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Abstract: This paper presents a nonlinear microwave device modeling technique that is based on
time delay neural network (TDNN). The proposed technique can accurately model the nonlinear
microwave devices when compared to static neural network modeling method. A new formulation is
developed to allow for the proposed TDNN model to be trained with DC, small-signal, and large
signal data, which can enhance the generalization of the device model. An algorithm is formulated
to train the proposed TDNN model efficiently. This proposed technique is verified by GaAs
metal-semiconductor-field-effect transistor (MESFET), and GaAs high-electron mobility transistor
(HEMT) examples. These two examples demonstrate that the proposed TDNN is an efficient and
valid approach for modeling various types of nonlinear microwave devices.

Keywords: nonlinear device modeling; neural networks; optimization methods

1. Introduction

Artificial neural network (ANN) is a recognized tool for modeling and design optimization in RF
and microwave computer-aided design (CAD) [1–9]. This technique has been successfully used in
parametric modeling of microwave components [10–12], electromagnetic (EM) optimization [13,14],
parasitic modeling [15], nonlinear device modeling [16–18], nonlinear microwave circuit
optimization [19–22], power amplifier modeling [23–25], and more.

This paper addresses the nonlinear device modeling area. Nonlinear device modeling is an
important area of CAD and a variety of device models have been built. With the rapid development
of semiconductor industry, new devices constantly evolve. The existing models may not be accurate
for the new devices. Therefore, there is an ongoing need for new models. The challenge for CAD
researchers is not only to develop new models, but also to introduce new CAD methods.

Traditionally, the equivalent circuit modeling approach is a vital modeling technique for nonlinear
device modeling. The existing equivalent circuit models need to be modified in order to fit for
different devices. The parameters in the equivalent circuit need repetitively changes and sometimes the
parameters are mutually contradictory. Especially, when it comes to a new device, it is time consuming
to build a nonlinear model that is based on equivalent modeling technique. For an alternative approach,
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the ANN model can be an efficient trained and implemented model [1], which can be systematically
developed by neural network training process. ANN technique recently can be used to approach
device modeling problem with good accuracy. When the nonlinear and dynamic effects in the device
become significant, we need more advanced neural network-based techniques to approach device
modeling problem. Several different types of neural networks, such as dynamic neural networks
(DNNs), real-valued time-delay neural networks (RVTDNNs), and recurrent neural networks (RNNs),
have been used for nonlinear circuit modeling [20–22]. These neural network-based techniques are
more flexible to build more general models. Recently, the dynamic neuro-space mapping technique [26]
can also deal with the nonlinear device modeling problem well, which contains coarse model and
neural network. However, building a proper coarse model needs repetitive changes of the parameters
in equivalent circuits.

In this paper, we focus on directly modeling methods that can systematically establish models
without building proper equivalent circuit models. In this paper, we propose a time delay neural
network (TDNN) technique for nonlinear microwave device modeling using DC, small-signal,
and large-signal information for the first time. A new formulation to train the proposed TDNN
with DC, small-signal, and large signal data is proposed. An algorithm to train the proposed TDNN
model is formulated. Examples of GaAs metal-semiconductor-field-effect transistor (MESFET) and
GaAs high-electron mobility transistor (HEMT) modeling is used to demonstrate the validity of the
proposed TDNN method.

2. Formulations of the Proposed Time Delay Neural Network (TDNN) Model

According to a nonlinear device, u =
[

u1 u2 ... um
]T

represents the vector of the input

signals, while o =
[

o1 o2 ... oNo

]T
are the output signals, where m is the number of the inputs

and No is the number of outputs. For example, u =
[

vg vd
]T

and o =
[

ig id
]T

in the transistor
example, where m = 2 and No = 2. In this example, vg and vd represent the gate voltage and the
drain voltage, respectively. ig and id are the gate current and the drain current, respectively. Let fANN
represent the multilayer neural network. w represents the internal weight of the neural network.
The general TDNN equation in time domain can be used in order to describe the original nonlinear
device as

o(t) = fANN(u(t), u(t− τ), . . . , u(t−Ndτ), w) (1)

where τ is a time delay parameter and Nd represents the total number of delay steps.
Suppose that the TDNN model contains one input and one output and the fANN is a three-layer

multilayer perceptron (MLP) model. Therefore, Figure 1 shows the TDNN structure. In this figure,
the TDNN structure contains external delay information compared with MLP model.Micromachines 2019, 10, x 3 of 15 
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In this paper, the fANN of the TDNN is a three-layer MLP. The first layer of the MLP is the input
relay layer, the second layer is the hidden layer, and the third layer is the output layer. The sigmoid
function is used as the activation function in the internal hidden layer.

