PLOS COMPUTATIONAL BIOLOGY

Check for
updates

G OPEN ACCESS

Citation: Brandies PA, Hogg CJ (2021) Ten simple
rules for getting started with command-line
bioinformatics. PLoS Comput Biol 17(2):
€1008645. https://doi.org/10.1371/journal.
pchi.1008645

Editor: Scott Markel, Dassault Systemes BIOVIA,
UNITED STATES

Published: February 18, 2021

Copyright: © 2021 Brandies, Hogg. This is an open
access article distributed under the terms of the
Creative Commons Attribution License, which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

Funding: Computing infrastructure support was
provided through ch81 of the Australian National
Computational Merit Scheme. Cloud compute was
provided through in-kind support from Amazon
Web Services, Intel, RONIN and Microsoft Azure.
The Australasian Wildlife Genomics Group is
supported by funding from the Australian Research
Council (CJH) and the University of Sydney (CJH,
PB). The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

EDITORIAL
Ten simple rules for getting started with
command-line bioinformatics

Parice A. Brandies(, Carolyn J. Hogg® *

School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New
South Wales, Australia

* carolyn.hogg @sydney.edu.au

Introduction

Sequencing technologies are becoming more advanced and affordable than ever before. In
response, growing international consortia such as the Earth BioGenomes Project (EBP) [1],
the Genome 10K project (G10K) [2,3], the Global Invertebrate Genomics Alliance (GIGA)
[4,5], the Insect 5K project (i5K) [6,7], the 10,000 plants project (10KP) [8], and many others
have big plans to sequence all life on earth. These consortia aim to utilise genomic data to
uncover the biological secrets of our planet’s biodiversity and apply this knowledge to real-
world matters, such as improving our understanding of species’ evolution, assisting with con-
servation of threatened species, and identifying new targets for medical, agricultural, or indus-
trial purposes [1]. All of these goals rely on someone to analyse and make sense of the
tremendous amounts of biological data, making bioinformaticians more sought-after than
ever. Many researchers with a background in biology and genetics are stepping up to the chal-
lenge of big data analysis, but it can be a little daunting to start down the path of bioinformat-
ics, particularly using the command line, without a strong background in computing and/or
computer science. A recent “Ten simple rules” article highlighted the importance of bioinfor-
matics research support [9]. Here we provide 10 simple rules for anyone interested in taking
the leap into the realm of bioinformatics using the command line. We have put together these
10 simple rules for those starting on their bioinformatics journey, whether you be a student, an
experienced biologist or geneticist, or anyone else who may be interested in this emerging
field. The rules are presented in chronological order, together encompassing a simple 10-step
process for getting started with command-line bioinformatics (Fig 1). This is by no means an
exhaustive introduction to bioinformatics, but rather a simple guide to the key components to
get you started on your way to unlocking the true potential of biological big data.

Rule 1: Get familiar with computer terminology

The first step in your command-line bioinformatics journey can be overwhelming due to the
wealth of new terminology. This is where you need to channel your inner computer geek and
learn the new language of computer terminology. In fact, this very paper is riddled with it, so
our first rule addresses this tricky obstacle. Having a basic understanding of computing and
associated terminology can be really useful in determining how to run your bioinformatics
pipelines effectively. It can also help you troubleshoot many errors along the way. Understand-
ing the terminology allows you to talk with your institutional information technology (IT)
departments and communicate your computational needs to answer your biological questions.
This will allow you to be able to source the resources you will need. A number of basic defini-
tions of the main terms that you will likely come across as you enter the world of bioinformat-
ics is presented in Box 1.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 1/13


https://orcid.org/0000-0003-1702-2938
https://orcid.org/0000-0002-6328-398X
https://doi.org/10.1371/journal.pcbi.1008645
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008645&domain=pdf&date_stamp=2021-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008645&domain=pdf&date_stamp=2021-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008645&domain=pdf&date_stamp=2021-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008645&domain=pdf&date_stamp=2021-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008645&domain=pdf&date_stamp=2021-02-18
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1008645&domain=pdf&date_stamp=2021-02-18
https://doi.org/10.1371/journal.pcbi.1008645
https://doi.org/10.1371/journal.pcbi.1008645
http://creativecommons.org/licenses/by/4.0/

PLOS COMPUTATIONAL BIOLOGY

. COMPUTING TERMINOLOGY

. TOOL/PIPELINE SELECTION

. ESTIMATING COMPUTING REQUIREMENTS

. SELECTING COMPUTING PLATFORMS

. SOFTWARE INSTALLATION

. SCRIPT CURATION

. MONITORING AND OPTIMISATION

. FILE MANIPULATION

. RECORD KEEPING

10. PATIENCE

Fig 1. Our 10-step process for getting started with command-line bioinformatics. Each step corresponds to each of
our 10 simple rules presented below.

https://doi.org/10.1371/journal.pcbi.1008645.9001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 2/13


https://doi.org/10.1371/journal.pcbi.1008645.g001
https://doi.org/10.1371/journal.pcbi.1008645

PLOS COMPUTATIONAL BIOLOGY

Box 1. Some simple definitions of common computer terms

Algorithm: The set of rules or calculations that are performed by a computer program.
Certain algorithms may be more suitable for particular datasets and may have differ-
ences in performance (e.g., in speed or accuracy).

Central processing unit (CPU): The chip that performs the actual computation on a
compute node or VM.

Compute node: An individual computer that contains a number of CPUs and associated
RAM.

