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Glioma stem-like cells (GSCs) were first described as a population which may in part be
resistant to traditional chemotherapeutic therapies and responsible for tumour regrowth.
Knowledge of the underlying metabolic complexity governing GSC growth and function
may point to potential differences between GSCs and the tumour bulk which could be
harnessed clinically. There is an increasing interest in the direct/indirect targeting or
reprogramming of GSC metabolism as a potential novel therapeutic approach in the
adjuvant or recurrent setting to help overcome resistance which may be mediated by
GSCs. In this review we will discuss stem-like models, interaction between metabolism
and GSCs, and potential current and future strategies for overcoming GSC resistance.

Keywords: cancer stem cell (CSC), therapeutic strategies, cancer metabolism, glioma stem-like cell,
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INTRODUCTION

Innovative treatment approaches to Glioblastoma (GBM) have thus far been unsuccessful in part
due to therapeutic resistance, resulting in disease recurrence (1). GBM is the most common intrinsic
brain tumour in adults and is classed as the highest grade (IV) astrocytoma by the World Health
Organisation (WHO) (2). Characteristic infiltration into surrounding structures of the brain as well
as central necrotic regions can be identified using histopathological studies (2). Post diagnosis, GBM
has a survival time of just 12-18 months in response to current chemoradiation protocols following
surgical resection as outlined in the Stupp protocol (3–5). In addition, only around 5% of patients
survive longer than 5 years post-diagnosis (5). Previously, GBMs have been categorised based on
whether they derive from lower grade lesions, first defined by Scherer in the 1940s (2). The rapid
and de novo development of aggressive lesions is defined as primary GBM, accounting for
approximately 95% of cases and thought to develop in part from a defined set of oncogenic
mutations (6). In contrast, secondary GBM cases have been identified as evolving from lower grade
astrocytoma precursors, often distinguished by the presence of the isocitrate dehydrogenase 1
(IDH1) mutation and given a more favourable prognosis due to more frequent diagnosis in younger
patients (6, 7).

To gain insight into the molecular drivers of GBM, studies have extensively profiled tumours,
reporting both genetic and epigenetic mutations believed to play a part in tumour initiation and
progression including loss of heterozygosity (LOH) 10q, amplification of epidermal growth factor
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receptor (EGFR), deletion of p16INK4a and mutations in tumour
protein 53 (TP53) and phosphatase and tensin homolog (PTEN)
(6). Reports from The Cancer Genome Atlas (TCGA) have also
provided insight for grade IV tumours, providing a
comprehensive understanding of genetic, expression and
epigenetic aberrations (8). Clustering GBM data for gene
expression, survival and treatment response has identified
distinct neoplasm subtypes. The classification of these
phenotypic profiles varies between research groups but include:
proneural (PN), proliferative, sometimes split into neural (N)
and classical (C) and mesenchymal (MES) (9, 10). Complicating
matters further, data inclusive of intratumoural heterogeneity
through genomic multisampling, has revealed the presence of
multiple co-existing subtypes within the same patient
tumour (11).

In addition, the recognition that many cancers are defined by
common hallmarks such as abnormal metabolic function,
pioneered by Hanahan and Weinberg (2011), has provided the
possibility that the differences between tumour and normal cells
could be defined as therapeutic targets (12). Experimentally
observed metabolic differences in GBM studies are thought to
be a combined result of oncogenic drivers, the tumour
microenvironment (TME) and the presence of distinct cell
populations such as GSCs (13, 14). Despite controversial
beginnings, the acceptance of a cell type with characteristics
distinct from the tumour bulk conferring resistance to standard
treatment has led to a widespread belief that the eradication
of GSCs would hinder tumour initiation, reestablishment
and greatly improve patient outcome (15, 16). Therefore, there
is an increasing aim to understand the apparent intrinsic
metabolic plasticity of these cells and their ability to adapt
and compensate for extreme environmental stressors such as
toxic chemotherapeutics (17). Furthermore, it is becoming
increasingly clear from the field of cancer research that the
combination of multiple therapies may be the most promising
approach to overcome heterogenic treatment responses of
different cells (18, 19).

The objective of this review is to investigate experimental
evidence for GSC metabolic flexibility and particularly
bioenergetic capacity in comparison with normal and tumour
bulk cells. Due to the pressing need for increasing GBM survival
beyond such dismal figures, this review also aims to give an
overview of the rationale behind new metabolic strategies (both
experimental and clinical) for GBM treatment, with a focus on
the GSC population.
GSCs AND CANCER STEM-LIKE
CELL MODELS

Cancer Stem Cells (CSCs), (see Figure 1- stem cell/hierarchical
model) in some cases are thought to derive from the mutation of
non-neoplastic stem cells, recapitulating certain stem cell
properties and the potential to reconstitute a tumour through
Frontiers in Oncology | www.frontiersin.org 2
unidirectional symmetric self-renewal of the CSC pool and
asymmetric divisions to generate the differentiated tumour
bulk (13, 20–22). However, contradictory experimental
evidence has led to a contrasting model (see Figure 1-
stochastic/clonal evolution model) in which the selective
oncogenic mutation of any somatic cell could progressively
accumulate mutations that produce a stem-like phenotype,
forming several CSCs clones which have selective growth and
evolutionary advantages over others (23–25). These linear
models have since been hybridised (see Figure 1-plasticity
model) with the suggestion that all the cells forming the
tumour bulk have the potential to become CSCs through a
dedifferentiation process (26, 27).

Singh et al. first described the concept of brain tumour
initiating cells based on experimental data suggesting that only
the Prominin 1/CD133+ population within GBM had the ability
to initiate brain tumours in non-obese, diabetic/severe combined
immunodeficiency (NOD/SCID) mice, compared with the
CD133- negative population (13). Their group proposed that
this glioma stem-like population may follow the unidirectional
stem cell/hierarchical model of cell division described above, also
reviewed by Singh et al. (13, 28). More recent evidence for this
finding includes studies by Lan et al. in which lineage tracing and
lentiviral DNA barcoding of NOD/SCID/IL2rgnull mice
implanted with GSC clones revealed the retention of a
proliferative hierarchy (20). By contrast, subsequent studies
have shown that the CD133-population also have brain
tumour initiating properties, suggestive of potential non-
hierarchical phenotypic alterations (29–32). Although the field
recognises the challenge of identifying a single specific glioma
stem marker (originally thought to be CD133) or combination of
markers to define a specific developmental duration, it’s
possible that stochastic marker expression such as CD133,
CD15 and CD44 could confer a survival advantage (33, 34). In
this way, the plasticity model looks to be a more accurate
description of the development and behaviour of these cells,
giving rise to the vast heterogeneity observed within a GBM
tumour (33). Suva et al. demonstrated that neurodevelopmental
transcription factors: sex determining region Y box 2 (SOX2),
oligodendrocyte transcription factor (OLIG2), POU domain
class 3 transcription factor 2 (POU3F2) and spalt like
transcription factor 2 (SALL2) can be used to artificially
reprogramme single cell primary glioblastoma cultures to a
stem-like state, provides evidence for central nervous system
(CNS) cell susceptibility to hierarchical reversal (35, 36).
Furthermore, other groups have used mathematical modelling
to predict stem cell marker combinations which may
reflect plasticity during glioblastoma growth and dictate
phenotypic heterogeneity within the stem cell population (14).
Collectively, this evidence has led to novel interpretations of the
GBM energetic landscape consisting of intrinsic diverse
transcriptional and epigenetic microstates as well as plasticity
in response to extrinsic cues as one of the most challenging
concepts to overcome for treatment success (represented in
Figure 2) (14).
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FIGURE 1 | (A) The cancer stem cell/hierarchical model: The CSC benefits from inherent stem cell features to support malignancy; unlimited clonal expansion and
self-renewal. The self-maintaining CSC population(s) are believed to differentiate in a reversible manner, producing different tumoral populations of faster proliferating
cells with limited lifespan. A hierarchy is set up in which CSCs define a biologically distinct subdivision of a tumour, giving rise to further behaviourally and functionally
heterogenous, non-tumorigenic cells of the tumour bulk. (B) The stochastic/clonal evolution model: Following neoplastic induction via oncogenic mutation, rapid
proliferation, in combination with cumulative mutation acquisition would give rise to variants with additional selective advantages. In this model, any malignant cell is
assumed as having an equal probability for tumour initiation due to identical biological features and the stochastic nature of mutation acquisition, as well as the
unpredictable influence of external cues on behavioural shifts. Therefore, tumour initiating ability cannot be isolated or enriched for. (C) The plasticity model: A more
flexible model, ‘merging’ the two previous models. Possible incorporation for bidirectional interconversion between cellular potencies, including the retrodifferentiation
of non-cancer stem cells to reacquire stem characteristics.
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ALTERED METABOLISM IN GSCs

Cellular metabolic reprogramming is considered a novel
emerging hallmark of cancer as evidenced by Hanahan and
Weinberg’s ‘Hallmarks of Cancer: The Next Generation’ (2011)
(12). The identification of malignant metabolic alterations
conferring advantages for cellular growth and resistance has
now become a major research aim, as reviewed by Tennant
et al. (37). Experimental studies evidencing GSC superior
resistance against current therapeutics have led to the
suggestion that inherent metabolic plasticity allows these cells
to adapt and compensate, and in some cases initiate the
conversion of tumour bulk cells towards a stem-like phenotype
to adopt this resistance (38, 39) (See Figure 3 for a schematic
representation of GSC metabolism). Therefore, it is important to
consider that GSCs may be metabolically diverse from both normal
somatic cells as well as cells of the tumour bulk, that have been well
studied for malignant transformation of these processes.

In normal cells when oxygen is abundant, differentiated
mammalian cells fully oxidise extracellularly imported glucose
in a highly efficient series of reactions. Glucose uptake is
regulated through glucose transporters (GLUTs) into the
cellular cytoplasm where it can then be processed to pyruvate
through multiple enzyme-catalysed reactions. Pyruvate can be
Frontiers in Oncology | www.frontiersin.org 4
shuttled into the mitochondrial matrix for entrance into the
tricarboxylic acid cycle (TCA) and oxidative phosphorylation
(OXPHOS), yielding approximately 30/32 adenosine triphosphate
(ATP) molecules for every molecule of glucose imported (40).

However, the early investigations into metabolic energy
alterations in tumours by Otto Warburg and Carl and Gerty
Cori in the 1920s revealed the paradoxical observation that
cancer cells preferentially respire using glycolytic lactate
production despite the presence of oxygen; later known as ‘The
Warburg effect’ (41). This phenomenon, also referred to as the
process of ‘aerobic glycolysis’ i.e. using anaerobic glycolysis in an
oxidative environment, only yields approximately two molecules
of (ATP) per glucose molecule. The finding has since
precipitated widespread acceptance that increased glucose
uptake is a shared cancer trait and can be exploited by
positron emission tomography (PET) to inform clinical
diagnosis of malignancy (42). PET measurements of glucose
and oxygen processing in 14 patients with high grade tumours
reported by Vlassenko et al. showed increased aerobic glycolysis
that was associated with significant tumour proliferation and
aggression, correlating with poor patient survival (43).

Since rapid cell division requires large concentrations of
cytoplasmic macromolecular precursors for building new cells,
it is believed that reducing glucose processing at pyruvate as
FIGURE 2 | Schematic showing the microstate transitions within the GSC population (within the circled dotted line) due to enhanced transcriptional and epigenetic
potential, underpinned by extrinsic cues. Double headed arrows represent dynamic transitioning between GSC states, resulting in cellular reprogramming of metabolic,
apoptotic and cell cycle programs. Non-tumorigenic subpopulations emerge due to the reversible differentiation and feedback of GSC states (double-headed curly
arrows). Factors affecting transition state, subpopulation size and dynamic fluxing between states include external cues such as therapeutic intervention, cell-cell/cell-
environmental interactions and spatial tissue characteristics. Intrinsic changes manifest as subpopulations with distinct genetic/chromosomal aberrations and
epigenetic programmes.
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described byWarburg, facilitates the diversion of carbon through
alternative biosynthetic processes (44). The pentose phosphate
pathway (PPP) is mainly responsible for nucleotide biosynthesis
and rapid flux has been described as a major driver of
proliferation for the ‘Warburg phenotype’ (45). In fact, PPP
functioning was shown by De Preter et al. to be instrumental in a
range of malignancies such as SiHa human cervix squamous cell
carcinoma using pharmacological inhibition and enzymatic
siRNA knock down of the pathway, resulting in a dramatic
decrease in proliferation (45). A combination of studies has also
been instrumental in understanding that fine tuning between
glycolytic and PPP flux can lead to phenotypic balancing in
GSCs, with a hypoxia driven metabolic switch to non-oxidative
glucose processing causing an initial reduction in PPP enzyme
expression, provoking cell migration (46, 47). Moreover,
investigations of cells exposed to long-term hypoxia showed
that PPP enzymes vital for proliferation can become
Frontiers in Oncology | www.frontiersin.org 5
upregulated, mirroring the phenotype of oxygenated GSCs
from hypoxic culture, carried out by Kathagen et al. (46, 48).
In addition to the PPP, 13C nuclear magnetic resonance (NMR)
spectroscopic analysis of patient high grade glioma samples
obtained by Maher et al. revealed additional glucose shuttling
into other enzymatic reactions for cellular glutamate, glutamine
and glycine pool replenishment (49).