After the neural network well trained by the device data, the TDNN model can be a good
model. We can usually get DC, S-parameters, and harmonic data for nonlinear device modeling from
measurement or simulation. Therefore, we propose an analytical formulation of TDNN for nonlinear
device modeling using DC, bias-dependent S-parameter data, and large-signal harmonic balance
(HB) data.

Let U represent the DC input signals and O be DC output signals. Therefore, the delayed signals
of inputs in DC condition are all equal to U. The output of TDNN in DC case is derived as

O = fANN


Nd+1
{

U, U, ..., U, w

 (2)

Let Y represent the small signal transfer function of the system. In transistor example, matrix Y
represents Y-parameters. Let Ubias denote the DC bias of u. The small-signal S-parameters are derived
through the Y-parameters of the TDNN model that are shown in Equation (3). In Equation (3),
the derivative of fANN can be obtained using the adjoint neural network method [27], and k represents
the index of delay buffers. The Y matrix, defined as the sum of products of e− jωkτ and ∂fANN/∂u in (3),
is frequency dependent due to the use of delayed signal in output function fANN. Hence, the proposed
TDNN model is a non-quasi static (NQS) model [28–31], when Nd > 0. In Equation (3), jω = j2π f ,
where f represents frequency.

Y =

 Nd∑
k=0

e− jωkτ
·
∂fT

ANN(u(t), u(t− τ), . . . , u(t−Ndτ), w)

∂u(t− kτ)

∣∣∣∣∣∣∣
u(t)= u(t−τ)= ...=u(t−Ndτ)=Ubias


T

(3)

In the large-signal case, suppose the generic harmonic frequency be ωk, where the subscript k
represents the index of harmonic frequency k = 0, 1, 2, ..., NH. NH is the number of harmonics that
are considered in HB simulation. NT represents the number of time points. Let WN(n, k) denote the
Fourier coefficient for nth time sample and the kth harmonic frequency, where n = 1,2, . . . ,NT and
k = 1,2, . . . ,NH. Let superscript* represent complex conjugate. Let U(ωk) and O(ωk) be the input
and output signals in the frequency domain, respectively. Given input U(ωk) for all k, u(tn −Kτ) can
be computed from Equation (4), where K = 0, 1, 2, . . . , Nd. The outputs O(ωk) are computed as in
Equation (5). The frequency domain delay functions e− jωkτ, e− jωk2τ, . . . ,e− jωkNdτ are introduced into the
training equation. The proposed technique can accurately model the nonlinear behavior of the device
by training the TDNN model with DC, S-parameter, and HB data.

u(tn −Kτ) =
NH∑
k=0

U(ωk)W∗N(n, k)e− jωkKτ (4)

O(ωk) =
1

NT

NT−1∑
n=0

fANN(u(tn), u(tn − τ) , ..., u(t−Ndτ)) ·WN(n, k) (5)

We systematically described above the TDNN model equation used in DC, small-signal,
and large-signal simulation. Because of the neural network universal approximation capability [1],
such TDNN model can achieve satisfied accuracy.
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3. An Algorithm for Training the Proposed TDNN Model

Our proposed TDNN model will be good after the neural networks being well trained by DC,
S-parameters, and HB data of the nonlinear device. The training error is formulated as

ETr(w) = αEDC(w) + βES(w) + γEHB(w)

= α

(
1
2
∑

k∈T
‖O(xk, w) −O(d)

k ‖
2
)
+ β

(
1
2
∑

k∈T
‖S(xk, w) − S(d)

k ‖
2
)

+ γ

(
1
2
∑

k∈T
‖HB(xk, w) −HB(d)

k ‖
2
)

