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A novel gene signature derived from the CXC 
subfamily of chemokine receptors predicts the 
prognosis and immune infiltration of patients with 
lung adenocarcinoma
Kun Deng, MMa, Shenghua Lin, MMb, Zhanyu Xu, PhDa, Junqi Qin, MMa, Liqiang Yuan, MMa, Yu Sun, MMa, 
Jiangbo Wei, MMa, Tiaozhan Zheng, MMa, Zhiwen Zheng, MMa, Fanglu Qin, MMc,*, Shikang Li, MDa,* 

Abstract 
The highly malignant nature of lung adenocarcinoma (LUAD) makes its early diagnosis and prognostic assessment particularly 
important. However, whether the CXC subfamily of chemokine receptors (CXCR) is involved in the development and prognosis 
of LUAD remains unclear. Here, differentially expressed genes (DEGs) associated with overall survival (OS) were selected from 
the cancer genome atlas (TCGA) dataset using univariate Cox analysis and least absolute shrinkage and selection operator 
(LASSO) regression analysis. Then, a prognostic gene signature was constructed, which was evaluated using Kaplan–Meier 
curves, receiver operating characteristics curves, nomogram curves, and an external gene expression omnibus (GEO) dataset. 
Finally, we verified the functions of the genes comprising the signature using the gene expression profiling interactive analysis 
(GEPIA) and the immune system interaction database (TISIDB) web portals. We constructed a 7-gene signature (SHC1, PRKCD, 
VEGFC, RPS6KA1, CAT, CDC25C, and GPI) that stratified patients into high- and low-risk categories. Notably, the risk score of 
the signature was a separate and effective predictor for OS (P < .001). Patients in the low-risk category had a better prognosis 
than those in the high-risk category. The receiver operating characteristics and nomogram curves verified the predictive power 
of the signature. Moreover, in both categories, biological processes and pathways associated with cell migration were enriched. 
Immune infiltration statuses differed between the 2 risk categories. Critically, the results from the GEPIA and TISIDB web portals 
indicated that the expression of the 7-gene signature was associated with survival, clinical stage, and immune subtypes of LUAD 
patients. We identified a CXCR-related gene signature that could assess prognosis and provide a reference for the diagnosis and 
treatment of LUAD.
Abbreviations: CXCR = the CXC subfamily of chemokine receptors, DC = dendritic cells, DEGs = differentially expressed genes, 
GEO = gene expression omnibus, GEPIA = the gene expression profiling interactive analysis, GO = gene ontology, HR = hazard 
ratio, IFN = interferon, KEGG = Kyoto encyclopedia of genes and genomes, LASSO = least absolute shrinkage and selection 
operator, LUAD = lung adenocarcinoma, OS = overall survival, PCA = principal component analysis, ssGSEA = the single-sample 
gene set enrichment analysis, TCGA = the cancer genome atlas, TISIDB = the immune system interaction database, t-SNE = 
t-distributed stochastic neighbor embedding.
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1. Introduction
Lung cancer is a great threat to the health and lives of the pop-
ulation because of its high malignancy, fastest rising incidence 
and mortality rates.[1,2] Of all histological subtypes, lung ade-
nocarcinoma (LUAD) has the highest incidence.[3] Thus far, 
advancements in understanding the potential mechanisms asso-
ciated with LUAD have led to the development of multiple tar-
geted drugs, which have been greatly beneficial in improving the 
prognosis of patients with LUAD.[4] However, patients inevitably 
develop adverse reactions, drug resistance, and other complica-
tions during drug treatment programs such as gefitinib, erlo-
tinib, and bevacizumab.[4,5] Consequently, the focus has been on 
improving the prognosis of LUAD patients and developing new 
target drugs. The establishment of a prognosis-associated gene 
signature is urgent in the search for tumor-related biomarkers.