Core: Part of a CPU. Single-core processors contain 1 core per CPU, meaning CPUs and
cores are often interchangeable terms.

CPU time: The time CPUs have spent actually processing data (often CPU time ~ =
Walltime * Number of CPUs).

Dependency: Software that is required by another tool or pipeline for successful
execution.

Executable: The file that contains a tool/program. Some software has a single executable,
while others have multiple executables for different commands/steps.

High performance computer (HPC): A collection of connected compute nodes.

Operating system (OS): The base software that supports a computer’s basic functions.
Some of the most common linux-based operating systems include those of the Debian
distribution (Ubuntu) and those of the RedHat distribution (Fedora and CentOS).

Pipeline: A pipeline is a workflow consisting of a variety of steps (commands) and/or
tools that process a given set of inputs to create the desired output files.

Programming languages: Specific syntax and rules for instructing a computer to perform
specific tasks. Common programming language used in bioinformatics include Bash,
Python, Perl, R, C, and C++.

Random access memory (RAM): Temporarily stores all the information the CPUs
require (can be accessed by all of the CPUs on the associated node or VM).

Scheduler: Manages jobs (scripts) running on shared HPC environments. Some com-
mon schedulers include SLURM, PBS, Torque, and SGE.

Script: A file which contains code to be executed in a single programming language.

Thread: Number of computations that a program can perform concurrently—depends
on the number of cores (usually 1 core = 1 thread).

Tool: A software program that performs an analysis on an input dataset to extract mean-
ingful outputs/information—Tool, software, and program are often used interchange-
ably but refer to the core components of bioinformatics pipelines.

VM: Virtual machine—Similar to a compute node as it behaves as a single computer and
contains a desired number of CPUs and associated RAM (usually associated with cloud
computing).

Walltime: The time a program takes to run in our clock-on-the-wall time.

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 3/13


https://doi.org/10.1371/journal.pcbi.1008645

PLOS COMPUTATIONAL BIOLOGY

Rule 2: Know your data and needs to determine which tool or pipeline to
use

This can often be one of the most difficult steps as there are usually many different tools and
pipelines to choose from for each particular bioinformatic analysis. While you may think
about creating your own tool to perform a particular task, more often than not, there is already
a preexisting tool that will suit your needs, or perhaps only need minor tweaking to achieve
the required result. Having a clear understanding of your data and the types of questions you
are wanting to ask will go a long way to assisting in your tool or pipeline selection. Selecting
the most suitable pipeline or tool will be dependent on a number of factors including:

Your target species and quality of data. Some bioinformatic pipelines/software may
work better for a particular species based on their unique features (e.g., genome size, repeat
complexity, ploidy, etc.) or based on the quality of data (e.g., scaffold length, short reads versus
long reads, etc.). Reading other published papers on similar species will assist with being able
to define this.

Your available computing resources and time restrictions. Certain software may be
based of different algorithms which can result in significant reductions or increases of compu-
tational resources and walltime. Some shared HPC infrastructure may have walltime limita-
tions in place, or the amount of RAM or cores may be a limiting factor when using personal
computing resources. Make enquiries with your institutional IT department regarding limits
on personal computing or HPC infrastructure before you start.

Which tools are readily available. Many bioinformatic pipelines and tools are freely
available for researchers, though some require purchasing of a license. Additionally, some
tools/pipelines may already be available on your desired computing infrastructure or through
your local institution. There are a number of “standard” bioinformatic command line tools
that have broad applicability across a variety of genomic contexts and are therefore likely
already installed on shared infrastructure. Such examples include tabix, FastQC, samtools,
vcftools/beftools, bedtools, GATK, BWA, PLINK, and BUSCO. Furthermore, collaborators or
other researchers may have already tested and optimised a particular pipeline on a certain
infrastructure and have therefore already overcome the first hurdle for you.

Talking with colleagues who are working on similar projects and reading through the litera-
ture is often the best way to decide on which software to use for a particular analysis. There are
many publications that benchmark different tools and compare the advantages and disadvan-
tages of similar pipelines. There are also many online web forums (e.g., BioStars [10]) that may
also assist with your decision-making process. Be sure to search through the different web
forums to see whether another researcher has also asked the same or similar question as you
(this is often the case). If you cannot find a solution, ensure any questions you post are clear
and detailed, with examples of code or errors provided to have the best chance of helpful
replies and answers. Beginning with a pipeline that has previously been tested and optimised
on a particular platform is helpful in getting a head start, though do not be scared to try out a
new or different pipeline if it seems better suited to your data or desired outcome.

Rule 3: Estimate your computing requirements

Once you have selected your desired tool or pipeline, the next crucial step involves estimating
the desired computing requirements for your chosen analysis. Estimating your requirements
will not only allow you to determine which platforms may be most suitable to run your pipe-
line (e.g., cloud versus HPC; see Rule 4) but will also reduce time spent on troubleshooting
basic resource errors (e.g., running out of RAM or storage space). Furthermore, this step is
almost always necessary prior to running any tool or pipeline on any given compute

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 4/13


https://doi.org/10.1371/journal.pcbi.1008645

PLOS COMPUTATIONAL BIOLOGY

infrastructure. For instance, on shared HPC environments, your job script will need to include
your requested computational resources (cores, RAM, walltime), and you will need to make
sure you have enough disk space available for your account. Similarly, for cloud computing,
you will need to decide what size machine/s (cores and RAM) and how much attached storage
you need for your analysis. Estimating incorrectly can be frustrating as you will waste time in
queues on shared HPC infrastructure, only to have your analysis terminated prematurely, or
waste money in the cloud specifying more resources than you actually need. Many bioinfor-
matics tools can be run on a single core by default, but this can result in much greater wall-
times [11] (which are often restricted on shared HPC infrastructure). Increasing the number
of cores can greatly reduce your walltime, though there is often a balance between this and
other important factors such as RAM usage, cost, queueing time, etc. [11].