(6)

where ETr represents the total training error, EDC represents the error between DC responses of the
proposed TDNN model and the DC device data, ES represents the error between small-signal responses
of the proposed TDNN model and the small-signal device data, and EHB represents the error between
large-signal responses of the proposed TDNN model and the large-signal device data. α, β and γ
represent the weighting factors for DC error EDC, small-signal error ES, and large-signal error EHB,
respectively. The weighting factors α, β and γ can be roughly determined by the value range of
the training data and the number of DC data, small-signal data, and large-signal harmonic data.
O(.), S(.) and HB(.) represent the DC, bias-dependent S-parameters and HB response of the proposed
TDNN model, respectively. O(d)

k , S(d)
k and HB(d)

k represent the kth training data of DC, bias-dependent
S-parameters and HB, respectively. T represents of training sets. We use real and imaginary types of
the HB data for training in the proposed TDNN technique.

The first step for developing the proposed TDNN model is to generate DC, small-signal and
large-signal device data used for training and testing. The range of the training data should cover the
range of the testing data. After data preparation, we have to determine the structure of the proposed
TDNN model, including the number of delay buffers and the number of hidden neurons. After these
preparation works, we begin to train the proposed TDNN model. In the beginning, the number of
delays buffers can be tried from 1, i.e., Nd = 1 and the hidden neurons can be tried with a smaller
number. We first set α and β as constant that are roughly decided by the value range of the training
data and the number of DC data, and small-signal data, and set γ equals 0. The proposed TDNN
model can be trained with DC and small-signal data by adjust the neural network weights according to
the error back propagation algorithm. After the first step training (it may need hundreds or thousands
times of iteration, which is according to the practical problem), α, β and γ will be set as constants.
Subsequently, the proposed TDNN model can be trained combined with DC, small-signal S-parameters,
and large-signal harmonic data. After this step training, the training error will be calculated. When it is
less than Et (user defined error criteria), the process of the training will stop. After the overall training,
a separate set of DC, small-signal and large-signal data called test data, which are never used in the
training, is used to test the quality of the proposed TDNN model. The test error ETe is defined as the
error between the model responses and the test data. If the test error is also lower than the threshold
error Et, then the model training process terminates and the proposed TDNN model is ready to be used
for high-level design. Otherwise, the overall model training process will go to the previous step being
repeated with different numbers of hidden neurons or different numbers of delay buffers. Figure 2
shows the flowchart illustrating the overall development process of the proposed TDNN model.
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4. Examples

4.1. GaAs Metal-Semiconductor-Field-Effect Transistor (MESFET)

In this example, the TDNN method is used to model a Keysight advanced design system (ADS) [32]
internal GaAs MESFET device [33] with the Statz model. Table 1 shows the parameters for the Statz
model in ADS. We perform DC, small-signal, and large-signal training together in NeuroModelerPlus [34].
Training data includes DC data at different DC points, S-parameter data at different biases and large-signal
harmonic data generated at different fundamental frequencies (1–6 GHz), input power levels (−5–7
dBm), and loads (40–60 Ohm), as seen in Table 2. The training data set and test data set are not
randomly divided shown in Table 2. There are DC data at 162 different DC points, bias-dependent
S-parameter data at 120 different biases, and harmonic data at a total of 936 combinations of input
power, fundamental frequency, and load for training data. There are DC data at 130 different DC
points, bias-dependent S-parameter data at 95 different biases, and harmonic data at a total of 120
combinations of input power, fundamental frequency, and load for test data. All of the training data
was generated in ADS after performing DC simulation, S-parameter simulation, and harmonic balance
simulation for getting DC, S-parameter, and harmonic data, respectively. The range of Vg and Vd in DC
case can cover the range of Vg and Vd in small-signal S-parameter and harmonic cases. The frequency
range of S-parameter data can cover the frequency range of harmonic data which is calculated by
the fundamental frequency with the number of harmonics considered in the harmonic modeling
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process. The range of test data is within the range of training data. In this example, we choose the
time delay parameter of the TDNN as 0.0045 ns. We perform the training for the proposed TDNN
technique according to part 3. The proposed TDNN model is built after nearly 3000 iterations of DC
and small-signal training and 300 iterations of DC, small-signal, and large-signal training. It takes
roughly 1.5 h with the Intel core i9-9900 CPU at 3.60 GHz of the computing system. When the training
is finished, we compare the accuracy of the proposed TDNN model at different training conditions
shown in Table 3.