Key regulators of the Warburg phenotype have been
investigated. Pyruvate kinase (PK) - the final control point in
the glycolysis pathway, exhibits pivotal roles in sensing cellular
metabolic state and functioning as a rate-limiting enzyme (50).
In addition, the unequal expression of isoforms (PK-M1 and PK-
M2) has been described for cancers including GBM, imperative
for dictating the energetic fate of glucose (51, 52). Isoform
expression analysis by Mukherjee et al. revealed a much
greater PK-M1 expression in the normal brain, contrasting
with PK-M2 in grade I-IV astrocytoma specimens. In addition
FIGURE 3 | Schematic showing some of the major metabolic pathways for GSC bioenergetic function and potential adaptability. The import of both glucose and
glutamine are emphasised as the major nutrients available for cellular uptake though their respective transporters. Glucose is imported through the cellularly expressed
glucose transporter, in this case either GLUT1 or GLUT3 and is enzymatically processed in the cytoplasm to pyruvate. Glycolytic processing can yield intermediate
precursors largely subject to processing via the PPP – a major nucleotide synthesis pathway. Complete glycolytic processing to pyruvate is determined by the final
enzymatic step - conversion of PEP by PKM2, yielding either lactate for export through MCT4 or pyruvate for mitochondrial entrance and processing via TCA and
OXPHOS. In addition, Glutamine is imported via the ASCT2 transporter and enzymatically converted to glutamate via GLS. The reverse reaction is catalysed by GS. Direct
conversion of Glutamate to cytoplasmic glutathione can take place via GCL, however, indirect conversion can also take place via xCT export, coupled to cystine import.
Glutamate can be processed further to synthesise amino acids and lipids but can similarly be used for TCA anaplerosis via mitochondrial import and conversion to aKG
by the transaminases GPT and GOT or GLUD. Black arrows represent glycolysis and glutaminolysis. Blue curly arrows represent the shuttling of intermediates from
glycolysis and glutaminolysis and their processing by subsequent enzyme-catalysed reactions. Blue dashed arrows represent mitochondrial import/export. Magenta
arrows represent the reactions that take place as a result of IDH1/2 mutations. aKG, a-ketoglutarate; ECT, Electron transport chain; FBP1, Fructose-1,6 bisphosphatase
1; G3P, Glyceraldehyde-3-phosphate; GCL, Glutamate-cysteine ligase; GLS, Glutaminase; GLUD1, Glutamate dehydrogenase; GLUT1/3, Glucose transporters 1/3; GOT,
Glutamic oxaloacetic transaminase; GPT, Glutamate pyruvic transaminase; GS, Glutamine synthetase; HK2, hexokinase 2; IDH, Isocitrate dehydrogenase; LDHA, lactate
dehydrogenase A; MCT4, Monocarboxylate transporter 2; OXPHOS, Oxidative phosphorylation; P, Phosphate; PC, Pyruvate carboxylase; PDH, Pyruvate dehydrogenase;
PDK1- Pyruvate dehydrogenase kinase 1 PEP- Phophoenolpyruvate; PFK, Phosphofructokinase; PKM2, Pyruvate kinase M2, TCA, The citric acid cycle.
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to this disparity, PK-M2 mRNA showed 3-5 times higher
expression in GBM compared to grade I-III gliomas, indicating
that dramatic increases in expression could enhance tumour
severity (52). Constitutively active PK-M2 exists as a tetramer,
favouring the production of pyruvate and TCA cycle processing
for the production of ATP through OXPHOS (53). However, this
enzyme is also susceptible to post-translational modification and
allosteric regulation by fructose 1,6-bisphosphate (FBP) making
it unstable and likely to exist as a dimer with lower affinity for
phosphoenolpyruvate (PEP), promoting glycolytic intermediate
accumulation (53). In fact, PKM2 has been used as a biomarker
for GBM malignant growth in studies by both Witney et al. and
Beinat et al. in which PET imaging with the experimental
radiotracer 1-((2-fluoro- 6-[18F]fluorophenyl)sulfonyl)-4-((4-
methoxyphenyl)sulfonyl)piperazine ([18F]DASA- 23) was used to
assess the glycolytic response of cells to a range of current
treatments (54, 55). The effectiveness of this radiotracer for
diagnosis of suspected GBM cases is currently being investigated
in a phase I clinical trial (trial identifier: NCT03539731).
ONCOGENIC DRIVERS OF AEROBIC
GLYCOLYSIS IN GBM

Classically, oncogenic events have been examined for their role
in the dynamic alteration of cellular metabolism and due to the
ground-breaking description of the Warburg effect, the focus of
many studies has been key drivers of this malignant process.
There is an abundance of studies that illustrate a correlation
between malignancy and increasing concentrations of glycolytic
biosynthetic machinery such as GLUT1/3 and glycolytic
enzymes for accelerated pathway flux (56, 57).

For GBM, common driver and tumour-suppressor genetic
alterations include phosphoinisitide 3-kinase (PI3K) mutations
for uncontrolled signalling, driving the continual activation of
protein kinase B/Akt and leading to high rates of glucose import
(58). Characteristic to GBM, upstream activation of PI3K often
takes place through epidermal growth factor receptor (EGFR) via
amplification or mutation as well as loss of PTEN antagonism
(59). Crucially, PI3K/Akt signalling can be activated downstream
of a wide array of growth factor receptors including platelet-
derived growth factor receptor (PDGFR) – normally implicated
in the mediation of tumoral proliferation predominantly in the
PN GBM subtype (60). In contrast, the PDGFR has also been
shown to regulate glycolysis in GSCs independently of
proliferation (60). Constitutive Akt activation has been repeatedly
implicated in tumoral glucose ‘addiction’, often being termed the
main instigator of the aerobic switch, involved in elevated GLUT
expression, membrane translocation and the regulation of carbon
biosynthetic shuttling (58, 60).

In addition, changes in hexokinase (HK) expression have
been reported in GBM studies such as those by Wolf et al.,
showing that higher GBM grades express higher levels of HK2
leading to the promotion of cell survival and growth (61).
Moreover, siRNA knockdown of HK2 using intracranial
xenografts conferred increased tumour invasion but less ability
Frontiers in Oncology | www.frontiersin.org 6
to proliferate and carry out angiogenesis (61). Furthermore,
transcription and growth factor studies in hepatocellular
carcinoma cell lines have helped delineate signalling events
that can give rise to HK2 expression, including cyclic
adenosine monophosphate (cAMP), glucagon, mutant p53,
insulin growth factor (IGF), hypoxia inducible factor-1a (HIF-
1a) during hypoxia and Myc signalling (62, 63). PI3K/Akt
signalling has also been shown to stimulate HK2-mediated cell
survival via mitochondrial translocation and interaction with
voltage-dependent anion channels in HeLa cells, preventing the
binding of bcl-2-like protein 4 (BAX), and increasing the release
of cytochrome C (64). A depleted level of HK2 antagonism by
downregulation of miR-143 in GSCs has been established to
increase the self-renewal potential of these cells in studies by
Zhao et al. Lentiviral miR-143 transfection of GSCs by the group
showed decreased tumorigenicity even under hypoxic culture,
suggesting that loss of miR-143 is instrumental for GSC
progression, favourably implicating miR-134 upregulation as a
therapeutic target (65).

c-Myc has also been frequently described as another major
driver of aerobic glycolysis, with overexpression causing the
downstream upregulation of HK2, PKM2 and lactate
dehydrogenase A (LDHA) in studies by Tateishi et al. (66).
The mechanistic target of rapamycin complex 2 (mTORC2), a
downstream nutrient sensor of Akt involved in the control of
lipid and protein synthesis has also been shown to activate Myc
in the absence of upstream Akt (67). Furthermore, the
retrospective analysis of patients with brain metastases by
Neider et al. showed elevated LDH levels, with additional
studies in GBM showing that tumour derived LDH5 can
confer immune escape by impeding the recognition of the
tumour by natural killer cells (68, 69). Additionally, higher
LDH-A expression in studies by Kim et al. using U87 GBM
cells was shown to be associated with faster tumour growth
kinetics, mirroring that of astrocytes (70). Moreover, the small
molecule inhibition of LDH-A by Daniele et al. promoted
cellular apoptosis in U87 cells as well as an induction of GSC
differentiation of neurospheres (71).

Lastly, inherently characteristic to GBM categorisation, mutant
IDH1/2 has a significant impact on tumoural prognosis (72). Wild
type IDH catalyses the recognised TCA conversion of isocitrate to
a-ketoglutarate (a-KG) and is predominantly associated with
primary/de novo cases of GBM (73). a-KG can function as a co-
factor for enzymes such as dioxygenases and histone demethylases
involved in epigenetic modification (74). However, mutant IDH has
been observed in more than 90% of secondary GBM cases,
catalysing the conversion of isocitrate to the clinically recognised
oncometabolite D-2-hydroxyglutarate (D-2-HG) (73, 75). D-2-HG
is involved in the competitive inhibition of the a-KG dependent
dioxygenases, leading to alterations in global deoxyribonucleic acid
(DNA) hypermethylation [including O6-methylguanine-DNA
methyltransferase (MGMT) promoter methylation] and
differentiation suppression (74, 76). In addition, IDH1 mutant
glioma is associated with the CpG island methylator phenotype
(CIMP) first described for colorectal cancer, and in GBM (G-CIMP)
is associated with the PNmolecular subtype (77–79). This mutation
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is clinically associated with a higher frequency of occurrence in
younger patients and largely correlates with longer overall survival
time (7, 78, 80).
GSC METABOLIC RESILIENCE

Glucose Oxidation
In one of the first assessments of CSC metabolic states, Vlashi
et al. studied the oxygen consumption rate and external
acidification rate of GSC neurospheres derived from three
independent GBM samples, compared with differentiated
progenies cultured as monolayers (81). The group found that
GSCs exhibited lower glucose uptake rates, lower lactate
production, higher ATP levels and were therefore less
glycolytic. Moreover, the group proposed that differentiation
could induce a switch from a dominant use of OXPHOS for
ATP production to glycolytic dependency (81). By contrast,
GSCs derived in the same way from U87 tumours by Zhou
et al. showed no significant difference in ATP levels in hypoxic
versus normoxic conditions (82). When assessed under exclusive
normoxia, elevated GSC lactate production was observed as well
as a 4-fold increase in glucose uptake, suggestive of predominant
glycolysis (82). Rationalisation of this result with findings from
other GSC studies include the increased expression of neuronal
GLUT3 by these cells for higher affinity glucose uptake, with
GLUT3 knockdown in studies by Flavahan et al. conferring a
significant decrease in the growth of GSCs (83). In addition,
Zhou et al. showed that GSCs derived from two GBM surgical
specimens expressed lower levels of voltage-dependent anion
channel 2 (VDAC2) than the differentiated phenotype, believed
to be essential for preservation of stem cell features,
tumorigenicity and phosphofructokinase (PFKP) mediated
glycolysis (84).