It can be a little tricky estimating computing requirements for a pipeline you have never
run before, or on a species that the pipeline has never been tested with before. Never fear
though as there are a number of places you can seek out information on computing require-
ments. First and foremost, read the documentation for the pipeline/tool you are running.
Some tool documentation will provide an example of the compute resources required or pro-
vide suggestions. Additionally, many programs will provide a test dataset to ensure the pipeline
is working correctly before employing your own datasets. These test datasets are a great start
for estimating minimal computational requirements and to obtain some general benchmarks
when using different parameters or computing resources. If the tool documentation does not
provide a guide of computing requirements or an example dataset, you may wish to use a
smaller subset of your own data for initial testing. The literature may also provide a guide for
general computing requirements that have been used for a particular tool or pipeline for a sim-
ilar species or sample size. There are many publications where common bioinformatics pipe-
lines are compared with one another to assess performance and results across a variety of
organisms (e.g., [12-15]). These can be found with a simple citation search. Finally, another
great resource for estimating your computing requirements is from other researchers. Talking
to others in your field who may work with similar data or utilising online forums such as BioS-
tars [10] will assist in understanding the resources required.

In general, 32 cores and 128 GB of RAM is usually sufficient for most common bioinfor-
matics pipelines to run within a reasonable timeframe. With that being said, some programs
might require much less than this, while others may have much higher memory requirements
or enable greater parallelisation.

Rule 4: Explore different computing options

After estimating your computing requirements for your chosen pipeline, you will then need
to determine where such resources are available and which infrastructure will best suit your
needs. Some tools may easily run on a personal computer, though many of the large bioin-
formatics pipelines (particularly when working on organisms with large genomes like mam-
mals and plants) require computational resources that will well exceed a standard PC. Many
institutions have a local HPC or access to national/international HPC infrastructure. How-
ever, the unprecedented generation of sequencing data has started to push these shared
infrastructures to their limits. These resources are not always well suited to the require-
ments of bioinformatic pipelines such as their high I/O demands and “bursty” nature (see
Rule 7) [16]. This is why cloud computing is becoming increasingly popular for bioinforma-
ticians [16-20].

Cloud computing provides a number of key advantages over traditional shared HPC
resources including:

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 5/13


https://doi.org/10.1371/journal.pcbi.1008645

PLOS COMPUTATIONAL BIOLOGY

o The ability to tailor your computing resources for each bioinformatic tool or pipeline you
wish to use;

« Complete control over your computing environment (i.e., operating system, software instal-
lation, file system structure, etc.);

« Absence of a queuing system resulting in faster time to research;
o Unlimited scalability and ease of reproducibility.

Utilising cloud resources also prevents the need for researchers to purchase and main-
tain their own physical computer hardware (which can be time consuming, costly, and
nowhere near as scalable [21]). However, commercial cloud computing does come at a
cost and can be a bit of a steep learning curve. Fortunately, services like RONIN (https://
ronin.cloud) have simplified the use of cloud computing for researchers and allow for sim-
ple budgeting and cost monitoring to ensure research can be conducted in a simple, cost-
effective manner. Researchers at academic institutions may also have access to other free
cloud compute services such as Galaxy (https://usegalaxy.org/), ecocloud (https://
ecocloud.org.au/), nectar (https://nectar.org.au/cloudpage/), and CyVerse (https://www.
cyverse.org).

Overall, deciding where to run your analysis will be dependent on your data/species, what
platforms are most easily accessible to you, your prior experience, your timeline, and your
budget. Exploring different compute options will allow you to choose which infrastructure
best suits your needs and enable you to adapt to the fast-evolving world of bioinformatics.

Rule 5: Understand the basics of software installation

When wanting to utilise a personal resource for your bioinformatic pipelines, such as a cloud
VM or a personal computer, you will need to get familiar with the various installation methods
for your required tools. While software installation is sometimes provided as a service for
some shared HPC platforms, understanding the basics of software installation is useful in help-
ing you troubleshoot any installation-based errors and identify which software you can likely
install locally yourself (i.e., without requiring root user privileges). There are numerous ways
software can be installed, but we have provided 4 main methods that should cover most bioin-
formatics software (Box 2).

Once you have your software installed, it is good practice to try and run the program with
the help command-line option (i.e., -h/—help/-help), or with no parameters, to ensure it has
been installed correctly. If the help option displays some information about running the pro-
gram and the different command-line options, it is usually a good sign that your software was
installed successfully and is ready to go. If your tool does not seem to be working, you may
need to ensure the executable for your tool (and sometimes its required dependencies) is avail-
able in your path. But what exactly is your path and why is it important? Well, whenever we
call upon a particular input file or output directory within a command, we often use an abso-
lute or relative path to show the program where that file or directory is sitting within the file
system hierarchy. We can also call upon tools or executables the same way, though it is not effi-
cient to provide a path to a tool every time we need to use it. The path environmental variable
overcomes this issue by providing a list of directories that contain tools/executables you may
wish to execute.