Chemokines and their receptors constitute of a large category 
of small-secreted proteins that are necessary during the execu-
tion of immune system function.[6–8] They are also key mediators 
of cancer-associated inflammation, as they are present at the 
tumor site and can therefore directly influence the proliferation, 
infiltration, and metastasis of cancer cells.[9,10] To date, over 50 
human-related chemokines have been identified, and could be 
divided into 4 subfamilies on the basis of relative locations of 
their cysteine residues: C, CC, CXC, and CX3C.[11,12] In most 
cases, chemokine-mediated signaling pathways are only acti-
vated when chemokines selectively bind to receptors expressed 
on the target cells’ surfaces.[11,13,14] At present, many chemok-
ines and their receptor antagonists have been approved.[11,15] For 
example, plerixafor, a small molecule CXCR4 antagonist, can 
increase the ratio of stem/progenitor cells in peripheral blood. 
Maraviroc, a CCR5 antagonist, is used in anti-HIV therapy. 
Additional drug candidates, which include CCR5, CXCR4, 
and CCR2/CCR5 dual antagonists such as leronlimab, motixa-
fortide, and cenicriviroc, respectively, are undergoing phase 3 
clinical experiments.[11] As the largest class in the chemokine 
receptor family,[16] the CXC subfamily is the most promising. 
Many chemokine-related genes have potential in the develop-
ment of more targeted drugs that can ameliorate the prognosis 
of LUAD patients. However, whether CXC receptors (CXCRs) 
are related to the development and prognosis of LUAD and 
whether it can be used as a therapeutic target remains unclear.

Here, we used 2 common public databases (the cancer genome 
atlas [TCGA] and gene expression omnibus [GEO]) to obtain 
mRNA expression and relevant clinical data of LUAD patients. 
We then applied univariate analysis and east absolute shrink-
age and selection operator (LASSO) Cox regression analysis to 
data from the TCGA dataset to identify a prognostic gene signa-
ture comprising of CXCR-related differentially expressed genes 
(DEGs) and verified through a GEO dataset. Afterwards, we 
applied Gene ontology (GO) and Kyoto Encyclopedia of Genes 
and Genomes (KEGG) enrichment analyses to search for poten-
tial mechanisms. Finally, we verified the nomogram’s prognostic 
potential using the gene expression profiling interactive analysis 
(GEPIA) web-based tool and explored the correlation between 
its signature genes with immune subtypes using the immune 
system interaction database (TISIDB) web portal. It is worth 
mentioning that the TISIDB platform was developed to promote 
comprehensive research on tumor-immune interactions.[17]

2. Materials and methods

2.1. Data preparation and pre-processing

CXCR-related genes (n = 927) were accessed from the GeneCards 
website (http://www.genecards.org/).[18] The transcriptome infor-
mation and relevant clinical data for 551 LUAD patients, which 
were used to identify the prognostic gene signature, were accessed 
from the TCGA website (https://portal.gdc.cancer.gov/reposi-
tory/). For verification, the mRNA expression data profiling by 

array and clinical data of 163 samples (GPL7015, GSE11969) 
were obtained from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/). We discarded samples with unknown clinical char-
acteristics or that had survival times under 30 days. We also took 
the log2 logarithm for the TCGA dataset and used the “sva”[19] 
R package to identify the intersecting genes and to normalize 
mRNA expression profiles of the 2 datasets from the TCGA and 
GEO databases. Both TCGA and GEO’s data resources are open 
to the public. Furthermore, our research adheres to the TCGA 
and GEO data access and publication requirements. The data 
used in this study were obtained from public databases such as 
TCGA and GEO, and no human or animal experiments were 
involved. Therefore, ethical approval from the Ethics Committee 
of Guangxi Medical University is not required.

2.2. Construction and verification of a prognostic CXCR-
related gene signature

Perl software was used to merge transcriptome and clinical 
data. We used the “limma”[20] R package to distinguish DEGs 
between tumor specimens and neighboring normal specimens 
(false discovery rate < 0.001) in the TCGA dataset. Univariate 
Cox analysis was applied to screen prognostic CXCR-related 
DEGs (P < .001). Then, we carried out LASSO Cox regression[21] 
to build a prognostic gene signature. The formula below was 
used to determine the risk score:

risk score =
n∑
i=1

Expi× Coefi

where n means gene numbers in the signature, Expi rep-
resents the expression level of each signature gene, and Coefi 
represents the LASSO regression coefficient. Considering that 
the risk score of each patient was not normally distributed, we 
chose to divide the patients into 2 risk (high-risk and low-risk) 
categories using the median risk value. This way we obtained as 
many patients in both risk categories and could further compare 
their overall survival (OS) to verify whether there was a differ-
ence in prognosis between the 2 risk categories.