By collectively interpreting contrasting results from the GSC
studies discussed, more detailed analysis reveals additional
complexity, suggestive of heterogenous metabolic phenotypes
within a single tumour (85). For example, Hoang-Minh et al.’s
separation using CellTrace dyes and metabolic characterisation
of GBM cell cycling speeds relative to bioenergetic strategy
indicated that slow cycling cell (SCC) tumour populations,
believed to be enriched in GSCs, were shown to survive
predominantly using OXPHOS and lipid metabolism (86).
SCCs derived from primary human GBM cell lines also
displayed elevated chemoresistance and invasive capacity (86).
Furthermore, a multitude of studies have recorded GSC
metabolic subtype disparity, in which Gene Set Variation
Analysis (GSVA) of TCGA GBM subtypes reveal that MES
GBMs predominantly correlate with glycolytic pathways (87).
Moreover, the metabolic enzyme analyses of MES GBM have
revealed preferential glycolytic enzyme expression such as
aldehyde dehydrogenase 1A3 (ALDH1A3) (87). This metabolic
heterogeneity has been further highlighted by Duraj et al.’s
application of 4 different metabolic drugs (metformin (MF),
dichloroacetate, sodium oxamate and diazo-5-oxo-L-
norleucine) to three GSC types, shown to exhibit different drug
Frontiers in Oncology | www.frontiersin.org 7
sensitivities due to initial cellular glycolytic/oxidative
tendencies (88).

The employment of updated techniques to directly quantify
metabolites for metabolic flux analysis in vitro and in vivo has
also catalysed an increased acceptance for metabolic plasticity,
challenging the categorisation of discrete malignant metabolic
phenotypes pioneered by Warburg (89). In more contemporary
studies, Shibao et al. derived isogenic glioma initiating cells
(GICs) from neural stem cells (NSCs) expressing the H-RasV12

oncoprotein and showed that orthotopic primary tumour
initiation was independent of initial cellular metabolic state
and glycolytic enzyme expression (90). Furthermore, clonally
derived GSCs from the same GIC 14 days post in vivo initiation
showed tumour sustenance of metabolic diversity, thought to
demonstrate the possibility for coexistence of GSCs with different
bioenergetic strategies within the same tumour, relative to their
environmental niche (90). Transcriptional up/downregulation of
the glycolytic enzymes HK2, PKM2, LDHA and PDK1 were also
recorded following the observation that cells were able to
glycolytically compensate on exposure to hypoxia, and vice
versa using OXPHOS after glycolytic inhibition, indicative of
cellular metabolic coping mechanisms for continued
biosynthesis (90).

Glutamate Metabolism
Regardless of the potential that the Warburg hypothesis brought
for glycolytic inhibitor targeting, cancer cell survival and
resistance remains a barrier to therapeutic success. As time has
passed, the elucidation of a tangled cellular metabolic network
has precipitated increasing futility of unimodal targeting
strategies excluding tumoral heterogeneity and TME
remodelling. Therefore, it is important to consider how the
glycolytic pathway fits into a larger picture of cellular
metabolism (Figure 3) and thus, isolated targeting of this
pathway may be increasingly misjudging the tangled network
of cell coping mechanisms. DeBerardinis et al. noted that simply
observing a heavy cellular reliance on aerobic glycolysis may be
accessory to a temporary metabolic strategy, facilitating the
production of proliferative precursors as opposed to a
complete impairment of the oxidative pathway (91). The group
also illustrated that the catabolism of glutamine in addition to
other carbon sources such as acetate shown by Mashimo et al.
may be an imperative feature of Warburg’s observed cancer cell
phenotype, ‘picking up’ the burden of TCA anaplerosis and
nicotinamide adenine dinucleotide phosphate (NADPH)
synthesis for continued cell maintenance (91, 92).

Glutamine is an abundant plasma nutrient essential for
cellular catabolic regulation, flux and processing of carbon,
nitrogen and reducing equivalents (91). Integrating results
from the study of GBM, other cancers and neurodegenerative
disorders, a crucial balance between glutamine synthesis and
catabolism has been recognised (93). Glutamine uptake by the
alanine/serine/cysteine transporter 2 (ASCT2) transporter is
followed by cytoplasmic glutaminase (GLS) conversion to
glutamate and subsequent fate processing dependent upon cell
requirements. Glutamate can be directly processed to the
antioxidant glutathione via glutamate-cysteine ligase (GCL)
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enzymatic combination with intracellular cysteine or exported
though through xCT (cysteine/glutamate transporter) subject to
cysteine import (94). The GBM xCT mediated export of
glutamate has been shown to confer tumoural invasive
expansion of rat striata implanted glioma cell clones with
staining showing neuronal degeneration and inflammation of
the surrounding TME (95). Moreover, immunoprecipitation
analysis of three glioma cell lines and two primary human
GBM cells by Tsuchihashi et al., revealed the control of xCT
surface expression was subject to direct interaction with the
EGFR intracellular domain, a mechanism which has since been
further delineated by the group (96, 97). Glutamate is also
instrumental for non-essential amino acid synthesis as well as
purine and pyrimidine nucleotide precursors (94). Furthermore,
glutaminolysis for the continued TCA flux and maintenance of
biosynthetic intermediates has been a prominent feature in the
study of cancer transformation.

In the healthy brain glutamine production via the glutamine
synthetase (GS) catalytic condensation of glutamate and
ammonia exclusively by astrocytes can be cooperatively utilised
by neuronal GLS for glutamate hydrolysis and subsequent
neurotransmission; termed ‘the glutamine-glutamate cycle’
(98). The ammonia utilised by GS is a product of amino acid
breakdown and this enzyme is therefore essential for
detoxification as well as uncontrolled neurotransmission
through clearing glutamate from the synaptic cleft. However,
importantly astrocytic de novo glutamate synthesis for
neurotransmitter pool maintenance is dependent upon the
enzyme pyruvate carboxylase (PC) and has been used as a
specific marker of astrocytes. PC shuttling of glucose-derived
pyruvate into the TCA for glutamate synthesis is subsequently
converted to glutamine through GS.

An unmistakable metabolic adaptation drawn from glioma
studies including GBM is an ‘addiction’ to glutamine for survival
and growth, particularly in hostile conditions. In vitro
experiments by Wise et al. using the paediatric GBM cell line
SF188 revealed glutamine growth dependence, such that removal
of glutamine from the culture medium inhibited cell survival
despite the presence of glucose (99). This finding is well
established for other cells including cancer with many early
studies reporting cell survival in glutamine and nucleoside
supplemented culture media in the absence of any sugar (100–
102). Furthermore, inhibition of the established oncogenic
drivers of glucose addiction PI3K and Akt by Wise et al.
showed no effect on glutaminolysis mediation, precipitating the
finding that elevatedMYC expression resulted in upregulation of
glutamine dependence genes (99). Myc was shown to stimulate
increased SLC1A5 (ASCT2) transcription for higher rates of
uptake and glutamine mediated TCA anaplerosis, essential for
the replenishment of precursors for growth limiting
macromolecule synthesis (99). This data implied the possibility
that anaplerotic nutrient use was driven by discrete oncogenic
systems. Other studies to further analyse high MYC expression
and nutrient dependence in a range of human cell lines including
human lung fibroblasts and human lymphoblastoid cells have
found that Myc dependent miR-23a and miR-23b transcriptional
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repression upregulates GLS expression as well as sensitising cells
to apoptosis during glutamine deprivation (103, 104).

Anaplerotic Balancing
Besides studies implicating glutamine as an extremely important
molecule for TCA anaplerosis and cell survival, it is important to
recognise that a balance exists between glucose, glutamine, and
other cellular respiratory substrates. As mentioned for astrocytic
systems, glucose can be catabolised to pyruvate and diverted
away from PDH mediated entrance into the TCA, instead being
carboxylated to oxaloacetate by PC. Nonetheless, observations
consistent with the Warburg effect have rarely implicated glucose
as the predominant precursor for neoplasm anaplerosis,
supported by findings from metabolic flux experiments in well
established “glutamine addicted” SF188 paediatric GBM cells
with negligible PC activity (91). In fact, in vitro SF188 metabolic
flux analysis has shown near exclusive nutrient favouring, with
DeBerardinis et al. stating that cells derive up to 90% of
anaplerotic oxaloacetate production from glutamine (91).
Nonetheless, studies in human lung cancer tissue and
hepatocellular carcinoma cell lines in vivo and in vitro
respectively have evidenced preferential PC anaplerosis
mediation, resulting in different sensitivities to experimental
nutrient withdrawal (105, 106). As a result, some GBM
experimental designs have since focussed on delineating
neoplasm anaplerotic carbon source flexibility during nutrient
deprivation. This is of clinical importance due to the potential for
the rapeu t i c con found ing r e su l t ing f rom ce l l u l a r
complementation and survival mechanisms using alternative
pathways (105). Accordingly, further analysis using GLS
suppression in SF188 and adult LN229 GBM cell lines by
Cheng et al. have since revealed that despite limited growth,
cells are able to compensate using other GLS independent
amidotransferase-catalysed glutamate generating pathways as
well as glucose-derived carbon incorporation into TCA
intermediates through PC (105). The additionally observed
upregulation of PC after glutamine deprivation led the group
to conclude: “PC is dispensable for growth of glutamine-replete
glioblastoma cells, but required when glutamine supply is
limited’’ (105).

Further to studies using single cell lines, the use of patient
derived primary GBM samples has since been imperative for the
delineation of tumoural metabolic heterogeneity. Metabolic
analysis of 14 patient GBMs by Oizel et al. revealed phenotypic
disparity and clustering as two distinct groups (107). One group
exhibited substrate flexibility including glutamine utilisation for
TCA directed nicotinamide adenine dinucleotide (NADH)
formation, as well as higher expression of SLC1A5, GLS and
Glutamic-Oxaloacetic Transaminase 1 (GOT) (107). The other
exhibited glucose dependency for survival and growth. Substrate
removal and substitution experiments revealed that the
metabolically flexible phenotype was essential for maintaining
cell proliferation when glucose was removed (107). In addition,
the long-term inhibition of glutamine metabolism using the
inhibitor, epigallocatechin gallate allowed cells to use glucose
mediated TCA flux (107). Data such as these have been essential
August 2021 | Volume 11 | Article 743814

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Harland et al. GSC Metabolism: Novel Therapeutic Strategies
for recognising the concurrent existence of cells with different
substrate sensitivities within a whole tumour. Later, the group
combined metabolic analysis with molecular subtyping data,
revealing that cells with higher substrate flexibility and
metabolic adaptation potential could be categorised as MES,
whilst glucose dependent cells represented one of the other
subtypes. Further extension of experiments to the U87 cell line
associated with GSC features, conformed to the MES subtype
and thus, exhibited glutamine-mediated anaplerotic shuttling
(107). The MES subtype has been heavily implicated for
hypoxic survival and represents a subset of GBM (9, 10). These
findings correlate with experimental data from Flavahan et al.
using patient derived GSCs confirmed by assessing self-renewal,
proliferation and expression of stem cell markers to show the
association of high GLUT3 expression with GSCs in the PN
subtype (83). However, earlier isotopic analysis studies using 13C
mass spectrometry of isolated GSCs in neurospheres cultured
from GBM orthotopic mouse models by Marin-Valencia et al.
displayed rapid consumption of glucose for PC mediated
anaplerosis and mitochondrial oxidation in addition to de novo
glutamate production (108). Corresponding transcription data
revealed the low expression of GLS in contrast to PC and GS
levels, accessory to the observation that glucose-derived
glutamate was used to maintain a large intracellular pool of
glutamine, mediated by GS (108). Corroborating data from other
studies have shown that GBM cells with high GS expression
showed little to no reliance on extracellular glutamine uptake for
growth preservation via glutaminolysis, but instead a
dependence on de novo glutamine synthesis for intracellular
pool replenishment (109). Assumptions based on this data
have since exclusively defined GSCs as displaying high GS
levels, contrary to data from Oizel at al. in which molecular
subtyping is believed to be the more dominant driver of
metabolic phenotype, with both GS-positive and GS-negative
GSCs described (107, 109) Molecular subtyping of the GSCs
studied by Marian-Valencia et al. would have revealed whether
this data correlated with finding by Oizel et al., such that these
cells showed subtyping distinct from the MES phenotype.