By default, the path variable is always set to include some standard directories that include a
variety of system command-line utilities. So, to ensure a new program can be called upon any-
where without specifying the path to the program, you can either move or copy the tool/

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 6/13


https://ronin.cloud/
https://ronin.cloud/
https://usegalaxy.org/
https://ecocloud.org.au/
https://ecocloud.org.au/
https://nectar.org.au/cloudpage/
https://www.cyverse.org/
https://www.cyverse.org/
https://doi.org/10.1371/journal.pcbi.1008645

PLOS COMPUTATIONAL BIOLOGY

Box 2. Common software installation methods for bioinformatics
tools

Package managers

APT (Advanced Package Tool) (https://www.debian.org/doc/manuals/apt-guide/index.
en.html) is a package manager that is often already installed by default on many Debian
distributions and enables very simple installation of available tools. APT works with a
variety of core libraries to automate the download, configuration, and installation of
software packages and their dependencies. A number of common bioinformatics tools
are available through APT including NCBI blast+, samtools, hmmer, vcftools, beftools,
bedtools among others. If working on a RedHat operating system, the package manager
YUM (Yellowdog Updater, Modified) (https://access.redhat.com/solutions/9934) is the
equivalent of APT.

Conda

Conda (https://docs.conda.io/en/latest/) is also a package management tool, though it
sits somewhere between package managers like APT and containers (see below) due to
its ability to also manage environments (i.e., collections of software). This feature makes
conda extremely useful, particularly for bioinformatics software where different pipe-
lines may utilise the same tools but require different versions of a particular tool. Conda
allows you to easily install and run pipelines in their own separate environments so they
do not interfere with one another and also enables you to easily update software when
new versions are made available. Bioconda [22] is a channel for conda which specialises
in bioinformatics software and includes a myriad of the most commonly used bioinfor-
matic tools. Furthermore, conda also enables the installation and management of popu-
lar programming languages such as python or R, along with their respective libraries
and packages. It is a great resource for bioinformaticians of all levels and is particularly
helpful as a stepping-stone before stepping down a container lane.

Containers

Containers package up software and all dependencies, as well as all of the base system
tools and system libraries into a separate environment so that they can be reliably run on
different computing platforms. Containers are similar to conda environments, but they
differ in the sense that containers include absolutely everything they need within the
container itself (even including the base operating system). It is sometimes easier to
think about containers as installing a whole separate machine that just utilises the same
computing resources and hardware as the local machine it is installed on. The main
advantage of a container over a conda environment is the ease of reproducibility due to
the ability to pull a specific container each time you want to run, or re-run, a certain
pipeline or use a particular tool, no matter what computing platform you are using.
Reproducibility can be achieved with conda environments too, but this often requires
exporting and keeping track of saved environments.

There are 2 main options when wanting to use a container: Docker [23] or Singularity
[24]. Docker is the most standard container service available with thousands of contain-
ers available from DockerHub (https://hub.docker.com) or from other container regis-
tries such as quay.io (https://quay.io). Bioinformatics software that is available via

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 7/13


https://www.debian.org/doc/manuals/apt-guide/index.en.html
https://www.debian.org/doc/manuals/apt-guide/index.en.html
https://access.redhat.com/solutions/9934
https://docs.conda.io/en/latest/
https://hub.docker.com/
https://quay.io/
https://doi.org/10.1371/journal.pcbi.1008645

PLOS COMPUTATIONAL BIOLOGY

bioconda also has a respective docker container on quay.io through the BioContainers
architecture [25]. This means many common bioinformatics software and pipelines are
already available in a containerised environment. Otherwise, some software developers
make their own containers available, e.g., Trinity (for RNA-seq assembly) (see https://
github.com/trinityrnaseq/trinityrnaseq/wiki/Trinity-in-Docker) or BUSCO v4 (for
assessing assembly completeness) (see https://busco.ezlab.org/busco_userguide.
html#docker-image). There are also thousands of other public docker containers across
a range of online container registries that may have the software you are looking for, or
there is always the option to create your own Docker container for reproducible pipe-
lines. Obviously, Docker can be used to download and employ Docker containers, but
Singularity is another program that can also be used to download and employ Docker
containers (particularly on HPC environments). Both have advantages and disadvan-
tages, so it is usually down to user preference as to which to choose. If you are new to
containers, we suggest starting with Singularity. Not only will this allow you to easily be
able to scale up your containerised pipelines to HPC environments but also makes read-
ing and writing files to and from the container from the local machine a bit more
straightforward.

Manual installation

If none of the above methods are available for your chosen software, you may need to
install it manually. This process is usually explained step-by-step in the software docu-
mentation but typically involves a number of steps including: (1) Downloading a tar
package (or zip file) of the source code (or cloning a Git repository) from GitHub
(https://github.com) (or another website); (2) Unpacking the source code to extract its
contents; (3) Configuring the software to check your environment and ensure all of the
required dependencies are available; (4) Building the finished software from the source
code; and (5) Installing the software, i.e., copying the software executables, libraries, and
documentation to the required locations. This process is what package managers and
containers do automatically for you. There are a number of standard dependencies that
are usually required for manual installation (e.g., the build-essential package, the dh-
autoreconf package, and the libarchive-dev package) so it is often handy to install these
using APT before attempting to manually install any other software. You will be notified
of any other required dependencies you may be missing during the installation process.

executable to a directory that is already listed in your path variable, or add a new directory to
the path variable that contains the program. New directories can be added to your path either
temporarily (by simply exporting the path variable with the added directory included) or per-
manently (by editing your.bash_profile). Another thing to be aware of is that the order of
directories in your path is important because if the same program (or executable with the same
name) is found in 2 different directories, the one that is found first in your path will be used.
Always keep this in mind when adding new directories to your path to determine where they
should sit in the list of paths. [The sheer number of times we mentioned the word “path” in
this rule alone should emphasise how important paths really are—though we promise there
are no more mentions of it for the rest of this article].