In addition, we used the STRING database (https://string-db.
org/cgi/input.pl) to create an interaction network with the inter-
secting prognostic DEGs according to the expression of signature 
genes. We also draw risk heat maps to represent the association 
of signature genes with risk categories. We defined the range of 
expression levels of these genes as 0 to 2.5, with red representing 
high expression and green representing low expression, and the 
color change from left to right represents the change in expres-
sion levels of genes in-high and low-risk categories. To evaluate 
the distribution statuses between the high- and low-risk patient 
categories, principal component analysis (PCA) and t-distributed 
stochastic neighbor embedding (t-SNE) were performed using the 
“ggplot2”[22] and “Rtsne” R packages.[23] We used the “survival” 
and “survminer”[24] R packages to compare the difference in OS 
between the 2 risk categories and to plot survival curves. Moreover, 
we used the “survivalROC”[25] R package to perform receiver oper-
ating characteristics curve analyses to assess the gene signature’s 
predictive performance. The “rms” R package was used to set up a 
nomogram that best predicted the prognosis of LUAD patients.[26]

2.3. GO enrichment, KEGG enrichment, and immune 
infiltration analysis

GO (P < .05, q < 0.05) and KEGG (P < .05) enrichment 
analyses based on the DEGs were conducted between the 2 
risk categories with the “clusterProfiler”[27] R package. The 
single-sample gene set enrichment analysis (ssGSEA) and 
“gsva”[28] R package were used to measure the infiltration 
scores of 16 immune cells and 13 immune function pathways 
(As shown in Fig. 1C-F).[29]

http://www.genecards.org/
https://portal.gdc.cancer.gov/repository/
https://portal.gdc.cancer.gov/repository/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://string-db.org/cgi/input.pl
https://string-db.org/cgi/input.pl
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2.4. Function exploration in the GEPIA and TISIDB web 
portals

The GEPIA website (http://gepia.cancer-pku.cn/) contains an 
immense amount of RNA sequencing data from the TCGA 
and other databases.[30] To verify the prognostic potential of 

our signature genes in LUAD patients, we performed survival 
analysis and clinical staging according to the expression of each 
gene. Taking advantage of the powerful features of the TISIDB 
platform (http://cis.hku.hk/TISIDB/), we explored the correla-
tion among the expression levels of the signature genes in LUAD 
patients with immune subtypes and drug targets.

Figure 1.  The research roadmap of the present study.

http://gepia.cancer-pku.cn/
http://cis.hku.hk/TISIDB/
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2.5. Statistical analysis
Student t test was applied to distinguish DEGs between tumor 
specimens and neighboring normal specimens. The Chi-squared 
test was applied to compare relative differences. The ssGSEA 
scores of immune cells or functional pathways were compared 
between the high- and low-risk patients using the Mann-Whitney 
test with the P values adjusted using the Benjamini-Hochberg 
procedure. The log-rank test was applied to compare the OS of 
the high- and low-risk patients as derived from the Kaplan–Meier 

analyses. All statistical analyses were conducted using R (version 
4.0.2) or SPSS (version 26.0) software. If not specifically men-
tioned, statistical significance was defined as P < .05.

3. Results
The research roadmap of our study is presented in Figure 2. In 
total, data from 466 and 90 LUAD patients from the TCGA (n 
= 551) and GEO datasets (n = 163) was included.