Nonetheless, combining these study outcomes, a distinction
has been made between GBM cells displaying low GS levels as
being mainly reliant on glutamine for TCA anaplerosis, with the
ability to switch to largely glucose as a main substrate under
glutamine repression (107). In contrast, GBM cells with high GS
levels frequently defined as GSCs are believed to rely upon PC-
mediated anaplerosis as a major source of glutamate GS
mediated glutamine pool replenishment. In this way, these
cells show major similarities to untransformed astrocytic
systems in which PC and GS activities are required for
glucose-derived glutamine pool maintenance, with little
reliance on external glutamine uptake for cell proliferation. In
studies by Tardito et al. proportionate protein levels were
recorded for astrocytes and GS-positive GBM cells (109). The
heavy reliance on de novo glutamate production as observed in
GSCs with high GS expression, is believed to be an abundant
source of nucleotide precursors for sustained purine biosynthesis
(49, 108, 109).
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GSCs as Astrocytic ‘Parasites’/Metabolic
Adaptability and the TME
Metabolic crosstalk between GBM cells and the stroma in the
context of plastic substrate utilisation is essential for transformed
cell survival during chaotic TME dynamics. In addition, studies
evidencing the ability of subpopulations of tumour cells to adapt
during nutrient restriction has led to investigations of cancer-
stromal alliances in a range of cancers for survival (110–112).
Tardito et al. reported low kinetic uptake of glutamine from the
blood by GS-negative GBM cells and the healthy brain (109).
Since GS-negative GBM cells have shown high glutamine uptake
for anaplerotic pathways, orthotopic mouse models of GS-
negative GBM revealed that other GS expressing tumour cells
as well as astrocytes were a major source of the amino acid.
Moreover, co-culture of astrocytes and GS negative LN18 GBM
cells revealed growth sustenance based on astrocytic glutamine
production in the absence of media supplementation (109). This
data shows that subject to transformation, glutamine excreted
into the TME for endogenous neuronal transmission, can instead
support the growth of malignant cells that require a supply of
metabolic nutrients. Furthermore, Kallenberg et al.’s magnetic
resonance spectroscopy data illustrated a higher concentration of
glutamine in the hemispheres of GBM patients relative to healthy
controls, reported as a marker for early tumour infiltration (113).
In addition, cross section staining for astrocytes and GS level of
human derived GBM xenografts display a symbiotic positioning
of astrocytes surrounding GS-negative GBM cells (109).
CLINICAL RELEVANCE – METABOLIC
TARGETING

Glycolysis Inhibition – Targeting the
Warburg Phenotype
The widespread acceptance of the Warburg effect as well as
experimental evidence supporting this metabolic shift in GBM
tumours has been instrumental for the emergence of glycolytic
targeting strategies. Glucose uptake inhibition has been
dominated by the use of GLUT1 antagonists such as indinavir
and ritonavir, shown in vitro to reduce GBM cell proliferation
including in GSC cell lines (114). However, despite the
synergistic effect of ritonavir when combined with
chemotherapeutics in vitro, both compounds are unable to
effectively cross the blood brain barrier (BBB), and therefore
not able to reach effective concentrations in the brain (114).
Alternatives have included compounds such as 2-fluoro-6-(m-
hydroxybenzoyloxy) phenyl m-hydroxybenzoate (WZB117),
displaying successful in vitro inhibition of GSC self-renewal
ability (115). However, despite the beneficial effects observed
for the inhibition of this transporter, the robustness of the
targeting strategy has been challenged due to widespread
GLUT1 expression in the human brain and therefore potential
for off target effects (116). Consequently, GLUT3 has since
emerged as a more promising target with protein expression
analysis by Flavahan et al. showing elevated levels of the
August 2021 | Volume 11 | Article 743814

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Harland et al. GSC Metabolism: Novel Therapeutic Strategies
transporter in GSCs (83). Moreover, studies by Cosset et al. have
interrogated GLUT3 expression further, showing that targeting
with therapeutics may specifically inhibit classical/proneural cells
within GBM tumours (117).

Other glycolytic inhibition strategies have included the
suppression of HK2 with antifungals, as well as use of the
glucose analogue 2-deoxy-D-glucose (2-DG) for competitive
inhibition of cellular glucose uptake, and overall reduction in
glycolysis (118, 119). The depletion in ATP production resulting
from 2-DG treatment has been shown to promote cellular
endoplasmic reticulum (ER) stress, followed by the unfolded
protein response (UPR), similarly observed as an effect post
radiotherapy (119). It is believed that GSCs have a greater ability
to escape this stress with superior autophagic pathway
promotion and reestablishment of ER homeostasis (120).
Therefore, currently, there are efforts to promote tumour
apoptosis by preventing autophagic and UPR mediated ER
homeostasis reestablishment, with some groups finding that
blocking ER stress altogether and the downstream protective
mechanisms could enhance the cytotoxic effects of small
therapeutic compounds such as shikonin (121). An
increasingly established downstream effector of the UPR is 78-
kDa glucose-regulated protein (GRP78) - a member of the heat
shock protein family, instrumental for downstream activation of
ER homeostasis regulators as well as observed cell surface
translocation, characteristic of invasive cancers (119, 122).
Whilst the translocation of GRP78 from the ER to the cell
surface is not well understood, it is believed that GRP78 may
also regulate cellular interactions with the surrounding
TME (123).

The Ketogenic Diet
Further to treatment strategies requiring administration of small
molecule inhibitors, the modification of patient dietary nutrient
intake has become a potentially effective approach for diverting
tumour metabolism, such as short-term starvation shown by
in vitro colon cancer studies for apoptosis induction (124). The
dietary reduction of serum glucose concentrations involves restricting
carbohydrate consumption, traditionally implemented by following a
4:1 fat to protein and carbohydrate ratio (commercially available as
KetoCal®) that is well tolerated in patient studies for targeting GBM
energy metabolism (125–127). As a result, multiple clinical trials are
either complete or ongoing evaluating the safety/tolerance and
effectiveness of the ketogenic diet (KD) as an adjuvant to
current treatment in GBM: NCT01865162, NCT023939378, NCT
04691960, NCT02302235, NCT00575146, NCT03451799,
NCT01754350, NCT03075514, NCT03278249, NCT01535911,
NCT04730869, NCT02286167. This dietary limitation forces the
liver to metabolically adapt, using fats to produce ketone bodies
which can be used as an alternative fuel source for cellular energy
metabolism; originally pioneered for the beneficial reduction in
seizures in epileptic children (128). Furthermore, Otto Warburg’s
description of tumoural exploitation of aerobic glycolysis provided
initial rationale for the approach in GBM, suggested as an effective
strategy to slow tumour growth and reduce ability of cells to exhibit a
Warburg phenotype (129). As such, the efficacy of this treatment has
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been shown by Abdelwahab et al’s. use of a bioluminescent mouse
model of malignant glioma to confer increased survival (127).
Moreover, the retrospective statistical analysis of patient data
suggests that postoperative hyperglycaemia is associated with poor
survival; an effect that could be suppressed by lowering glucose levels
during treatment (130–132).

Despite studies demonstrating efficacy of the KD for
increased GBM survival, Sperry et al. have explored GBM
intratumoural heterogeneity to reveal that populations of
tumour cells could in fact thrive using ketone bodies and
upregulated fatty acid oxidation for survival, therefore
mitigating the effectiveness of the KD (133). However, the
authors highlight that the KD in combination with additional
metabolic inhibit ion of enzymes such as carnit ine
palmitoyltransferase 1A (CPT1A) – the rate-limiting enzyme
for fatty acid oxidation, or implementation of additional calorie
restriction to exacerbate the effect of serum glucose reduction
could increase the efficacy of the KD, as evidenced by Shelton
et al. in GBM (133, 134). Tumour survival via the exploitation of
pathways that circumvent low glucose concentrations such as
glutaminolysis have also become a concern for implementation
of the KD as an effective treatment (135). Moreover, despite the
maintenance of low glutamine levels in the healthy brain via the
glutamine-glutamate cycle, studies by Takano et al. have shown
that glioma glutamate secretion into the surrounding brain could
be readily recycled by tumours for sustained energy metabolism
and growth (95). Therefore, strategies implementing the calorie
restricted KD in combination with 6-diazo-5-oxo-L-norleucine
(DON) – a gluatminolysis antagonist has been tested in vivo
GBM mouse models by Mukherjee et al. conferring increased
survival and tumour cell apoptosis (135).

Besides a reduction in glycolytic flux resulting from the KD,
other downstream cellular responses have been investigated by
Ji et al. using GSCs derived from both patients and cell lines
(136). Culture medium high in b-hydroxybutyrate for
mimicking the effects of the KD resulted in reduced GSC
proliferation and tumorigenicity as well as revealing the
possibility for the induction of damaging morphological and
functional mitochondrial alterations (136). In addition, studies
by Seyfried et al. using in vivo astrocytoma models exposed to
restricted standard and KDs showed alterations in metabolic
modulators such as a reduction of IGF-I (137). Both IGF-I, the
IGF1 receptor (IGF-1R) and associated signalling network have
been linked with tumour survival in a range of cancers, with
experimental data showing the presence of the receptor
providing protection from apoptosis following cytotoxic
treatment (138, 139). Moreover, the IGFR1 exhibits elevated
expression in GBM cells when compared with normal brain cells
and is therefore believed to be a marker of reduced patient
survival and inhibition of tumour cell apoptosis (140, 141). In
fact, Zhang et al. carried out in vitro culture studies comparing
control U87 GBM cells to those overexpressing the IGF-R1,
revealing that in response to hydrogen peroxide exposure, the
cells with higher IGF-R1 could inhibit apoptosis. In addition,
increasing concentrations of IGF1 or overexpression of the
IGF-1R resulted in Akt phosphorylation, believed to increase
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PI3K/Akt pathway activation and subsequent apoptosis
suppression (140).

Peroxisome Proliferator-Activated
Receptors and Differentiation Induction
The 2010 retrospective review of high-grade glioma patients by
Grommes et al. exposed that diabetic patients receiving
treatment with PPARg agonists (Thiazolidinediones) had a
median survival increase of 13 months in comparison to
those not taking this medication (142). Despite analysis of the
data defining this result as not significant due to small sample
size, expression data showing elevated levels of PPARg in
malignancies such as colon, duodenal, lung, prostate, thyroid,
primary and metastatic breast cancer has provoked an
increased interest in the clinical relevance of this receptor
family, of which there are 3 mammalian members: PPARa,
PPARb/d and PPARg (143–148). The PPARs are part of the
nuclear receptor superfamily and function as ligand-inducible
transcription factors which under normal conditions bind
dietary fats as well as regulating both adipocyte and
macrophage biology (149).

PPAR agonists have therefore gained traction with studies by
Keshamouni et al. demonstrated that treatment of non-small
cell lung cancer (NSCLC) patient tumours with the PPARg
ligand troglitazone conferred anti-proliferative effects due to
G0/G1 cell cycle arrest and reduction in cyclin D/E expression
(145). The same cell cycle arrest has also been recorded in GBM
tissue samples using the PPARg ligand pioglitazone by Zang
et al., with other research groups showing that this ligand could
additionally stimulate b-catenin mediated apoptosis of GBM
cell lines (150, 151). Interestingly, Chearwae and Bright (152)
treated neurospheres generated from commercial GBM cell lines
with the PPARg agonists 15-deoxy-D12,14-prostaglandin J2 (15d-
PGJ2) or all-trans retinoic acid to induce apoptosis and inhibit
neurosphere formation and expansion through Tyk2-Stat3
inhibition (152). The notion that these ligands exert effects
though the Janus kinase-signal transducer and activator of
transcription (JAK-STAT) pathway has been complemented
by studies by Mo et al. using PPARg ligands in mouse
embryonic stem cells (153). Since STAT3 is crucial for the
self-renewal of GSCs, the potential downstream inhibition of
this pathway could be important for sensitisation to
chemotherapeutics such as temozolomide (TMZ), as shown by
Villalva et al. (154).

Further to the delineation of different populations of GBM
cells with distinct cycling kinetics by Hoang-Minh et al.,
enhanced cytotoxic resistance of slow-cycling populations have
been described by studies performed in colon and breast tumour
cells by Moore et al. despite being successful against the more
proliferative tumour bulk (86, 155). Therefore, the induction of
differentiation in stem populations has become a promising
therapeutic strategy for cellular sensitisation to standard chemo
and radiotherapy for GBM (Stupp protocol) (4). Pestereva et al.
used imatinib to inhibit the PDGFR and stem cell factor receptor
(c-Kit), with encouraging reductions of stem cells markers and
tumorigenicity of tissue derived GSCs (156). There is also
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promise that PPARg agonists could be useful for inducing
differentiation of GSCs within tumours due to indications that
ciglitazone and 15d-PGJ2 caused altered expression of stemness
genes such as SOX2 and NANOG (157). This was again tested in
mouse derived NSCs cultured as neurospheres by Kanakasabai
et al. with stem cell gene expression analysis before and after
treatment with iglitazone or 15d-PGJ2 revealing a downregulation
of stem and differentiation associated genes (158). However,
despite the potential benefits of this approach, studies by Caren
et al. have highlighted the importance of ensuring terminal GSC
differentiation in a stable manner, due to the variable responses of
cells to bone morphogenic protein (BMP) therapies. Therefore,
studies are required to investigate the mechanisms used by cells to
evade patterns of commitment, making them vulnerable to
dedifferentiation (159).