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 8/13


https://github.com/trinityrnaseq/trinityrnaseq/wiki/Trinity-in-Docker
https://github.com/trinityrnaseq/trinityrnaseq/wiki/Trinity-in-Docker
https://hisham.hm/htop/
https://hisham.hm/htop/
https://www.netdata.cloud/
https://doi.org/10.1371/journal.pcbi.1008645

PLOS COMPUTATIONAL BIOLOGY

Rule 6: Carefully curate and test your scripts

In other words, always double-check (or triple-check) your scripts and perform test runs at
each step along the way. Before you run your pipeline, it is important to first read through the
software documentation to ensure you understand the different inputs, outputs, and analysis
options. Ensure that the documentation is for the correct version of the software as particular
command-line options may change version to version. Many bioinformatics programs have
extensive documentation online, either through their GitHub or another website. The basic
documentation for most tools can be accessed using the command-line help options (which is
also a great way to determine whether your required tool is available and installed correctly—
see Rule 5). Sometimes more detailed information can be found in a README file in the
source code directory. Most documentation should provide some example commands on how
to run the program with basic or default options which should assist you in curating a success-
ful script.

Once you have your final script, it is essential to give it a quick test to determine if there are
any immediate errors that will prevent your script from running successfully. From simple
spelling mistakes or syntax errors which result in files or directories not being found or com-
mands being confused with invalid options, to not being able to locate the desired software or
the software being configured incorrectly with problematic dependencies. These are the “face-
palm” errors that any bioinformatician is aware of as we have all been there, time and time
again. The good news is that these errors are often quite simple to fix. Yet it is better to catch
them early rather than waiting in queues only for your script to error as soon as it starts, or
leaving your script to run in the cloud only to come back and realise the machine has been sit-
ting there idle the whole time due to a minor scripting error. Testing your scripts in the cloud
is usually as simple as running the script or command and watching to see whether any errors
are immediately thrown on-screen, but to test scripts in a shared HPC environment, you may
need to utilise an interactive queue. Interactive queues allow you to run commands directly
from the command line with a small subset of HPC resources. These resources are usually not
enough to run an entire pipeline but are quite useful for testing and debugging purposes. Obvi-
ously, your script may still run into errors later on in your pipeline, but testing your script
before you submit it properly should alert you to any preliminary errors that would prevent
the pipeline from starting successfully and prevent any precious time being wasted in queues
or precious dollars being wasted on idle cloud compute.

Rule 7: Monitor and optimise your pipelines

Once you have your script running, it is important to monitor your pipelines to determine
whether it is effectively utilising the computational resources you have allocated to it. Under-
standing what resources your pipeline utilises can help you scale up or down your compute so
that you are not wasting resources or hitting resource limits that may slow down your pipeline.
On shared HPC infrastructure, you will usually be able to see a summary of the computational
resources used from either the job log files or scheduler-specific commands. Metrics such as
maximum RAM and CPU usage as well as CPU time and walltime are useful in adjusting
future scripts so that they request the optimum amount of resources needed. This enables the
pipeline to run efficiently without any unnecessary queue time. Storage space of output files
should also be monitored periodically to ensure you are not exceeding your allocated quota.
More specific monitoring is possible when running pipelines in the cloud as you have full
control over all computing resources. Simple programs like htop (https://hisham.hm/htop/)
can be used for fast real-time monitoring of basic metrics like CPU and RAM usage, while
more in-depth programs like Netdata (https://www.netdata.cloud) can assist with tracking a

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 9/13


https://hisham.hm/htop/
https://www.netdata.cloud/
https://doi.org/10.1371/journal.pcbi.1008645

PLOS COMPUTATIONAL BIOLOGY

large variety of metrics both in real-time and across an entire pipeline using hundreds of pre-
configured interactive graphs. Many bioinformatic pipelines are “bursty” in nature, meaning
different steps in a single pipeline may have vastly different computing requirements. Some
steps/tools may have high memory requirements but only utilise a small number of cores,
while others may multithread quite well across a large number of cores but require minimal
memory. Knowing the required computing resources for each step may help you break up
your pipeline and run each stage on a different machine type for greater cost efficiency. Moni-
toring disk space requirements throughout a pipeline is also important as many bioinformatics
tools require large amounts of temporary storage that are often cleaned upon completion of
the pipeline. Attached storage can be quite costly in the cloud, so ensuring you only request
what is necessary will also reduce pipeline costs.

Opverall, monitoring of bioinformatics pipelines is key to improving pipeline efficiency,
optimising computing resources, reducing wasted queue time, and reducing cloud costs.