Figure 2.  Identification of prognostic CXCR-associated differentially expressed genes (PDEGs) in The Cancer Genome Atlas (TCGA) dataset. (A) Venn diagram 
for identifying the 13 PDEGs. (B) Heat map showing high (red) and low (blue) levels of expression of the PDEGs. Nine genes were upregulated in tumor tissues, 
while the PRKCD, RPS6KA1, CAT, and VEGFC genes were downregulated. (C) Forest map showing high (red) and low (green) expression of the PDEGs. 
PRKCD, RPS6KA1, and CAT were protective genes, while the others were risk genes. (D) Protein–protein interaction network of the PDEGs downloaded from 
the STRING website. RPS6KA1, CDC25C, CCNA2, CAT, and SHC1 were central genes. (E) The correlation network of PDEGs.
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3.1. Recognization of prognostic CXCR-associated DEGs 
in the TCGA dataset
Following differential expression analysis, we found that over 
half of the CXCR-related genes (574/927, 61.92%) were dif-
ferentially expressed between tumor and paracancerous tissues 
(false discovery rate < 0.001). Thirteen of these DEGs were 
associated with OS as detected by univariate Cox regression 

analysis (P < .001, Fig.  3A). Nine genes were upregulated in 
tumor tissues, while the PRKCD, RPS6KA1, CAT, and VEGFC 
genes were downregulated (Fig. 3B). Forest plots indicated that 
PRKCD, RPS6KA1, and CAT were protective genes, while the 
others were risk genes (Fig. 3C). The interaction network of the 
13 DEGs demonstrated that RPS6KA1, CDC25C, CCNA2, 
CAT, and SHC1 were central genes (Fig. 3D–E).

Figure 3.  Establishment and performance validation of a prognostic gene signature. (A) The risk curve demonstrated that patients can be divided into high-risk 
or low-risk categories according to the median value of the risk score in the TCGA dataset. (B) The risk curve from the GEO dataset. (C) The survival status chart 
from the TCGA dataset demonstrated that patients in the high-risk category had higher mortality rates, while those in the low-risk category were the opposite. (D) 
The survival status chart from the GEO dataset. (E) The risk heatmap indicates SHC1, GPI, VEGFC, and CDC25C are high-risk genes, while RPS6KA1, PRKCD, 
and CAT were low-risk genes in the TCGA dataset. (F) The risk heatmap from the GEO dataset. (G) PCA and t-SNE analysis in the TCGA dataset showed that the 
patients in the 2 risk categories were classified as 2 distribution statuses. (H) PCA and t-SNE analysis in the GEO dataset. I. Kaplan–Meier curves for the OS of 
LUAD patients in the high- and low-risk categories in the TCGA dataset, P < .001. (J) Kaplan–Meier curves in the GEO dataset. (K) Receiver operating characteristic 
(ROC) curves demonstrated the prognostic value of the risk score in the TCGA dataset. (L) ROC curves in the GEO dataset. TCGA = The Cancer Genome Atlas.
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3.2. Establishment of a prognostic gene signature using 
the TCGA dataset followed by performance verification in 
the GEO dataset

A prognostic signature was established via LASSO Cox regres-
sion using the expression data of the 13 prognostic DEGs. Then, 
a 7-gene signature was identified using optimal λ values. LASSO 
regression coefficients were shown in Table  1. Based on the 
median critical value, patients in the TCGA dataset were classi-
fied as high- and low-risk categories (Fig. 4A). The survival anal-
yses revealed that patients belonging to high-risk category had 
slightly worse OS than those in the low-risk category (Fig. 4C). 
The risk heatmap indicated that from left to right (that is, from 
the low-risk category to the high-risk category), the expression 
levels of SHC1, GPI, VEGFC, and CDC25C were increased, 
so they were all high-risk genes, while the expression levels of 
RPS6KA1, PRKCD, and CAT were reduced, so they were low-
risk genes (Fig. 4E). The PCA and t-SNE analyses demonstrated 
that the patients in 2 risk categories were divided into 2 distri-
bution statuses (Fig. 4G). Moreover, the Kaplan–Meier curves 
demonstrated that patients in the low-risk category had slightly 
higher OS than those in the high-risk category (Fig. 4I, P = 4.18e 
− 05). The predictive accuracy of risk score for OS was assessed 
by receiver operating characteristics curves, with the area under 
the curve reaching 0.717, 0.709, and 0.692 at 1, 2, and 3 years, 
respectively (Fig. 4K).