In addition to the potential beneficial effect of PPARg agonists
on GBM, the elevated expression of PPARa recorded in GBM
tissue by Haynes et al. has been complemented by data
demonstrating tumour growth suppression following the use of
agonists such as gemfibrozil (160, 161). This beneficial effect has
also been observed in NSCLC cells, where induction of PPARa
inhibited growth and angiogenesis, as well as leading to apoptosis
in ovarian cancer cells when combined with PPARg induction
(162, 163). However, a compelling aspect of PPARa is that it is
imperative for ketogenesis due to transcriptionally regulating 3-
hydroxy-3-methylglutaryl-CoA (HMGCS) – the rate-limiting
enzyme for the conversion of acetyl-CoA to b-hydroxybutyrate
and acetoacetate (164, 165). Therefore, PPARa can also
downregulate IGF/Akt signalling discussed for the KD as well
as GLUT1 and 4 receptors, essential for supressing the Warburg
phenotype (166–168).
Mitochondrial Targeting
Further to studies revealing that GBMs undergo glucose
oxidation, the discovery of mitochondrial aberrations including
electron transport chain (ETC) components and mitochondrial
reserve capacity have provided insight into additional GBM
survival mechanisms (169). Mitochondrial DNA (mtDNA)
profiling has revealed mutations in complex I, III and IV of
the ETC, affecting the balance between OXPHOS and aerobic
glycolysis (170, 171). GBM patient tumour tissue analysis by
Lloyd et al. revealed that at least one mitochondrial DNA
(mtDNA) mutation is present in 43% of patients (171).
Further to this, large scale mtDNA alterations, ETC
remodelling, and enzyme activity modulation has been shown
to be critical for TMZ resistance in both cell lines and human
GBM specimens, with chemoresistance largely driven by
cytochrome C oxidase (COX) (172). Moreover, subject to
research by Oliva et al., COX subunit-IV (COX-IV) was shown
mainly to be associated with COX isoform I (COX-IV-I) for
cellular nutrient sensing and modulation of energy production in
TMZ resistant cells (172). This finding was later extended to
GSCs, with COX-IV-I displaying cooperation with downstream
targets to enhance tumorigenicity and self-renewal (173).
Consequently, ETC pharmacological and genomic intervention
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has been further investigated, with results suggesting TMZ
sensitisation following COX-IV-I targeting (174, 175).

Furthermore, the anti-diabetic biguanide drug, MF, has been
analysed as a promising therapeutic strategy for decreasing
cancer proliferation and inducing apoptosis subject to nutrient
availability. Investigations in colon cancer cells have revealed
that MF reversibly inhibits the function of ETC complex I subject
to the presence of membrane potential and glucose (176, 177).
Other studies have revealed that in the absence of glucose, MF
can induce cellular apoptosis as well as a possible selective effect
on CSCs (177–181). Further to this, phenformin - a MF analogue
with elevated potency, was used by Jiang et al. in vitro and for
in vivo tumour mouse models, revealing multiple beneficial
effects including a reduction in GSC self-renewal and overall
prolonged mouse survival (182). However, since biguanide use is
associated with lactic acidosis induction, combining MF with the
inhibition of PDK by dichloroacetate (DCA) by Haugrud et al.
conferred a cell survival advantage, both reducing lactate
production and inhibition of oxidative metabolism in breast
cancer cells (182, 183). GBM oxidative stress induction has also
been described for other compounds such as the anthelmintic
drug Ivermectin, similarly shown to induce apoptosis via ETC
complex I inhibition as well as targeting angiogenesis and the
Akt/mTOR pathway in GSC cell lines (184). Interestingly, this
drug also induces apoptosis in human microvascular endothelial
cells (HBMEC), thus breaking an important protective and
synergistic relationship believed to be critical for GBM niche
maintenance (184).
Combination Strategies
Further to the identification of isolated metabolic targets, the
combination of existing GBM chemoradiation protocols with
agonists/antagonists of multiple signalling pathways such as
sonic hedgehog (Shh), murine double minute 2 (MDM2), p53,
PI3K/mTOR, EGFRvIII, poly(ADP-ribose) polymerase 1 (PARP1),
cyclin-dependent kinase 4/6 (CDK4/6) have exhibited cytotoxic
sensitisation efficacy of GBM models (185–191). Further
experimental combinatorial strategies include the use of impridone
compounds for inhibitingbothglycolysis andOXPHOSviaAkt/ERK
dual inhibition, c-Myc degradation and apoptosis in GSCs (192). In
addition, Yuan et al. effectively used the glycolytic inhibitor 3-
bromo-2-oxopropionate-1-propyl ester (3-BrOP) and the
alkylating chemotherapeutic carmustine/BCNU in GSCs that were
initially highly glycolytic, causing major ATP depletion and
abrogation of DNA repair capacity (193). Furthermore, the
development of the arsenic-based mitochondrial toxin, 4-(N-(S-
penicillaminylacetyl)amino) phenylarsonous acid (PENAO) by
Shen et al. to trigger mitochondrial apoptosis had better efficacy
when usedwithDCA for dual targeting of glucosemetabolism (194).
Other combinations of drugs undergoing clinical development for
GBM have also been tested with existing compounds such as
Navitoclax/ABT-263 (a Bcl-2/Bcl-xL inhibitor) with encouraging in
vivo low toxicity and suppressionof tumour growth (195).Moreover,
studiesusing chemotherapeuticswithbothMFandphenforminhave
shown beneficial effects tumour growth inhibition, with Jiang et al.
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using phenformin and TMZ in vivo for prolonged mouse
survival (182).

However, the epidemiological identification of existing drugs
with anti-tumour effects is not restricted to the biguanides, many
repurposed compounds are currently under scrutiny in clinical
trials in combination with existing chemoradiation protocols (see
Table 1). Moreover, clinical trials to test the coordinated
blocking of multiple different cell survival pathways has
become an attractive strategy, with efforts to use multiple
repurposed compounds that will work synergistically for the
greatest therapeutic benefit. In 2016, the CUSP9v3 trial
(identifier: NCT027703780) started, combining TMZ with
Aprepitant, Minocycline, Disulfiram, Celecoxib, Sertraline,
Captopril, Itraconazole, Ritonavir and Auranofin in additive
treatment cycles for the treatment of recurrent GBM cases; a
strategy originally proposed in 2013 by Kast et al. (216, 217).
Although the results have not been released at the time of writing
this review, experimental studies to test the robustness of the
CUSP9 strategy have been published, including Skaga et al.’s
investigations using 15 GSC cultures, derived from 15 patient
GBMs including relapsed tumours (18). The group found that the
combination of drugs was significantly more effective than when
used alone, as well as increasing the therapeutic benefit of TMZ for
sphere eradication in most of the cell lines, with the highest
resistance in a proneural population (18). In addition to testing
compound efficacy with conventional therapy, it has come to light
that patient tumour profiling prior to therapeutic application may
give a greater therapeutic benefit. Recently, the antiproliferative
effects of four different compounds: MF, dichloroacetate (DCA),
sodium oxamate (SOD) and diazo-5-oxo-L-norleucine (DON)
were tested on 4 GSC subpopulations with different initial
oxidative/glycolytic metabolism tendencies by Duraj et al. (88).
The group found that GSC inhibitor sensitivity differed relative to
Warburg-like/OXPHOS phenotype, and Seahorse XF to
determine glycolytic/mitochondrial ATP production shifts
following treatment. The authors suggest that predictive
metabolic shifts despite initial bioenergetic plasticity following
treatment, could be used as “metabolic priming” (88). In this
way, the malignant cells could be pushed towards exhibiting a
phenotype with enhanced sensitivity to subsequent small
molecular inhibitors, chemo- or radiotherapy.
CONCLUSION

Mechanisms for conferring resistance to current GBM
treatments have been described for GSCs including quiescence,
slow cell cycling, upregulated expression of drug efflux proteins,
enhanced DNA repair capacity, drug resistance and advanced
plasticity. Attempting to overcome these molecular blockades
has heightened the importance of delineating the metabolic
phenotypes that are adopted by these cells; with shifts before,
during and after standard treatment believed to be imperative for
tumour reestablishment. metabolic inhibition strategies have
recently gained traction, requiring a detailed knowledge of the
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TABLE 1 | Repurposed drugs currently in clinical trials for the assessment of efficacy against GBM.

Repurposed
drug

Mechanism of
action

Indication of
therapeutic

benefit for GSCs

References Trial
identifier

Therapeutic
combination

Tumour inclusion
criteria

Reported results

Metformin
(antidiabetic)

-↓ mitochondrial ATP
production, ↓ oxygen
consumption, ↑
lactate and glycolytic
ATP production
-↑AMPK, ↓ STAT3 &
Akt/PKB
-↓ SOX2 expression
in TMZ-resistant
glioma cells. (yang)
-mTOR pathway
inhibition
-Inhibition of complex
I of the ETC.
-↓ superoxide
dismutase (SOD)
activity
↑ caspase 3 activity.

-Inhibition of STAT3
phosphorylation
-↓ neurosphere
formation.
-↓ proliferation via
chloride intracellular
channel-1 (CLIC1)
inhibition. G1 arrest.
↑AMPK, ↑FOXO3 –

promotion of
differentiation.

Leidgens et al. (196);
Yang et al. (197);
Gritti et al. (198);
Owen et al. (199);
Xiong et al. (200);
Sato et al. (201)

NCT02780024 Metformin +
radiation + TMZ.

Newly diagnosed
GBM.

Estimated completion
date December 2021.

NCT03243851 Metformin + low
dose TMZ.

Progressive or
recurrent Glioblastoma.

No published results.

Chloroquine
(antimalarial)

-Inhibition of
autophagy.
-Induction of p53-
dependent apoptosis.
Experimental
indication of
mitochondrial cristae
damage and DNA
break repair
prevention (triple
negative breast
cancer stem cells).

-Inhibition of the
PI3K/Akt pathway
for sensitisation to
radiation-induced
apoptosis.
-Inhibition of
autophagy and
promotion of
apoptosis.
-↑ radio
sensitisation.
Induction of p63-
dependent G1
arrest.

Firat et al. (202);
Kim et al. (203);
Lee et al. (204);
Ye et al. (205);
Liang et al. (206)

NCT00224978 Chloroquine +
conventional
chemotherapy:
caumustine and
radiotherapy.

Tumour restricted to
one brain hemisphere.
First or second
recurrence or relapse.

Median survival after
surgery = 24 months
for chloroquine-treated
patients & 11 months
for controls.

NCT02432417 Chloroquine +
chemoradiation

de novo GBM. N/A. Estimated
completion date
January 2024.

NCT02378532 Chloroquine +
radiation +TMZ.

Newly diagnosed
GBM, histopathological
conformation of MGMT
and EGFRvIII status.

44 adverse events
recorded possibly/likely
due to chloroquine
including seizure and
vomiting. Median
overall survival = 8.1
months (EGFRvIII
negative) & 13.4
months (EGFRvIII
positive. 7 patients
alive a median 9 month
follow up. Maximum
tolerated dose was
established as 200mg
daily chloroquine
combined with RT and
concurrent TMZ for
newly diagnosed GBM.

Mefloquine
(antimalarial)

Proposed cytotoxicity
by inhibition of
autophagy in glioma
cells.

Golden et al. (207) NCT01430351 Mefloquine +
TMZ (arm 2 of
study)
+ metformin

Histologically proven
supratentorial
glioblastoma.

Mefloquine induction of
Abnormal ECG (2
patients) & QTc interval
prolongation (1 patient).
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TABLE 1 | Continued

Repurposed
drug

Mechanism of
action

Indication of
therapeutic

benefit for GSCs

References Trial
identifier

Therapeutic
combination

Tumour inclusion
criteria

Reported results

(arm 6)
+ memantine
(arm 4)
+ metformin &
memantine
(arm 7).

Possible induction of
grade 1 sinus
bradycardia (1 patient).
Established final
mefloquine dose - 250
mg 3 times weekly.
Median OS = 21
months (95% CI, 16.2‐
29.7 months), 2‐year
survival rate = 43%
(95% CI, 34%‐56%).