Rule 8: Get familiar with basic bash commands

As a bioinformatician, your main role is to make sense of biological datasets, and this often
means manipulating, sorting, and filtering input and output files to and from various bioinfor-
matic tools and pipelines. For example, you may want to extract information for a certain sam-
ple or a certain gene of interest. Or in a file containing a table of data, you may want to sort an
output file by a particular column or select rows that contain a particular value. You may want
to replace a certain ID with a respective name from a list or perform a calculation on values
within a column. Fortunately, many of the input and output files used in bioinformatics are
regular text files, so these tasks can easily be achieved. One might think about using common
spreadsheet applications such as Microsoft excel to perform these tasks; however, while this
may suffice for small files, excel is not too fond of the sometimes millions of rows of data that
are characteristic of a number of common bioinformatic files. This is where some standard
unix shell command-line utilities come into play, namely the grep, AWK, and sed utilities.

Global regular expression print (grep) is a command-line utility which searches a text file
for a regular expression (i.e., a pattern of text) and returns lines containing the matched
expression (Table 1). This tool is useful when wanting to filter or subset a file based on the
presence of a particular word or pattern of text (e.g., a sample name or genomic location, etc.).
AWK is much more extensive command-line utility which enables more specific file manipu-
lation of column-based files (Table 1). For example, AWK can return lines where a column
contains a particular value or regular expression; in addition, it can output only particular col-
umns, perform calculations on values within the columns, and work with multiple files at
once. The extensive abilities of AWK are too grand to cover here but just know that this clever
little tool will likely hold a special place in any bioinformatician’s heart. Lastly, stream editor
(sed) has a basic “find and replace” usage allowing you to transform defined patterns in your
text. In its most basic form, sed can replace a word with another given word (Table 1) but can
also perform more useful functions like removing everything before or after a certain pattern
or adding text at certain places in a file.

Table 1. Basic usage examples of the grep, awk, and sed commands.

Command | Example Description
grep grep "chr5" file Print all lines that contain the string "chr5" in the named file
awk awk ’$1 == 5 {print $2, $3} file | For rows in the named file where the value in column 1 is equal to 5,

print columns 2 and 3
sed sed ’s/sample1/ID7037/g’ file Replace all occurrences of "samplel" with "ID7037" in the named file
and print the result

https://doi.org/10.1371/journal.pcbi.1008645.t001

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 10/13


https://doi.org/10.1371/journal.pcbi.1008645.t001
https://doi.org/10.1371/journal.pcbi.1008645

PLOS COMPUTATIONAL BIOLOGY

Of course, grep, AWK, and sed all have their limitations, and more extensive file manipula-
tion may be better suited to a python or perl script (and there is already a great “Ten simple
rules” article for biologists wanting to learn how to program [26]); but for simple processing,
filtering, and manipulation of bioinformatics files, look no further than these 3 useful com-
mand-line utilities.

Rule 9: Write it down!

A previous “Ten simple rules” article has highlighted the importance of keeping a laboratory
notebook for computational biologists [27], and another covered some best practices around
the documentation of scientific software [28]. Many components from these articles apply to
our rule of writing it down and keeping helpful notes when getting started with command-line
bioinformatics. The number of pipelines or analyses that can be run on a single set of biologi-
cal data can sometimes be quite extensive and usually coincides with a lot of trial and error of
different parameters, computing resources, and/or tools. Even those with a great memory will
often look back at results at the time of publication and ponder “why did we use that tool?”, or
“what parameters did we end up deciding on for that analysis?”. Keeping detailed notes can be
areal lifesaver. Not only is it important to keep track of your different script files, and the
required computing resources for each script, but also the accompanied notes about why you
chose a particular tool and any troubleshooting you had to do to run the pipeline successfully.
An easy-to-access document of all of your favourite commands and nifty pieces of code that
may come in handy time and time again is also a must! Getting familiar with helpful code text
editors like Visual Studio Code (https://code.visualstudio.com), or Atom (https://atom.io), as
well as investing some time into learning helpful mark-up languages like Markdown will assist
with keeping detailed, organised, and well-formatted scripts and documentation for the pipe-
lines you are using. Exactly how you decide to keep your notes is completely up to you, but
just ensure to keep everything well-organised, up-to-date, and backed up. Also, publishing
your scripts as markdown files in supplementary material ensures the utility (and citability) of
your work.

Rule 10: Patience is key

The number 1 key (that we’ve saved until last) to being a successful bioinformatician is
patience. A large proportion of your time will be spent troubleshooting software installation,
computing errors, pipeline errors, scripting errors, or weird results. Some problems are simple
to solve, while others may take quite some time. You will likely feel that with every step for-
ward, there is just another hurdle to cross. Yet if you are patient and push through every error
that is thrown your way, the euphoria of conquering a bioinformatics pipeline and turning a
big lump of numeric data or As, Ts, Cs, and Gs into something biologically meaningful is well
worth it. Also, as many past “Ten simple rules” articles in this field have addressed, do not be
afraid to raise your hand and ask for help when you get stuck. Most of the time, someone
before you has been in the exact same situation and encountered the same error or tackled a
similar problem. Google will become your best friend and first port of call when things are not
going as planned. And on the rare occasion where endless googling leads you nowhere, talk
with your peers and reach out to the bioinformatic community; people are often more than
happy to share their knowledge and put their problem-solving skills to the test.

Conclusion

In the new era of whole genome sequencing, bioinformaticians are now more sought-after
than ever before. Stepping into the world of command-line bioinformatics can be a steep

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 11/13


https://code.visualstudio.com/
https://atom.io/
https://doi.org/10.1371/journal.pcbi.1008645

PLOS COMPUTATIONAL BIOLOGY

learning curve but is a challenge well worth undertaking. We hope these 10 simple rules will
give any aspiring bioinformatician a head start on their journey to unlocking the meaningful
implications hidden within the depths of their biological datasets.