Table 1. Parameters for Statz model.

Parameter Name Vaule Parameter Name Vaule

Cgs (F) 9.581 × 1013 Lambda (1/V) 0.05
Cgd (F) 7.598 × 1014 Alpha (1/V) 3.0
Cds (F) 1 × 1014 B (none) 3.0
Crf (F) 1 × 1014 Rgd (Ohm) 3
Vto (V) 0.5 Rg (Ohm) 1

Beta (A/V2) 0.310 Rd (Ohm) 5
Vbi (V) 0.9 Rs (Ohm) 2

Table 2. Training data and test data for GaAs metal-semiconductor-field-effect transistor (MESFET).

Data Type Parameter Name
Training Data Test Data

Min Max Step Min Max Step

DC data
Vg (V) −0.6 0.4 0.2 −0.5 0.3 0.2

Vd (V) 0
0.4

0.2
5

0.1
0.2

0.05
0.3

0.15
4.9

0.1
0.2

Small-signal data

Vg (V) −0.6 0.4 0.2 −0.5 0.3 0.2

Vd (V)
0

0.4
2.6

0.2
2.2
5

0.1
0.2
0.4

0.05
0.3
2.4

0.15
2.1
4.8

0.1
0.2
0.4

f (GHz) 0.1 40.1 1 0.1 40.1 1

Large-signal data

Vg (V) −0.2 −0.1 0.1 −0.15 −0.15 0

Vd (V) 3.0 3.2 0.2 3.1 3.1 0

Pin (dBm) −5 7 1 −4.5 6.5 1

freq (GHz) 1 6 1 1.5 5.5 1

Load (Ohm) 40 60 10 45 55 10

Table 3. Accuracy comparison of two modeling approach at different conditions.

Approach Training Test

MLP 53.99% 51.14%
TDNN (Nd = 1) 6.16% 6.22%
TDNN (Nd = 2) 3.59% 2.75%
TDNN (Nd = 3) 2.95% 2.11%
TDNN (Nd = 4) 2.38% 1.88%

For comparison purpose, we also developed the static model using the MLP technique for this
GaAs MESFET example. MLP is a feedforward neural network. The inputs of the MLP and TDNN
both are Vg and Vd of the transistor, the outputs of the MLP and TDNN are both Ig and Id of the
transistor. For fairly comparison, we both use a three-layer MLP for MLP technique and the fANN of
the TDNN technique, the activation functions are both the sigmoid function, the numbers of hidden
neurons for these two techniques are both same, and the learning algorithm used in this paper is
quasi-newton method. We compare the results from the MLP model and the proposed TDNN model
that is shown in Table 3. In the case of DC, S-parameter at multiple biases, and HB training, the TDNN
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approach has accuracy advances over the static modeling technique, as seen in Table 3. This is because
nonlinear devices usually contain dynamic effects, which is not adequate for device modeling by
using the static modeling technique (MLP). However, when compared with MLP (only contains the
present information), the proposed TDNN includes not only present information, but also the history
information, which is necessary for nonlinear device modeling, especially when nonlinear device
contains dynamic effects. When the number of delay buffers increases, the error of the proposed TDNN
model when compared with device data decreases rapidly. We choose the condition (Nd = 4, training
error = 2.38%, test error = 1.88%) in Table 3 to present the results of our proposed TDNN model.
DC, S-parameters, and HB responses of the proposed TDNN model are shown in Figures 3 and 4.
Finally, in this proposed TDNN model, the number of hidden neurons is 40, time delay parameter
of the TDNN is 0.0045 ns, and the number of delay buffers is 4. From these figures, we can see the
proposed TDNN model can accurately model the nonlinear microwave device.
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Figure 3. For GaAs metal-semiconductor-field-effect transistor (MESFET) example, comparison of
DC and S-parameters at multiple biases of the device data and the proposed TDNN model. (a) DC.
(b) S-parameters at two test biases of (−0.3 V, 3.6 V) and (0.1 V, 2.1 V). The DC and S-parameters shown
in the figure from proposed TDNN is test data which is never used in the training. The frequency range
of S-parameters for this MESFET example is from 0.1 GHz to 40.1 GHz.
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Figure 4. Comparison of the harmonic balance (HB) responses between the proposed TDNN model and
the device data at the test load: 45 Ω, the fundamental frequency points: from 1.5 to 5.5 GHz, test bias:
(Vg: −0.15 V, Vd: 3.1 V), and input power levels: from −4.5 to 6.5 dBm in the MESFET example.