Atorvastatin
(statin)

-Mevalonate pathway
inhibition (leukaemia).
-Inhibition of protein
prenylation via
upstream HMG-CoA
reductase inhibition.
-Suppression of Ras
and downstream
signalling pathways
including Erk
enhancement of TMZ
efficacy.

-Apoptotic
induction, ↓
migration and
invasion of
spheroids (U87).

Bayat et al. (208);
Peng et al. (209)

NCT02029573 Atorvastatin +
TMZ + radiation.

Histologically proven
newly diagnosed GBM
malignant GBM or
variants. No prior
chemotherapy or
radiotherapy.

Interim analysis
reported treatment
safety, PFS-6 rate was
67% with median 9.1
months PFS. No
published results from
completed trial.

Celecoxib
(NSAID)

-P53 dependent
Induction of DNA
damage and
inhibition of DNA
synthesis.
Indications of G1 cell
cycle arrest and
autophagy.

-Regulation of
chemokine axes
(CCL2/CCR2 and
CXCL10/CXCR3).
Decrease of mRNA
expression to
viability of GSCs.
-↓ of PD-L1 via
FKBP5.

Kang et al. (210);
Shono et al. (211);
Yamaguchi et al.
(212)

NCT00112502 Randomisation
of 8 treatment
arms.
Combination of
TMZ +
thalidomide and/
or celecoxib.

Histologically confirmed
supratentorial GBM.
Must have undergone
biopsy, subtotal, or
gross total tumour
resection. Must have
undergone
radiotherapy within 5
weeks prior.

PFS for treatment arms
combined was 11.6
months. Overall, 6-
month PFS rate =
73%. Arms containing
celecoxib showed a
median PFS of 8.3
months compared with
7.4.

NCT00068770 Two treatment
arms:
1.p450 inhibitor
+ celecoxib +
radiotherapy.
2.No p450
inhibitor +
Celecoxib +
radiotherapy.

Histologically confirmed
GBM. No prior
chemotherapy,
radiotherapy, endocrine
therapy,
immunotherapy, or
biological agents for
malignancy. Recovered
from surgery.

Study ended early,
unethical to continue
due to other trial data
indicating the
therapeutic benefit of
including TMZ in
treatment plan.

Disulfiram
(alcohol
addiction)

-Inhibition of ALDH.
-Suppression of
proteasomal activity.
-↑ROS, activation of
JNK & p38, inhibition
of NF-kB in GBM
cells.
-Proposed
modulation of
apoptosis via Bcl2
family mediation.
-Inhibition of PLK1
expression.
-Inhibition of MGMT,
↑ alkylating DNA
damage.

-Inhibition of
chymotrypsin-like
proteasomal
activity, elevated
effect with copper
addition.
-Inhibition of the
ubiquitin-
proteasome
pathway.
-Inhibition of self-
renewal.
-Enhancement of
TMZ treatment
activity in stem-cell
like populations of
GBM.

Hothi et al. (213);
Triscott et al.
(214); Paranjpe
et al. (215)

NCT02678975 Disulfiram +
copper +
chemotherapy.

Previous diagnosis of
glioblastoma
(histologically verified)
and presenting with a
first progression/
recurrence
documented by MRI.

No published results.
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metabolome and adaptability potential of cells following targeted
pathway inhibition. However, it’s important to highlight that a
metabolic treatment regimen designed to solely target GSCs may
not improve GBM prognosis. For example, GSC differentiation
induction strategies must ensure stable and terminal GSC
differentiation as well as coordinated blocking of the reverse
process. As highlighted by Figure 1, dedifferentiation of
Frontiers in Oncology | www.frontiersin.org 15
differentiated tumour bulk cells could result in the formation
of new GSCs. Therefore, even if complete clearance of the GSC
population could be achieved through metabolic targeting, this
outcome may only be temporary, highlighting the limitations of
this singular approach. In this way, metabolic regimens to target
GSCs can be explored as an effective supplement for
combinatorial use with current and emerging treatment
TABLE 1 | Continued

Repurposed
drug

Mechanism of
action

Indication of
therapeutic

benefit for GSCs

References Trial
identifier

Therapeutic
combination

Tumour inclusion
criteria

Reported results

NCT01907165 Disulfiram +
copper + TMZ.

Histologically confirmed
GBM. Received or in
the process of
completing definitive
radiotherapy with
concurrent TMZ.

1-year PFS = 57%, &
1-year OS = 69%. No
significant difference in
PFS/OS according to
Disulfiram dose,
surgical extent, or
MGMT methylation
status.
Better PFS & OS in
GBMs with IDH1 (n =
6), BRAF (n = 2),
or NF1 (n = 1)
mutations than without:
1-year PFS: 100% vs
22%, respectively, p =
0.001; 1-year OS:
100% vs 42%,
respectively, p =
0.006>

NCT02715609 Preoperative
treatment:
Disulfiram +
copper
gluconate.
Post-surgery:
standard
radiation + TMZ
+ concurrent
Disulfiram/
copper
gluconate.

Dose escalation cohort:
Diagnosis of GBM or
its histological variants
Dose expansion
cohort: diagnosis of
GBM (or its histological
variants) with IDH,
BRAF, or NF1
mutations.
Confirmation of these
mutations may be
either by
immunohistochemistry
or next generation
sequencing.

N/A. Estimated
completion date
December 15, 2023.

NCT03034135 Disulfiram/
copper
gluconate +
TMZ, 6-month
course.

Histologically confirmed
GBM, Radiotherapy
completed with
concurrent TMZ at
least 12 weeks prior to
start of study
treatment. Or
pathological verification
of recurrent tumour at
least 4 weeks after
radiotherapy with
concurrent TMZ.
Exclusion of IDH
mutants or secondary
GBMs.

OOR = 0%, but 14%
had clinical benefit.
Median PFS = 1.7
months & median OS =
7.1 months. 1patient
displayed dose limiting
toxicity. Disulfiram
concluded to have
limited activity and was
unable to recapitulate
TMZ sensitivity in
patients tested.
August 2021 | Volu
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strategies to ensure complete therapeutic coverage of heterogenic
GBM tumours.
AUTHOR CONTRIBUTIONS

AH was responsible for article structure, figure design and
building, drafting the introduction and main body of text. XL,
MG, and MCG provided critical revision of the article and
figures. CP provided critical revision of the article and figures,
joint supervising author. KK was responsible for the article
Frontiers in Oncology | www.frontiersin.org 16
conception, drafting the article abstract and providing critical
revision of the article and figures, joint supervising author. All
authors contributed to the article and approved the
submitted version.
FUNDING

AH funded by Southmead Hospital Charity, North Bristol Trust
Registered Charity No: 1055900. XL is funded by Cancer
Research UK (grant number C30758/A2979).
REFERENCES
1. Milano MT, Okunieff P, Donatello RS, Mohile NA, Sul J, Walter KA, et al.

Patterns and Timing of Recurrence After Temozolomide-Based
Chemoradiation for Glioblastoma. Int J Radiat Oncol Biol Phys (2010) 78
(4):1147–55. doi: 10.1016/j.ijrobp.2009.09.018

2. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al.
The 2007 WHO Classification of Tumours of the Central Nervous System.
Acta Neuropathol (2007) 114(2):97–109. doi: 10.1007/s00401-007-0243-4

3. Stupp R, Dietrich PY, Ostermann Kraljevic S, Pica A, Maillard I, Maeder P,
et al. Promising Survival for Patients With Newly Diagnosed Glioblastoma
Multiforme Treated With Concomitant Radiation Plus Temozolomide
Followed by Adjuvant Temozolomide. J Clin Oncol (2002) 20(5):1375–82.
doi: 10.1200/JCO.2002.20.5.1375

4. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ,
et al. Radiotherapy Plus Concomitant and Adjuvant Temozolomide for
Glioblastoma. N Engl J Med (2005) 352(10):987–96. doi: 10.1056/
NEJMoa043330

5. Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, Mampre D,
Jackson C, Peterson J, et al. Trends in Glioblastoma: Outcomes Over
Time and Type of Intervention: A Systematic Evidence Based Analysis.
J Neurooncol (2020) 147(2):297–307. doi: 10.1007/s11060-020-03451-6

6. Ohgaki H, Dessen P, Jourde B, Horstmann S, Nishikawa T, Di Patre PL,
et al. Genetic Pathways to Glioblastoma: A Population-Based Study. Cancer
Res (2004) 64(19):6892–9. doi: 10.1158/0008-5472.CAN-04-1337

7. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An
Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science
(2008) 321(5897):1807–12. doi: 10.1126/science.1164382

8. Network CGAR. Comprehensive Genomic Characterization Defines
Human Glioblastoma Genes and Core Pathways. Nature (2008) 455
(7216):1061–8. doi: 10.1038/nature07385

9. Verhaak RG, Hoadley KA, Purdom E, Wang V, Qi Y, Wilkerson MD, et al.
Integrated Genomic Analysis Identifies Clinically Relevant Subtypes of
Glioblastoma Characterized by Abnormalities in PDGFRA, IDH1, EGFR,
and NF1. Cancer Cell (2010) 17(1):98–110. doi: 10.1016/j.ccr.2009.12.020

10. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, et al.
Molecular Subclasses of High-Grade Glioma Predict Prognosis, Delineate a
Pattern of Disease Progression, and Resemble Stages in Neurogenesis.
Cancer Cell (2006) 9(3):157–73. doi: 10.1016/j.ccr.2006.02.019

11. Sottoriva A, Spiteri I, Piccirillo SG, Touloumis A, Collins VP, Marioni JC,
et al. Intratumor Heterogeneity in Human Glioblastoma Reflects Cancer
Evolutionary Dynamics. Proc Natl Acad Sci USA (2013) 110(10):4009–14.
doi: 10.1073/pnas.1219747110

12. Hanahan D, Weinberg RA. Hallmarks of Cancer: The Next Generation. Cell
(2011) 144(5):646–74. doi: 10.1016/j.cell.2011.02.013

13. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, et al.
Identification of Human Brain Tumour Initiating Cells. Nature (2004) 432
(7015):396–401. doi: 10.1038/nature03128

14. Dirkse A, Golebiewska A, Buder T, Nazarov PV, Muller A, Poovathingal S,
et al. Stem Cell-Associated Heterogeneity in Glioblastoma Results From
Intrinsic Tumor Plasticity Shaped by the Microenvironment. Nat Commun
(2019) 10(1):1787. doi: 10.1038/s41467-019-09853-z
15. Wei J, Barr J, Kong LY, Wang Y, Wu A, Sharma AK, et al. Glioblastoma
Cancer-Initiating Cells Inhibit T-Cell Proliferation and Effector Responses
by the Signal Transducers and Activators of Transcription 3 Pathway. Mol
Cancer Ther (2010) 9(1):67–78. doi: 10.1158/1535-7163.MCT-09-0734

16. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, et al. Glioma
Stem Cells Promote Radioresistance by Preferential Activation of the DNA
Damage Response. Nature (2006) 444(7120):756–60. doi: 10.1038/
nature05236

17. Ye F, Zhang Y, Liu Y, Yamada K, Tso JL, Menjivar JC, et al. Protective
Properties of Radio-Chemoresistant Glioblastoma Stem Cell Clones Are
Associated With Metabolic Adaptation to Reduced Glucose Dependence.
PloS One (2013) 8(11):e80397. doi: 10.1371/journal.pone.0080397

18. Skaga E, Skaga I, Grieg Z, Sandberg CJ, Langmoen IA, Vik-Mo EO. The
Efficacy of a Coordinated Pharmacological Blockade in Glioblastoma Stem
Cells With Nine Repurposed Drugs Using the CUSP9 Strategy. J Cancer Res
Clin Oncol (2019) 145(6):1495–507. doi: 10.1007/s00432-019-02920-4

19. Bayat Mokhtari R, Homayouni TS, Baluch N, Morgatskaya E, Kumar S, Das
B, et al. Combination Therapy in Combating Cancer. Oncotarget (2017) 8
(23):38022–43. doi: 10.18632/oncotarget.16723

20. Lan X, Jörg DJ, Cavalli FMG, Richards LM, Nguyen LV, Vanner RJ, et al.
Fate Mapping of Human Glioblastoma Reveals an Invariant Stem Cell
Hierarchy. Nature (2017) 549(7671):227–32. doi: 10.1038/nature23666

21. Deleyrolle LP, Harding A, Cato K, Siebzehnrubl FA, Rahman M, Azari H,
et al. Evidence for Label-Retaining Tumour-Initiating Cells in Human
Glioblastoma. Brain (2011) 134(Pt 5):1331–43. doi: 10.1093/brain/awr081

