each of the three
datasets varied. As a result, for convenience, all of the data
were resized to a frequency of 128 Hz. There was no re-
quirement for preprocessing because the data retrieved from
these sources were already free of baseline drift and noise.
Age, gender, PR, and RT intervals are among the objective
truth. The trained model’s accuracy rate on the IN CART and
SPH databases was 99.85 percent and 68 percent, respec-
tively. The suggested approach had been unable to identify
inverted, biphasic negative-positive, and biphasic positive-
negative T peaks that may be observed in RBBB and PVC; the
classification was unable to accurately categorize the RBBB
and PVC heartbeats. As a result, its average classification
accuracy suffers. There is a disadvantage to cross-database
analysis. In both training and testing, illness features were
normalized and the normal patient characteristics were not
normalized. When applying normalization to all the testing
and training data, the classifier’s exactness suffers even
further. This illness is unreal and requires more research.

5. Conclusion

A method for automatically classifying ECG data into three
groups has been presented in arrhythmia and ventricular
arrhythmia. To detect the R, P, and T peaks, a fusion
technique based on FFT and TERMA was presented. To
denoise data, conventional wavelet transform methods were
used; however, the introduction of FFT in the TERMA
techniques dramatically enhanced peak detection accuracy.
The proposed peak identification performs the role mar-
ginally better than the TERMA algorithm in detecting the R
peak but much improved in detecting the P and T peaks in
the MIT-BIH arrhythmia collection. Following the pre-
processing processes, AR modeling is utilized to extract the
AR parameters that are used to categorize every portion of
the ECG signal into each of three potential categories. Se-
lected features and AR characteristics for sets of the two
beats are highly divided in the feature space and effectively
categorized, suggesting that excellent classification accuracy
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may be anticipated in the suggested system’s effective im-
plications. Furthermore, unlike the TERMA method, the
effectiveness was not affected by CVDs. Following peak
identification, the results are utilized to determine the PR
and RT periods as characteristics of two ECG signals for
classification constructed a classifier for the cross-database
testing and training.
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