Acknowledgments

Our journey into bioinformatics and this article would not have been possible without the sup-
port of the teams at the Sydney Informatics Hub, Australian BioCommons, RONIN, Amazon
Web Services (AWS), Pawsey Supercomputing Centre, National Computational Infrastruc-
ture, and Microsoft Azure. Special thanks to Rosie Sadsad, Nathan Albrighton, Johan Gustafs-
son, Jeff Christiansen, Kathy Belov, and the team members of the Australasian Wildlife
Genomics Group.

References

1. Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J, Crandall KA, et al. Earth BioGenome
Project: Sequencing life for the future of life. Proc Natl Acad Sci U S A. 2018; 115(17):4325-33. Epub
2018/04/25. https://doi.org/10.1073/pnas.1720115115 PMID: 29686065; PubMed Central PMCID:
PMC5924910.

2.  Genome 10K Community of Scientists. Genome 10K: a proposal to obtain whole-genome sequence for
10 000 vertebrate species. J Hered. 2009; 100(6):659—74. https://doi.org/10.1093/jhered/esp086
PMID: 19892720

3. Koepfli K-P, Paten B, Genome 10K Community of Scientists, O’'Brien SJ. The Genome 10K Project: a
way forward. Annu Rev Anim Biosci. 2015; 3(1):57—111. Epub 2015/02/18. https://doi.org/10.1146/
annurev-animal-090414-014900 PMID: 25689317; PubMed Central PMCID: PMC5837290.

4. GIGA Community of Scientists. The Global Invertebrate Genomics Alliance (GIGA): developing com-
munity resources to study diverse invertebrate genomes. J Hered. 2013; 105(1):1-18.

5. Voolstra CR, Wérheide G, Lopez JV. Corrigendum to: Advancing genomics through the Global Inverte-
brate Genomics Alliance (GIGA). Invertebr Syst. 2017; 31(2):231—.

6. Consortium iK. The i5K Initiative: advancing arthropod genomics for knowledge, human health, agricul-
ture, and the environment. J Hered. 2013; 104(5):595-600. https://doi.org/10.1093/jhered/est050
PMID: 23940263

Levine R. i5k: the 5,000 insect genome project. Am Entomol. 2011; 57(2):110-3.

8. Cheng S, Melkonian M, Smith SA, Brockington S, Archibald JM, Delaux P-M, et al. 10KP: A phylodi-
verse genome sequencing plan. Gigascience. 2018; 7(3):giy013. https://doi.org/10.1093/gigascience/
giy013 PMID: 29618049

9. Kumuthini J, Chimenti M, Nahnsen S, Peltzer A, Meraba R, McFadyen R, et al. Ten simple rules for pro-
viding effective bioinformatics research support. PLoS Comput Biol. 2020; 13(3):e1007531. https://doi.
org/10.1371/journal.pcbi.1007531 PMID: 32214318

10. Parnell LD, Lindenbaum P, Shameer K, Dall'Olio GM, Swan DC, Jensen LJ, et al. BioStar: an online
question & answer resource for the bioinformatics community. PLoS Comput Biol. 2011; 7(10):
€1002216. https://doi.org/10.1371/journal.pcbi.1002216 PMID: 22046109

11. Kawalia A, Motameny S, Wonczak S, Thiele H, Nieroda L, Jabbari K, et al. Leveraging the power of
high performance computing for next generation sequencing data analysis: tricks and twists from a high
throughput exome workflow. PLoS ONE. 2015; 10(5):e0126321. https://doi.org/10.1371/journal.pone.
0126321 PMID: 25942438

12. Zhang C, Zhang B, Lin L-L, Zhao S. Evaluation and comparison of computational tools for RNA-seq iso-
form quantification. BMC Genomics. 2017; 18(1):583. https://doi.org/10.1186/s12864-017-4002-1
PMID: 28784092

13. Cornish A, Guda C. A comparison of variant calling pipelines using genome in a bottle as a reference.
Biomed Res Int. 2015;2015.

14. Khan AR, Pervez MT, Babar ME, Naveed N, Shoaib M. A comprehensive study of de novo genome
assemblers: current challenges and future prospective. Evol Bioinform. 2018; 14:1176934318758650.
https://doi.org/10.1177/1176934318758650 PMID: 29511353

15. Schilbert HM, Rempel A, Pucker B. Comparison of read mapping and variant calling tools for the analy-
sis of plant NGS data. Plants. 2020; 9(4):439. https://doi.org/10.3390/plants9040439 PMID: 32252268

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 12/13


https://doi.org/10.1073/pnas.1720115115
http://www.ncbi.nlm.nih.gov/pubmed/29686065
https://doi.org/10.1093/jhered/esp086
http://www.ncbi.nlm.nih.gov/pubmed/19892720
https://doi.org/10.1146/annurev-animal-090414-014900
https://doi.org/10.1146/annurev-animal-090414-014900
http://www.ncbi.nlm.nih.gov/pubmed/25689317
https://doi.org/10.1093/jhered/est050
http://www.ncbi.nlm.nih.gov/pubmed/23940263
https://doi.org/10.1093/gigascience/giy013
https://doi.org/10.1093/gigascience/giy013
http://www.ncbi.nlm.nih.gov/pubmed/29618049
https://doi.org/10.1371/journal.pcbi.1007531
https://doi.org/10.1371/journal.pcbi.1007531
http://www.ncbi.nlm.nih.gov/pubmed/32214318
https://doi.org/10.1371/journal.pcbi.1002216
http://www.ncbi.nlm.nih.gov/pubmed/22046109
https://doi.org/10.1371/journal.pone.0126321
https://doi.org/10.1371/journal.pone.0126321
http://www.ncbi.nlm.nih.gov/pubmed/25942438
https://doi.org/10.1186/s12864-017-4002-1
http://www.ncbi.nlm.nih.gov/pubmed/28784092
https://doi.org/10.1177/1176934318758650
http://www.ncbi.nlm.nih.gov/pubmed/29511353
https://doi.org/10.3390/plants9040439
http://www.ncbi.nlm.nih.gov/pubmed/32252268
https://doi.org/10.1371/journal.pcbi.1008645