22. Yuan X, Curtin J, Xiong Y, Liu G, Waschsmann-Hogiu S, Farkas DL, et al.
Isolation of Cancer Stem Cells From Adult Glioblastoma Multiforme.
Oncogene (2004) 23(58):9392–400. doi: 10.1038/sj.onc.1208311

23. Chaffer CL, Brueckmann I, Scheel C, Kaestli AJ, Wiggins PA, Rodrigues LO,
et al. Normal and Neoplastic Nonstem Cells can Spontaneously Convert to a
Stem-Like State. Proc Natl Acad Sci USA (2011) 108(19):7950–5.
doi: 10.1073/pnas.1102454108

24. Nowell PC. The Clonal Evolution of Tumor Cell Populations. Science (1976)
194(4260):23–8. doi: 10.1126/science.959840

25. Dick JE. Looking Ahead in Cancer Stem Cell Research. Nat Biotechnol
(2009) 27(1):44–6. doi: 10.1038/nbt0109-44

26. Olmez I, Shen W, McDonald H, Ozpolat B. Dedifferentiation of Patient-
Derived Glioblastoma Multiforme Cell Lines Results in a Cancer Stem Cell-
Like State With Mitogen-Independent Growth. J Cell Mol Med (2015) 19
(6):1262–72. doi: 10.1111/jcmm.12479

27. Zhang QB, Ji XY, Huang Q, Dong J, Zhu YD, Lan Q. Differentiation Profile
of Brain Tumor Stem Cells: A Comparative Study With Neural Stem Cells.
Cell Res (2006) 16(12):909–15. doi: 10.1038/sj.cr.7310104

28. Singh SK, Clarke ID, Hide T, Dirks PB. Cancer Stem Cells in Nervous
System Tumors. Oncogene (2004) 23(43):7267–73. doi: 10.1038/sj.onc.
1207946

29. Ogden AT, Waziri AE, Lochhead RA, Fusco D, Lopez K, Ellis JA, et al.
Identification of A2B5+CD133- Tumor-Initiating Cells in Adult Human
Gliomas. Neurosurgery (2008) 62(2):505–14; discussion 14-5. doi: 10.1227/
01.neu.0000316019.28421.95

30. Chen R, Nishimura MC, Bumbaca SM, Kharbanda S, Forrest WF, Kasman
IM, et al. A Hierarchy of Self-Renewing Tumor-Initiating Cell Types in
August 2021 | Volume 11 | Article 743814

https://doi.org/10.1016/j.ijrobp.2009.09.018
https://doi.org/10.1007/s00401-007-0243-4
https://doi.org/10.1200/JCO.2002.20.5.1375
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1056/NEJMoa043330
https://doi.org/10.1007/s11060-020-03451-6
https://doi.org/10.1158/0008-5472.CAN-04-1337
https://doi.org/10.1126/science.1164382
https://doi.org/10.1038/nature07385
https://doi.org/10.1016/j.ccr.2009.12.020
https://doi.org/10.1016/j.ccr.2006.02.019
https://doi.org/10.1073/pnas.1219747110
https://doi.org/10.1016/j.cell.2011.02.013
https://doi.org/10.1038/nature03128
https://doi.org/10.1038/s41467-019-09853-z
https://doi.org/10.1158/1535-7163.MCT-09-0734
https://doi.org/10.1038/nature05236
https://doi.org/10.1038/nature05236
https://doi.org/10.1371/journal.pone.0080397
https://doi.org/10.1007/s00432-019-02920-4
https://doi.org/10.18632/oncotarget.16723
https://doi.org/10.1038/nature23666
https://doi.org/10.1093/brain/awr081
https://doi.org/10.1038/sj.onc.1208311
https://doi.org/10.1073/pnas.1102454108
https://doi.org/10.1126/science.959840
https://doi.org/10.1038/nbt0109-44
https://doi.org/10.1111/jcmm.12479
https://doi.org/10.1038/sj.cr.7310104
https://doi.org/10.1038/sj.onc.1207946
https://doi.org/10.1038/sj.onc.1207946
https://doi.org/10.1227/01.neu.0000316019.28421.95
https://doi.org/10.1227/01.neu.0000316019.28421.95
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Harland et al. GSC Metabolism: Novel Therapeutic Strategies
Glioblastoma. Cancer Cell (2010) 17(4):362–75. doi: 10.1016/j.ccr.
2009.12.049

31. Beier D, Hau P, Proescholdt M, Lohmeier A, Wischhusen J, Oefner PJ, et al.
CD133(+) and CD133(-) Glioblastoma-Derived Cancer Stem Cells Show
Differential Growth Characteristics and Molecular Profiles. Cancer Res
(2007) 67(9):4010–5. doi: 10.1158/0008-5472.CAN-06-4180

32. Zheng X, Shen G, Yang X, Liu W. Most C6 Cells Are Cancer Stem Cells:
Evidence From Clonal and Population Analyses. Cancer Res (2007) 67
(8):3691–7. doi: 10.1158/0008-5472.CAN-06-3912

33. Brown DV, Filiz G, Daniel PM, Hollande F, Dworkin S, Amiridis S, et al.
Expression of CD133 and CD44 in Glioblastoma Stem Cells Correlates With
Cell Proliferation, Phenotype Stability and Intra-Tumor Heterogeneity. PloS
One (2017) 12(2):e0172791. doi: 10.1371/journal.pone.0172791

34. Kenney-Herbert E, Al-Mayhani T, Piccirillo SG, Fowler J, Spiteri I, Jones P,
et al. CD15 Expression Does Not Identify a Phenotypically or Genetically
Distinct Glioblastoma Population. Stem Cells Transl Med (2015) 4(7):822–
31. doi: 10.5966/sctm.2014-0047

35. Suvà ML, Rheinbay E, Gillespie SM, Patel AP, Wakimoto H, Rabkin SD,
et al. Reconstructing and Reprogramming the Tumor-Propagating Potential
of Glioblastoma Stem-Like Cells. Cell (2014) 157(3):580–94. doi: 10.1016/
j.cell.2014.02.030

36. Kondo T, Raff M. Oligodendrocyte Precursor Cells Reprogrammed to
Become Multipotential CNS Stem Cells. Science (2000) 289(5485):1754–7.
doi: 10.1126/science.289.5485.1754

37. Tennant DA, Durán RV, Gottlieb E. Targeting Metabolic Transformation
for Cancer Therapy. Nat Rev Cancer (2010) 10(4):267–77. doi: 10.1038/
nrc2817

38. Kumar S, Visvanathan A, Arivazhagan A, Santhosh V, Somasundaram K,
Umapathy S. Assessment of Radiation Resistance and Therapeutic Targeting
of Cancer Stem Cells: A Raman Spectroscopic Study of Glioblastoma. Anal
Chem (2018) 90(20):12067–74. doi: 10.1021/acs.analchem.8b02879

39. Auffinger B, Tobias AL, Han Y, Lee G, Guo D, Dey M, et al. Conversion of
Differentiated Cancer Cells Into Cancer Stem-Like Cells in a Glioblastoma
Model After Primary Chemotherapy. Cell Death Differ (2014) 21(7):1119–
31. doi: 10.1038/cdd.2014.31

40. Ivanov AI, Malkov AE, Waseem T, Mukhtarov M, Buldakova S, Gubkina O,
et al. Glycolysis and Oxidative Phosphorylation in Neurons and Astrocytes
During Network Activity in Hippocampal Slices. J Cereb Blood Flow Metab
(2014) 34(3):397–407. doi: 10.1038/jcbfm.2013.222

41. Warburg O, Wind F, Negelein E. THE METABOLISM OF TUMORS IN
THE BODY. J Gen Physiol (1927) 8(6):519–30. doi: 10.1085/jgp.8.6.519

42. van der Hiel B, Pauwels EK, Stokkel MP. Positron Emission Tomography
With 2-[18F]-Fluoro-2-Deoxy-D-Glucose in Oncology. Part IIIa: Therapy
Response Monitoring in Breast Cancer, Lymphoma and Gliomas. J Cancer
Res Clin Oncol (2001) 127(5):269–77. doi: 10.1007/s004320000191

43. Vlassenko AG, McConathy J, Couture LE, Su Y, Massoumzadeh P, Leeds
HS, et al. Aerobic Glycolysis as a Marker of Tumor Aggressiveness:
Preliminary Data in High Grade Human Brain Tumors. Dis Markers
(2015) 2015:874904. doi: 10.1155/2015/874904

44. Ganapathy-Kanniappan S. Molecular Intricacies of Aerobic Glycolysis in
Cancer: Current Insights Into the Classic Metabolic Phenotype. Crit Rev
Biochem Mol Biol (2018) 53(6):667–82. doi: 10.1080/10409238.
2018.1556578

45. De Preter G, Neveu MA, Danhier P, Brisson L, Payen VL, Porporato PE,
et al. Inhibition of the Pentose Phosphate Pathway by Dichloroacetate
Unravels a Missing Link Between Aerobic Glycolysis and Cancer Cell
Proliferation. Oncotarget (2016) 7(3):2910–20. doi: 10.18632/
oncotarget.6272

46. Kathagen A, Schulte A, Balcke G, Phillips HS, Martens T, Matschke J, et al.
Hypoxia and Oxygenation Induce a Metabolic Switch Between Pentose
Phosphate Pathway and Glycolysis in Glioma Stem-Like Cells. Acta
Neuropathol (2013) 126(5):763–80. doi: 10.1007/s00401-013-1173-y

47. Kathagen-Buhmann A, Schulte A, Weller J, Holz M, Herold-Mende C, Glass
R, et al. Glycolysis and the Pentose Phosphate Pathway Are Differentially
Associated With the Dichotomous Regulation of Glioblastoma Cell
Migration Versus Proliferation. Neuro Oncol (2016) 18(9):1219–29.
doi: 10.1093/neuonc/now024
Frontiers in Oncology | www.frontiersin.org 17
48. Sanzey M, Abdul Rahim SA, Oudin A, Dirkse A, Kaoma T, Vallar L, et al.
Comprehensive Analysis of Glycolytic Enzymes as Therapeutic Targets in
the Treatment of Glioblastoma. PloS One (2015) 10(5):e0123544.
doi: 10.1371/journal.pone.0123544

49. Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J,
Hatanpaa KJ, et al. Metabolism of [U-13 C]glucose in Human Brain
Tumors In Vivo. NMR BioMed (2012) 25(11):1234–44. doi: 10.1002/
nbm.2794

50. Christofk HR, Vander Heiden MG, Wu N, Asara JM, Cantley LC. Pyruvate
Kinase M2 Is a Phosphotyrosine-Binding Protein. Nature (2008) 452
(7184):181–6. doi: 10.1038/nature06667

51. Desai S, Ding M, Wang B, Lu Z, Zhao Q, Shaw K, et al. Tissue-Specific
Isoform Switch and DNA Hypomethylation of the Pyruvate Kinase PKM
Gene in Human Cancers. Oncotarget (2014) 5(18):8202–10. doi: 10.18632/
oncotarget.1159

52. Mukherjee J, Phillips JJ, Zheng S, Wiencke J, Ronen SM, Pieper RO. Pyruvate
Kinase M2 Expression, But Not Pyruvate Kinase Activity, Is Up-Regulated in
a Grade-Specific Manner in Human Glioma. PloS One (2013) 8(2):e57610.
doi: 10.1371/journal.pone.0057610

53. Yang W. Structural Basis of PKM2 Regulation. Protein Cell (2015) 6(4):238–
40. doi: 10.1007/s13238-015-0146-4

54. Witney TH, James ML, Shen B, Chang E, Pohling C, Arksey N, et al. PET
Imaging of Tumor Glycolysis Downstream of Hexokinase Through
Noninvasive Measurement of Pyruvate Kinase M2. Sci Transl Med (2015)
7(310):310ra169. doi: 10.1126/scitranslmed.aac6117

55. Beinat C, Patel CB, Xie Y, Gambhir SS. Evaluation of Glycolytic Response to
Multiple Classes of Anti-Glioblastoma Drugs by Noninvasive Measurement
of Pyruvate Kinase M2 Using. Mol Imaging Biol (2020) 22(1):124–33.
doi: 10.1007/s11307-019-01353-2

56. Davis-Yadley AH, Abbott AM, Pimiento JM, Chen DT, Malafa MP.
Increased Expression of the Glucose Transporter Type 1 Gene Is
Associated With Worse Overall Survival in Resected Pancreatic
Adenocarcinoma. Pancreas (2016) 45(7):974–9. doi: 10.1097/MPA.
0000000000000580