4.2. GaAs High-Electron Mobility Transistor (HEMT)

In this example, the proposed TDNN method is used to model the GaAs HEMT device. Training
and test data were generated from a five-layer GaAs-AlGaAs-InGaAs HEMT example given in
a physics-based device simulator Medici [35]. The structure of the HEMT [36] used in setting up the
physical-based simulator is shown in Figure 5. Table 4 shows the parameters for the HEMT device.
We performed DC, small-signal, and large signal training of the proposed TDNN according to the
algorithm in part 3 with NeuroModelerPlus [34]. Training data includes DC data at different DC points,
S-parameter data at different biases and large-signal harmonic data generated at different fundamental
frequencies (2–5 GHz) and input power levels (−20–10 dBm), as seen in Table 5. The static bias is chosen
as: Vg: 0.2 V and Vd: 5 V. The training data set and test data set are not randomly divided shown in
Table 5. There are DC data at 378 different DC points, bias-dependent S-parameter data at 138 different
biases, and harmonic data at a total of 44 combinations of input power, fundamental frequency, and
load for training data. There are DC data at 310 different DC points, bias-dependent S-parameter data
at 110 different biases, and harmonic data at a total of 33 combinations of input power, fundamental
frequency, and load for test data. All of the training data was generated in Medici after performing DC
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simulation, S-parameter simulation, and harmonic balance simulation for getting DC, S-parameter,
and harmonic data, respectively. The range of Vg and Vd in DC case can cover the range of Vg and Vd
in small-signal S-parameter and harmonic cases. The frequency range of S-parameter data can cover
the frequency range of harmonic data, which is calculated by the fundamental frequency with the
number of harmonics considered in the harmonic modeling process. The range of test data is within
the range of training data. In this example, we choose time delay parameter of the TDNN as 0.005 ns.
After nearly 2000–3000 iterations of DC and small-signal training and 300 iterations of DC, small-signal,
and large-signal training, the proposed TDNN model is built. It takes roughly 1.5–2 h with the Intel
core i9-9900 CPU at 3.60 GHz of the computing system. When the training is finished, we compare the
accuracy of the proposed TDNN model at different training conditions shown in Table 6.
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Figure 5. The structure of the high-electron mobility transistor (HEMT) device in Medici simulator
used for data generation.

Table 4. Values of geometrical/physical parameters for high-electron mobility transistor (HEMT) device.

Parameter Name Value (um)

Gate Length (um) 0.2

Gate Width (um) 100

Thickness (um)

AlGaAs Donor Layer 0.025

AlGaAs Spacer Layer 0.01

InGaAs Channel Layer 0.01

GaAs Substrate 0.045

Doping Density (1/cm3)

AlGaAs Donor Layer 1 × 1018

InGaAs Channel Layer 1 × 102

Source N+ 2 × 1020

Drain N+ 2 × 1020
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Table 5. Training data and test data for GaAs HEMT.

Data Type Parameter Name
Training Data Test Data

Min Max Step Min Max Step

DC data
Vg (V) −0.2 0.8 0.2 −0.1 0.7 0.2

Vd (V) 0 6.2 0.1 0.05 6.15 0.1

Small-signal data

Vg (V) −0.2 0.8 0.2 −0.1 0.7 0.2

Vd (V)
0

0.4
2.6

0.2
2.2
6.2

0.1
0.2
0.4

0.05
0.3
2.4

0.15
2.1
6.0

0.1
0.2
0.4

f (GHz) 0.1 40.1 1 0.1 40.1 1

Large-signal data
Pin (dBm) −20

−3
−5
9

5
2

−20
−3

−5
9

5
2

freq (GHz) 2 5 1 2.5 4.5 1

Table 6. Accuracy comparison from different training conditions.