To verify the accuracy of this gene signature established from 
the TCGA dataset, patients in the GEO dataset were divided 
into 2 different risk categories according to the median values 
calculated by the same formula as the TCGA dataset (Fig. 4B). 
Similarly, survival analysis for the GEO dataset demonstrated 
that patients in the low-risk category had a slightly higher OS 
than those in the high-risk category (Fig. 4D). The risk heatmap 
in the GEO dataset was consistent with that from the TCGA 
dataset (Fig.  4F). Additionally, the PCA and t-SNE analyses 
showed that patients in the 2 risk categories were divided into 
different distribution statuses (Fig. 4H). Similarly, the Kaplan–
Meier curves confirmed the prognostic signature’s ability in pre-
dicting survival (Fig. 4J, P = .0363). Finally, the area under the 
curve of the 7-gene signature reached 0.860, 0.710, and 0.648 
at 1, 2, and 3 years, respectively (Fig. 4L). These results demon-
strated the power of our gene signature in predicting prognostic 
survival of LUAD patients.

3.3. Independent prognostic analysis of the 7-gene 
signature and construction of the nomogram using the 
TCGA and GEO datasets

Univariate and multivariate Cox regression analyses were 
applied to examine if risk score can predict OS. Unsurprisingly, 
the univariate Cox regression analysis demonstrated that risk 
scores were closely connected with OS in both the TCGA and 
GEO datasets (TCGA dataset: hazard ratio [HR] = 3.632 
[2.497–5.281], P < .001, Fig. 5A; GEO dataset: HR = 2.296 
[1.122–4.700], P = .023, Fig. 5B). The risk score remained an 
independent predictor of OS in the multivariate Cox regression 

after other confounding variables were removed (TCGA data-
set: HR = 3.334 [2.240 − 4.961], P < .001, Fig.  5C; GEO 
dataset: HR = 2.337 [1.085 − 5.037], P = .030; Fig. 5D). The 
prognostic nomogram predicting disease free survival at 1, 2, 
and 3 years was created using stepwise Cox regression models 
derived from patients with complete clinical data from the 
TCGA (Fig. 5E) and GEO datasets (Fig. 5F). The parameters 
listed in the nomogram included: age, gender, stage, T-stage, 
and N-stage. The calibration curve indicated excellent perfor-
mance of the nomogram in predicting the disease-free survival 
of LUAD patients in the TCGA (Fig. 5G) and GEO datasets 
(Fig. 5H).

3.4. GO enrichment, KEGG enrichment, and immune 
infiltration analysis in the TCGA and GEO datasets

To explore the biological functions and pathways relevant to 
risk scores, GO and KEGG enrichment were performed on the 
DEGs from the TCGA dataset in the high- and low-risk patients. 
Unsurprisingly, DEGs were enriched for several molecular func-
tions associated to cell migration, such as microtubule binding 
pathways and peptidase regulator activity (Fig. 1A). In addition, 
DEGs were remarkably enriched in processes of nuclear division 
(Fig.  1A), including nuclear division pathways, regulation of 
chromosome segregation, condensed chromosomal mitochon-
dria, and external mitochondria (Fig. 1A). The KEGG enrich-
ment analysis indicated that cell cycle and migration pathways 
were enriched (Fig. 1B), especially extracellular matrix-receptor 
interaction and the p53 signaling pathway. Furthermore, the 
DEGs were enriched for systemic lupus erythematosus, dilated 
cardiomyopathy, amebiasis, and many other diseases (Fig. 1B). 
Most notably, we also found that CXCR-related DEGs are 
involved in the IL-17 signaling pathway and the P53 signal-
ing pathway (Fig. 1B), which in turn affect the progression of 
LUAD.