57. Wun T, McKnight H, Tuscano JM. Increased Cyclooxygenase-2 (COX-2): A
Potential Role in the Pathogenesis of Lymphoma. Leuk Res (2004) 28
(2):179–90. doi: 10.1016/s0145-2126(03)00183-8

58. Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR, et al.
Akt Stimulates Aerobic Glycolysis in Cancer Cells. Cancer Res (2004) 64
(11):3892–9. doi: 10.1158/0008-5472.CAN-03-2904

59. Zhu H, Acquaviva J, Ramachandran P, Boskovitz A, Woolfenden S, Pfannl
R, et al. Oncogenic EGFR Signaling Cooperates With Loss of Tumor
Suppressor Gene Functions in Gliomagenesis. Proc Natl Acad Sci USA
(2009) 106(8):2712–6. doi: 10.1073/pnas.0813314106

60. Ran C, Liu H, Hitoshi Y, Israel MA. Proliferation-Independent Control of
Tumor Glycolysis by PDGFR-Mediated AKT Activation. Cancer Res (2013)
73(6):1831–43. doi: 10.1158/0008-5472.CAN-12-2460

61. Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R, et al.
Hexokinase 2 is a Key Mediator of Aerobic Glycolysis and Promotes Tumor
Growth in Human Glioblastoma Multiforme. J Exp Med (2011) 208(2):313–
26. doi: 10.1084/jem.20101470

62. Mathupala SP, Rempel A, Pedersen PL. Glucose Catabolism in Cancer Cells:
Identification and Characterization of a Marked Activation Response of the
Type II Hexokinase Gene to Hypoxic Conditions. J Biol Chem (2001) 276
(46):43407–12. doi: 10.1074/jbc.M108181200

63. Mathupala SP, Rempel A, Pedersen PL. Glucose Catabolism in Cancer Cells.
Isolation, Sequence, and Activity of the Promoter for Type II Hexokinase.
J Biol Chem (1995) 270(28):16918–25. doi: 10.1074/jbc.270.28.16918

64. Pastorino JG, Shulga N, Hoek JB. Mitochondrial Binding of Hexokinase II
Inhibits Bax-Induced Cytochrome C Release and Apoptosis. J Biol Chem
(2002) 277(9):7610–8. doi: 10.1074/jbc.M109950200

65. Zhao S, Liu H, Liu Y, Wu J, Wang C, Hou X, et al. miR-143 Inhibits
Glycolysis and Depletes Stemness of Glioblastoma Stem-Like Cells. Cancer
Lett (2013) 333(2):253–60. doi: 10.1016/j.canlet.2013.01.039

66. Tateishi K, Iafrate AJ, Ho Q, Curry WT, Batchelor TT, Flaherty KT, et al.
Myc-Driven Glycolysis Is a Therapeutic Target in Glioblastoma. Clin Cancer
Res (2016) 22(17):4452–65. doi: 10.1158/1078-0432.CCR-15-2274
August 2021 | Volume 11 | Article 743814

https://doi.org/10.1016/j.ccr.2009.12.049
https://doi.org/10.1016/j.ccr.2009.12.049
https://doi.org/10.1158/0008-5472.CAN-06-4180
https://doi.org/10.1158/0008-5472.CAN-06-3912
https://doi.org/10.1371/journal.pone.0172791
https://doi.org/10.5966/sctm.2014-0047
https://doi.org/10.1016/j.cell.2014.02.030
https://doi.org/10.1016/j.cell.2014.02.030
https://doi.org/10.1126/science.289.5485.1754
https://doi.org/10.1038/nrc2817
https://doi.org/10.1038/nrc2817
https://doi.org/10.1021/acs.analchem.8b02879
https://doi.org/10.1038/cdd.2014.31
https://doi.org/10.1038/jcbfm.2013.222
https://doi.org/10.1085/jgp.8.6.519
https://doi.org/10.1007/s004320000191
https://doi.org/10.1155/2015/874904
https://doi.org/10.1080/10409238.2018.1556578
https://doi.org/10.1080/10409238.2018.1556578
https://doi.org/10.18632/oncotarget.6272
https://doi.org/10.18632/oncotarget.6272
https://doi.org/10.1007/s00401-013-1173-y
https://doi.org/10.1093/neuonc/now024
https://doi.org/10.1371/journal.pone.0123544
https://doi.org/10.1002/nbm.2794
https://doi.org/10.1002/nbm.2794
https://doi.org/10.1038/nature06667
https://doi.org/10.18632/oncotarget.1159
https://doi.org/10.18632/oncotarget.1159
https://doi.org/10.1371/journal.pone.0057610
https://doi.org/10.1007/s13238-015-0146-4
https://doi.org/10.1126/scitranslmed.aac6117
https://doi.org/10.1007/s11307-019-01353-2
https://doi.org/10.1097/MPA.0000000000000580
https://doi.org/10.1097/MPA.0000000000000580
https://doi.org/10.1016/s0145-2126(03)00183-8
https://doi.org/10.1158/0008-5472.CAN-03-2904
https://doi.org/10.1073/pnas.0813314106
https://doi.org/10.1158/0008-5472.CAN-12-2460
https://doi.org/10.1084/jem.20101470
https://doi.org/10.1074/jbc.M108181200
https://doi.org/10.1074/jbc.270.28.16918
https://doi.org/10.1074/jbc.M109950200
https://doi.org/10.1016/j.canlet.2013.01.039
https://doi.org/10.1158/1078-0432.CCR-15-2274
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Harland et al. GSC Metabolism: Novel Therapeutic Strategies
67. Masui K, Tanaka K, Akhavan D, Babic I, Gini B, Matsutani T, et al. mTOR
Complex 2 Controls Glycolytic Metabolism in Glioblastoma Through FoxO
Acetylation and Upregulation of C-Myc. Cell Metab (2013) 18(5):726–39.
doi: 10.1016/j.cmet.2013.09.013

68. Crane CA, Austgen K, Haberthur K, Hofmann C, Moyes KW, Avanesyan L,
et al. Immune Evasion Mediated by Tumor-Derived Lactate Dehydrogenase
Induction of NKG2D Ligands on Myeloid Cells in Glioblastoma Patients.
Proc Natl Acad Sci USA (2014) 111(35):12823–8. doi: 10.1073/pnas.
1413933111

69. Nieder C, Marienhagen K, Dalhaug A, Aandahl G, Haukland E, Pawinski A.
Prognostic Models Predicting Survival of Patients With Brain Metastases:
Integration of Lactate Dehydrogenase, Albumin and Extracranial Organ
Involvement. Clin Oncol (R Coll Radiol) (2014) 26(8):447–52. doi: 10.1016/
j.clon.2014.03.006

70. Kim J, Han J, Jang Y, Kim SJ, Lee MJ, Ryu MJ, et al. High-Capacity
Glycolytic and Mitochondrial Oxidative Metabolisms Mediate the Growth
Ability of Glioblastoma. Int J Oncol (2015) 47(3):1009–16. doi: 10.3892/
ijo.2015.3101

71. Daniele S, Giacomelli C, Zappelli E, Granchi C, Trincavelli ML, Minutolo F,
et al. Lactate Dehydrogenase-A Inhibition Induces Human Glioblastoma
Multiforme Stem Cell Differentiation and Death. Sci Rep (2015) 5:15556.
doi: 10.1038/srep15556

72. Ohno M, Narita Y, Miyakita Y, Matsushita Y, Yoshida A, Fukushima S, et al.
Secondary Glioblastomas With IDH1/2 Mutations Have Longer Glioma
History From Preceding Lower-Grade Gliomas. Brain Tumor Pathol (2013)
30(4):224–32. doi: 10.1007/s10014-013-0140-6

73. Andronesi OC, Kim GS, Gerstner E, Batchelor T, Tzika AA, Fantin VR, et al.
Detection of 2-Hydroxyglutarate in IDH-Mutated Glioma Patients by In Vivo
Spectral-Editing and 2D Correlation Magnetic Resonance Spectroscopy. Sci
Transl Med (2012) 4(116):116ra4. doi: 10.1126/scitranslmed.3002693

74. Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH, et al. Oncometabolite 2-
Hydroxyglutarate is a Competitive Inhibitor of a-Ketoglutarate-Dependent
Dioxygenases. Cancer Cell (2011) 19(1):17–30. doi: 10.1016/
j.ccr.2010.12.014

75. Salamanca-Cardona L, Shah H, Poot AJ, Correa FM, Di Gialleonardo V, Lui
H, et al. In Vivo Imaging of Glutamine Metabolism to the Oncometabolite 2-
Hydroxyglutarate in IDH1/2 Mutant Tumors. Cell Metab (2017) 26(6):830–
41.e3. doi: 10.1016/j.cmet.2017.10.001

76. Lu C, Ward PS, Kapoor GS, Rohle D, Turcan S, Abdel-Wahab O, et al. IDH
Mutation Impairs Histone Demethylation and Results in a Block to Cell
Differentiation. Nature (2012) 483(7390):474–8. doi: 10.1038/nature10860

77. Turcan S, Rohle D, Goenka A, Walsh LA, Fang F, Yilmaz E, et al. IDH1
Mutation Is Sufficient to Establish the Glioma Hypermethylator Phenotype.
Nature (2012) 483(7390):479–83. doi: 10.1038/nature10866

78. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman
BP, et al. Identification of a CpG Island Methylator Phenotype That Defines
a Distinct Subgroup of Glioma. Cancer Cell (2010) 17(5):510–22.
doi: 10.1016/j.ccr.2010.03.017

79. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, Issa JP. CpG
Island Methylator Phenotype in Colorectal Cancer. Proc Natl Acad Sci USA
(1999) 96(15):8681–6. doi: 10.1073/pnas.96.15.8681

80. Ohno M, Narita Y, Miyakita Y, Matsushita Y, Arita H, Yonezawa M, et al.
Glioblastomas With IDH1/2 Mutations Have a Short Clinical History and
Have a Favorable Clinical Outcome. Jpn J Clin Oncol (2016) 46(1):31–9.
doi: 10.1093/jjco/hyv170

81. Vlashi E, Lagadec C, Vergnes L, Matsutani T, Masui K, Poulou M, et al.
Metabolic State of Glioma Stem Cells and Nontumorigenic Cells. Proc Natl
Acad Sci USA (2011) 108(38):16062–7. doi: 10.1073/pnas.1106704108

82. Zhou Y, Shingu T, Feng L, Chen Z, Ogasawara M, Keating MJ, et al.
Metabolic Alterations in Highly Tumorigenic Glioblastoma Cells: Preference
for Hypoxia and High Dependency on Glycolysis. J Biol Chem (2011) 286
(37):32843–53. doi: 10.1074/jbc.M111.260935

83. Flavahan WA, Wu Q, Hitomi M, Rahim N, Kim Y, Sloan AE, et al. Brain
Tumor Initiating Cells Adapt to Restricted Nutrition Through Preferential
Glucose Uptake. Nat Neurosci (2013) 16(10):1373–82. doi: 10.1038/nn.3510

84. Zhou K, Yao YL, He ZC, Chen C, Zhang XN, Yang KD, et al. VDAC2
Interacts With PFKP to Regulate Glucose Metabolism and Phenotypic
Frontiers in Oncology | www.frontiersin.org 18
Reprogramming of Glioma Stem Cells. Cell Death Dis (2018) 9(10):988.
doi: 10.1038/s41419-018-1015-x

85. Saga I, Shibao S, Okubo J, Osuka S, Kobayashi Y, Yamada S, et al. Integrated
Analysis Identifies Different Metabolic Signatures for Tumor-Initiating Cells
in a Murine Glioblastoma Model. Neuro Oncol (2014) 16(8):1048–56.
doi: 10.1093/neuonc/nou096

86. Hoang-Minh LB, Siebzehnrubl FA, Yang C, Suzuki-Hatano S, Dajac K,
Loche T, et al. Infiltrative and Drug-Resistant Slow-Cycling Cells Support
Metabolic Heterogeneity in Glioblastoma. EMBO J (2018) 37(23).
doi: 10.15252/embj.201798772

87. Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, et al. Mesenchymal
Glioma Stem Cells Are Maintained by Activated Glycolytic Metabolism
Involving Aldehyde Dehydrogenase 1A3. Proc Natl Acad Sci USA (2013)
110(21):8644–9. doi: 10.1073/pnas.1221478110
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