PLOS COMPUTATIONAL BIOLOGY

16.

17.

18.

19.

20.

21,

22,

23.

24,

25.

26.

27.

28.

O’Driscoll A, Daugelaite J, Sleator RD. ‘Big data’, Hadoop and cloud computing in genomics. J Biomed
Inform. 2013; 46(5):774-81. https://doi.org/10.1016/}.jbi.2013.07.001 PMID: 23872175

Kwon T, Yoo WG, Lee W-J, Kim W, Kim D-W. Next-generation sequencing data analysis on cloud com-
puting. Genes Genom. 2015; 37(6):489-501.

Shanker A. Genome research in the cloud. OMICS J Integr Biol. 2012; 16(7—-8):422-8. https://doi.org/
10.1089/0mi.2012.0001 PMID: 22734722

Stein LD. The case for cloud computing in genome informatics. Genome Biol. 2010; 11(5):207. https://
doi.org/10.1186/gb-2010-11-5-207 PMID: 20441614

Zhao S, Watrous K, Zhang C, Zhang B. Cloud computing for next-generation sequencing data analysis.
In: Jaydip Sen, editor. Cloud Computing-Architecture and Applications. Rijeka: InTech; 2017. p. 29—
51.

Fox A. Cloud Computing—What's in It for Me as a Scientist? Science. 2011; 331(6016):406—7. https://
doi.org/10.1126/science.1198981 PMID: 21273473

Gruning B, Dale R, Sjédin A, Chapman BA, Rowe J, Tomkins-Tinch CH, et al. Bioconda: sustainable
and comprehensive software distribution for the life sciences. Nat Methods. 2018; 15(7):475-6. https://
doi.org/10.1038/s41592-018-0046-7 PMID: 29967506

Merkel D. Docker: lightweight linux containers for consistent development and deployment. Linux J.
2014; 2014(239):2.

Kurtzer GM, Sochat V, Bauer MW. Singularity: Scientific containers for mobility of compute. PLoS ONE.
2017; 12(5):e0177459. https://doi.org/10.1371/journal.pone.0177459 PMID: 28494014

da Veiga Leprevost F, Griining BA, Alves Aflitos S, Rost HL, Uszkoreit J, Barsnes H, et al. BioContai-
ners: an open-source and community-driven framework for software standardization. Bioinformatics.
2017; 33(16):2580-2. https://doi.org/10.1093/bioinformatics/btx192 PMID: 28379341

Carey MA, Papin JA. Ten simple rules for biologists learning to program. PLoS Comput Biol. 2018; 14
(1):e1005871. https://doi.org/10.1371/journal.pcbi. 1005871 PMID: 29300745

Schnell S. Ten simple rules for a computational biologist’s laboratory notebook. PLoS Comput Biol.
2015; 11(9):e1004385. https://doi.org/10.1371/journal.pcbi.1004385 PMID: 26356732

Lee BD. Ten simple rules for documenting scientific software. PLoS Comput Biol. 2018; 14(12):
e1006561. https://doi.org/10.1371/journal.pcbi. 1006561 PMID: 30571677

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008645 February 18, 2021 13/13


https://doi.org/10.1016/j.jbi.2013.07.001
http://www.ncbi.nlm.nih.gov/pubmed/23872175
https://doi.org/10.1089/omi.2012.0001
https://doi.org/10.1089/omi.2012.0001
http://www.ncbi.nlm.nih.gov/pubmed/22734722
https://doi.org/10.1186/gb-2010-11-5-207
https://doi.org/10.1186/gb-2010-11-5-207
http://www.ncbi.nlm.nih.gov/pubmed/20441614
https://doi.org/10.1126/science.1198981
https://doi.org/10.1126/science.1198981
http://www.ncbi.nlm.nih.gov/pubmed/21273473
https://doi.org/10.1038/s41592-018-0046-7
https://doi.org/10.1038/s41592-018-0046-7
http://www.ncbi.nlm.nih.gov/pubmed/29967506
https://doi.org/10.1371/journal.pone.0177459
http://www.ncbi.nlm.nih.gov/pubmed/28494014
https://doi.org/10.1093/bioinformatics/btx192
http://www.ncbi.nlm.nih.gov/pubmed/28379341
https://doi.org/10.1371/journal.pcbi.1005871
http://www.ncbi.nlm.nih.gov/pubmed/29300745
https://doi.org/10.1371/journal.pcbi.1004385
http://www.ncbi.nlm.nih.gov/pubmed/26356732
https://doi.org/10.1371/journal.pcbi.1006561
http://www.ncbi.nlm.nih.gov/pubmed/30571677
https://doi.org/10.1371/journal.pcbi.1008645