To further investigate the relationship between risk score 
and immune status, ssGSEA was applied to measure the 
enrichment scores of various immune cell subpopulations and 
their related functions and pathways. The low- and high-risk 
patients in the TCGA dataset (all adjusted p’s < 0.05; Fig. 1C) 
significantly differed in the content of the antigen presentation 
process, including scores for dendritic cells (DC), activated 
DCs, B cells, mast cells, neutrophils, immature DCs, plasma-
cytoid DCs, T helper cells, tumor-infiltrating lymphocytes, 
human leukocyte antigen, major histocompatibility complex 
class I molecules, type II interferon (IFN) responses, and type 
I IFN responses. More specifically, the high-risk category had 
lower scores for type II IFN responses, type I IFN responses, 
and human leukocyte antigen, while major histocompatibil-
ity complex class I had the opposite effect (adjusted P < .05, 
Fig. 1D). The differences in cytolytic activity and pro-inflam-
matory effects between the 2 risk categories were verified in 
the GEO cohort (adjusted p’s < 0.05, Fig.  1F). In both the 
TCGA and GEO cohorts, the activated DC, immature DC, 
and neutrophil ratings statistically differed the most between 
the 2 risk categories (Fig. 1C and E). These results suggested 
that the immune infiltration status also differed between 
high and low risk categories according to our signature risk 
score, which could inform the subsequent treatment of LUAD 
patients.

3.5. Validation of the 7-gene signature using the GEPIA and 
TISIDB web tools

The results from the GEPIA web tool indicated that the expres-
sion of all these 7 genes in the signature were closely related to 
the OS (Fig. 6A–G, all p’s < 0.05) and clinical stages (Fig. 6H–N, 
except PRKCD, P = .117 and CAT, P = .153) of the LUAD 
patients.

Table 1

Coefficient of 7-gene signature.

Gene Coefficient 

SHC1 0.285078
PRKCD -0.26271
VEGFC 0.182141
RPS6KA1 -0.12576
CAT -0.01815
CDC25C 0.235979
GPI 0.174824
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Additionally, the results from TISIDB platform demonstrated 
that the expression of all 7 signature genes in LUAD patients 
was closely linked to 6 immune subtypes (Fig.  7A–G, all p’s 
< 0.001), including wound healing, IFN-gamma dominant, 
inflammatory, lymphocyte depleted, immunologically quiet, 
and TGF-b dominant. We were very surprised to learn that 
PRKCD (Fig. 7H) and RPS6KA1 (Fig. 7I) have been used as 
targets in drug studies.[31,32] For example, tamoxifen, which tar-
gets PRKCD, has been used to treat advanced breast and ovar-
ian cancers.[33] Furthermore, we found through the DrugBank 

database (https://go.drugbank.com/) that Fostamatinib has been 
used as an inhibitor of RPS6KA1 for the treatment of chronic 
immune thrombocytopenia.

4. Discussion
A large number of previous studies have demonstrated the 
potential of multiple members of the CXC chemokine and 
its receptor family as novel immunotherapeutic targets and 
prognostic biomarkers for a variety of tumors. For example, 

Figure 4.  Independent prognostic analysis of the 7-gene signature and construction of the nomogram. (A and B) The results of the univariate Cox regression 
analyses in the TCGA and GEO datasets. (C and D). The results of the multivariate Cox regression analyses in the TCGA and GEO datasets. (E) Prognostic 
nomograms to predict the 1, 2, and 3-year disease-free survival (DFS) of LUAD patients in the TCGA dataset. (F) Prognostic nomograms to predict the 1, 2, 
and 3-year DFS of LUAD patients in the GEO dataset. (G) Validation of calibration curves for predicting DFS values from the nomogram in the TCGA dataset. 
(H) Validation of calibration curves for predicting DFS values from the nomogram in the GEO dataset. TCGA = The Cancer Genome Atlas.

https://go.drugbank.com/
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Tian, H. et al used bioinformatics to identify some members 
of the CXC chemokine family, CXCL1, CXCL4, CXCL7, and 
CXCL8 with low expression levels and CXCL12, CXCL14, and 
CXCL16 with high expression levels had longer OS in LUAD 
patients.[34] Li, Y. et al analyzed the prognostic and medical value 
of 17 members of the CXC chemokine family in head and neck 
squamous cell carcinoma (HNSCC) using multiple public data-
bases, and their results suggested that CXCL1, CXCL2, CXCL3, 
CXCL8, and CXCL12 may serve as new prognostic markers 
and treatment targets for HNSCC patients.[35] Spaks et al fol-
lowed 54 NSCLC patients who underwent radical surgery for 
up to 6 years and found significantly lower concentrations of 
CXCL4 and CXCL5 and significantly higher concentrations of 
CXCL7 in the peripheral blood of the patients. Specifically, only 
CXCL1 changed in the peripheral blood of patients in the tumor 
recurrence group. Their study provides further evidence of the 