Approach
30 Hidden Neurons 40 Hidden Neurons

Training Error Test Error Training Error Test Error

MLP 31.13% 33.98% 33.07% 34.11%
TDNN (Nd = 1) 6.41% 6.58% 6.24% 6.48%
TDNN (Nd = 3) 3.10% 3.32% 2.68% 2.88%
TDNN (Nd = 5) 2.44% 2.51% 2.16% 2.24%
TDNN (Nd = 7) 1.49% 1.86% 1.15% 1.9%

For comparison purpose, we have also developed MLP model for this GaAs HEMT example.
The inputs of the MLP and TDNN are Vg and Vd of the transistor, the outputs of the MLP and
TDNN are Ig and Id of the transistor. For fairly comparison, we both use a three-layer MLP for MLP
technique and the fANN of the TDNN technique, the activation functions are both the sigmoid function,
the numbers of hidden neurons for these two techniques both are same, and the learning algorithm
used in this paper is quasi-Newton method. In the complicated case, DC, S-parameter at multiple
biases and HB training together, TDNN model has huge accuracy advantage over MLP model, as seen
in Table 6. In this table, the error of the TDNN model compared with test data reduces as the number
of delay buffers increases. When comparing the number of hidden neurons 30 and 40, we can see
as the number of hidden neurons increases, the accuracy enhances slowly. We choose the condition
(Nd = 7, 40 hidden neurons, training error = 1.15%, and test error = 1.9%) in Table 6 in order to present
the results of our proposed TDNN model. The DC, S-parameters and HB responses of the proposed
TDNN model are shown in Figures 6 and 7. Finally, in the proposed TDNN model for this GaAs HEMT
example, the number of hidden neurons is 40, the time delay parameter of the TDNN is 0.005 and the
number of delay buffers is 7. From these figures, we can see that the proposed TDNN technique can
accurately model the GaAs HEMT example.
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Figure 6. Comparison between the proposed TDNN model and the device data using DC and 

S-parameters at multiple biases for the HEMT example. (a) DC. (b–i) Magnitudes and Phases of 

S-parameters at two test biases of (Vg and Vd) at (0.1 V, 5.6 V) and (0.7 V, 2.1 V). The DC and 

S-parameters shown in the figure from proposed TDNN is test data which is never used in the 

training. 

Figure 6. Comparison between the proposed TDNN model and the device data using DC and
S-parameters at multiple biases for the HEMT example. (a) DC. (b–i) Magnitudes and Phases of
S-parameters at two test biases of (Vg and Vd) at (0.1 V, 5.6 V) and (0.7 V, 2.1 V). The DC and S-parameters
shown in the figure from proposed TDNN is test data which is never used in the training.
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Figure 7. Comparison of magnitude and phase responses of the proposed TDNN model and device
data at fundamental frequency 2.5 GHz, 3.5 GHz, and 4.5 GHz. Each blue line represents the magnitude
or phase of output power along the input power at different fundamental frequencies.

5. Conclusions

In this paper, we have proposed a TDNN based technique for nonlinear microwave devices
modeling. We have proposed a set of new formulations for training with DC, small-signal and
large-signal data. We also have proposed an algorithm for the proposed TDNN model development.
The modeling of GaAs MESFET and GaAs HEMT examples has successfully demonstrated that the
TDNN based technique can accurately build nonlinear microwave device models. Using measurements
to validate the comparison with real situation could be a useful direction. In the future direction,
the thermal and trapping effects can be combined into the proposed TDNN. In the future, conventional
device modeling method as compared with proposed TDNN can be a useful direction. As a potential
future direction, the proposed TDNN technique can be investigated for other semiconductor
technologies, such as Si and GaN based FETs. In the future, modeling and design microwave
absorbers by the proposed technique can also be investigated.

Author Contributions: Conceptualization, W.L., L.Z. and Q.-J.Z.; methodology, W.L., L.Z. and F.F.; validation and
writing—original draft preparation, W.L.; writing—review and editing, W.L., L.Z., W.Z. and F.F.; supervision,
W.Z., F.F. and Q.-J.Z.; funding acquisition, Q.L. and G.L. All authors have read and agreed to the published version
of the manuscript.
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