immunoediting theory.[36] Furthermore, Qiao, B. and Cong, Z. 
et al found that high expression of CXCR2 and CXCR4 may 
serve as indicators of poor prognosis in patients with pulmo-
nary non-small cell carcinoma.[37,38] However, apart from mem-
bers of the CXC chemokine and its receptor family, there are so 
many other genes that are closely related to them, and there are 
few studies on the tumorigenic and developmental processes in 
which they are involved. No one has previously used chemo-
kine-related genes to construct prognostic signatures and thus 
to assess the prognosis and immune infiltration status of tumor 
patients. The construction of chemokine and its receptor-related 
gene signatures will allow us to better study the powerful func-
tions of chemokines. In our study, we examined the expression 
of CXCR-associated genes in LUAD tumor tissues as well as 
their connection to OS. First, we constructed and integrated a 
novel prognostic gene signature consisting of 7-CXCR related 

Figure 5.  GO, KEGG enrichment, and immune infiltration analysis. (A) Bubble plots from the GO enrichment analysis indicating the most significant pathways in 
the TCGA dataset (adjusted P value < .05). (B) Bubble plots from the KEGG enrichment analysis indicating the most significant pathways in the TCGA dataset 
(P value < .05). (C–F) Box plots related to immune cells (C, E) and immune functions (D, F) in the TCGA (C, D) and GEO (E, F) datasets were obtained by com-
paring ssGSEA scores between the different risk categories (16 types of immune cells include: aDCs, B_cells, CD8+_T_cells, DCs, iDCs, Macrophages, Mast 
cells, Neutrophils, NK cells, pDCs, T helper cells, Tfh, Th1cells, Th2 cells, TIL, and Treg. And 13 immune function pathways include: APC co inhibition, APC co 
stimulation, CCR, Check-point, Cytolytic activity, HLA, Inflammation-promoting, MHC class I, Parainflammation, T cell co-inhibition, T cell co-stimulation, Type 
I IFN Response, and Type II IFN Response. Statistical significance: ns = not significant; *P < .05; **P < .01; ***p < .001).
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genes, which we then verified using an external dataset (GEO 
dataset). Functional enrichment analysis demonstrated that cell 
migration-related pathways were enriched. Finally, we used the 
TISIDB platform to further analyze the functions of the 7 genes.

The chemokine-receptor system coordinates human cell 
migration, and perturbations of this system lead to inflamma-
tion and cancer; so they have been extensively studied as treat-
ment targets.[7,10] However, their relevance with respect to OS 
in LUAD patients remains unclear. Most of the CXCR-related 
genes (62%) were differentially expressed between tumor 

specimens and neighboring normal specimens, with 13 relevant 
to OS following univariate Cox regression analysis (P < .001). 
These findings strongly showed that CXCR was involved in the 
development of LUAD and that CXCR-related genes may be 
used to set up a prognostic gene signature.

Our prognostic gene signature presented here consisted of 
7 CXCR-related genes (SHC1, PRKCD, VEGFC, RPS6KA1, 
CAT, CDC25C, and GPI), and it was an independent predic-
tor of prognosis for LUAD patients. Several previous studies 
have reported that the SHC1 gene produces 3 isoforms, each 

Figure 6.  Validation of the prognostic potential of the 7-gene signature using the GEPIA website. (A–G) The Kaplan–Meier curves predicted the OS of LUAD 
patients according to the transcripts per million (TPM) of the signature genes. The expression levels of all 7 genes in the signature were associated with OS in 
LUAD patients (P < .05). (H–N) The relationship between the expression levels of these genes and clinical stages in LUAD patients. Except for PRKCD (P = .117) 
and CAT (P = .153), the expression levels of the remaining 5 genes were significantly correlated with clinical stage of LUAD patients.
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with different functions and subcellular locations. Though all 
are signal transduction adapter proteins, the longest (p66Shc) 
is involved in life span regulation and influences reactive oxy-
gen species (ROS). The other 2 isoforms, p52Shc and p46Shc, 
can activate the GRB2/SOS complex, thereby allowing activated 
receptor tyrosine kinases to communicate with the Ras path-
way.[39,40] Notably, tyrosine kinase signaling within cancer cells 
is important in the construction and regulation of an immu-
nosuppressive microenvironment.[41] The protein encoded by 
PRKCD is activated by diacylglycerols and acts as both a tumor 

suppressor and as a positive cell cycle regulator. This protein has 
the ability to either positively or negatively control apoptosis. As 
a result, it has great potential as a therapeutic target.[42,43] VEGFC 
is well-known for encoding proteins that promote angiogenesis 
and endothelial cell growth, and it can influence vascular per-
meability,[44] a process closely related to tumor cell metastasis. 
RPS6KA1 has 2 distinct kinase catalytic domains that can phos-
phorylate many substrates. The activity of its protein is linked 
to cell proliferation and differentiation, and it can affect cancer 
cells.[45] Typically, malignant cells exhibit elevated ROS levels 

Figure 7.  Correlations between gene expression levels with immune subtypes and drug targets in the TISIDB website. (A–G) The relationship between gene 
expression levels and immune subtypes were statistically significant (all P’s < 0.001). C1 (wound healing), C2 (IFN-gamma dominant), C3 (inflammatory), C4 
(lymphocyte depleted), C5 (immunologically quiet), and C6 (TGF-b dominant). (H) Targeting PRKCD. (I) Targeting RPS6KA1. DB04751 = purvalanol A, DB00675 
= tamoxifen, DB04376 = 13-acetylphorbol, DB05013= ingenol mebutate.
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and alterations in antioxidant molecules compared to normal 
cells. The leading endogenous oxidative stress promotes tumor 
proliferation by affecting genetic instability, cell growth and 
angiogenesis.[46] CAT gene can encode catalase, which is a key 
antioxidant for the body to resist oxidative stress, which means 
that CAT gene plays an important role in preventing cancer 
metastasis. In mammalian cells, CDC25C is primarily a nuclear 
protein, and it is believed to also inhibit p53-induced growth 
arrest.[47] CDC25 phosphatases can function as a node, whereby 
they receive mitogenic signals and facilitate the progression of 
the cell cycle. Because of its critical function in cell cycle regu-
lation, CDC25 is an excellent target for cancer treatment.[47,48] 
GPI anchor attachment 1 (GPAA1) can attach the GPI anchor to 
the ER protein and has been reported to promote EGFR-ERBB2 
dimerization, which is advantageous to cancer metastasis and 
progression, as it promotes the expression of cancer-associated 
GPI-anchored proteins and provides a more stable platform for 
EGFR-ERBB2 dimerization (lipid rafts).[49]

Although chemokines and their receptors have long been stud-
ied, few reports have used their associated genes to build prognos-
tic signatures in LUAD patients. Here, we constructed a 7-gene 
signature for LUAD patients and evaluated its performance and 
validity using an independent dataset. Patients were classified into 
high- and low-risk categories according to the median risk score 
of the gene signature. The accuracy of this classification was con-
firmed in both the TCGA and GEO datasets, as the high-risk cat-
egory had a shorter OS. We also explored the association of each 
gene in the signature with survival, immune subtypes, and drug 
targets in LUAD patients using the TISIDB web tool.

We must highlight several limitations in our study. First, ret-
rospective data from public databases were used to construct 
and validate our prognostic gene signature. To validate its clini-
cal utility, actual prospective data are needed. Second, an inher-
ent weakness exists when considering only individual markers 
for a prognostic signature; many important prognostic genes in 
LUAD may have been precluded. Further, the protein expression 
levels of these genes have not been experimentally validated.

5. Conclusion
In conclusion, our work has identified a novel prognostic gene 
signature based on 7 CXCR-related genes. In both the deriva-
tion and validation datasets, this signature was found to be 
independently correlated with OS, thereby delivering insight 
into assessing LUAD prognosis. However, the potential mecha-
nisms underlying the relationship between CXCR-related genes 
and tumor immunity in LUAD are still ambiguous, and there-
fore further research is required.
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