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Abstract

Motivation: Combining disease relationships across multiple biological levels could aid our under-

standing of common processes taking place in disease, potentially indicating opportunities for

drug sharing. Here, we propose a similarity fusion approach which accounts for differences in

information content between different data types, allowing combination of each data type in a bal-

anced manner.

Results: We apply this method to six different types of biological data (ontological, phenotypic, lit-

erature co-occurrence, genetic association, gene expression and drug indication data) for 84 dis-

eases to create a ‘disease map’: a network of diseases connected at one or more biological levels.

As well as reconstructing known disease relationships, 15% of links in the disease map are novel

links spanning traditional ontological classes, such as between psoriasis and inflammatory bowel

disease. 62% of links in the disease map represent drug-sharing relationships, illustrating the rele-

vance of the similarity fusion approach to the identification of potential therapeutic relationships.

Availability and implementation: Freely available under the MIT license at https://github.com/e-oer

ton/disease-similarity-fusion

Contact: ab454@cam.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Establishing relationships between diseases increases our under-

standing of disease biology, aiding the identification of shared mech-

anisms or development of new treatments, for example through

drug repurposing. The identification of novel relationships between

diseases is therefore of great biological and pharmacological inter-

est. Traditionally, diseases have been grouped based on their symp-

toms, the part of the body that they affect, or their etiology (Wang

et al., 2017), but the development of novel bioinformatics technolo-

gies has allowed diseases to be quantified and related in many new

ways. In particular, (-omics) data allows greater understanding of

what is taking place in disease at a molecular level, enabling diseases

to be related through disease-associated genes (Cheng et al., 2014;

Goh et al., 2007; Sun et al., 2014b), protein interaction networks

(Menche et al., 2015), gene expression (Hu and Agarwal, 2009;

Suthram et al., 2010; Yang et al., 2015), pathways (Li and Agarwal,

2009) and biological processes (Mathur and Dinakarpandian,

2012). Rather than examining each of these different data types in

isolation, recent studies have related diseases by considering mul-

tiple data types simultaneously. These data integration approaches

can provide a more comprehensive understanding of disease, poten-

tially reflecting interactions between the different layers of the bio-

logical system (Ritchie et al., 2015) where links at one layer (e.g.

genetic variance) are associated with changes at another layer (e.g.

gene expression or phenotype). Recent examples have demonstrated

how this can be achieved through the use of heterogeneous net-

works, such as the DiseaseConnect web server developed by Liu

et al. (2014), or through matrix factorization approaches, such as

that presented by �Zitnik et al. (2013).
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However, these approaches do not quantify the overall strength

of the relationship across multiple levels. Defining a measure of dis-

ease similarity that takes into account multiple data types is not

straightforward, as such a measure must consider differences be-

tween properties such as information content (Gligorijevi�c and

Pr�zulj, 2015). Sun et al. (2014a, b) evaluated disease similarity by

defining a feature vector for each disease in which every element

(genes, chemicals, pathways and GO terms) was weighted according

to its information content. The downside of this approach is that it

requires an entry for each entity in the feature universe, needing a

feature vector of tens of thousands of dimensions to represent just

four spaces. Computing similarity across multiple spaces by this ap-

proach therefore does not scale readily to large numbers of feature

spaces.

In this work, we address this issue by translating the feature vec-

tors in each space into pairwise disease similarities, thus capturing dis-

ease relationships in a lower-dimensional space before performing the

integration step to define an overall measure of similarity. This ‘simi-

larity fusion’ approach has been successfully applied to integrate data

in drug repositioning (Gottlieb et al., 2011; Wang et al., 2013), gene

prioritization (Chen et al., 2011) and patient subtyping and survival

analysis (Speicher and Pfeifer, 2015; Wang et al., 2014). Yet there

have been few applications of this approach to quantify disease simi-

larity. In one study, disease similarities were computed by integrating

literature-based similarity of diseases with topology-based similarity

of their associated genes (Li et al., 2016); more recent work related

diseases through ‘meta-correlation’, combining similarity amongst

gene expression and electronic health record profiles of diseases

(Haynes et al., 2017). Another study integrated similarity in nine dif-

ferent spaces according to a pre-defined ‘importance’, with the result-

ing relationships weighted towards genetic similarities (Jalili et al.,

2016). Although the relative ‘importance’ of each relationship type

naturally depends on the context in which the map is used, no study

has yet defined a general method for the combination of multiple dis-

ease similarities in an unbiased manner. In particular, unbiased com-

bination of spaces requires consideration of the underlying

distributions of similarity in each space. To address this issue, we pro-

pose the use of quantile normalization to adjust the similarity distribu-

tions, enabling balanced comparison and combination of disease

similarities across multiple spaces.

In summary, we define a single measure of disease similarity over

six different data types—ontological, phenotypic, literature co-

occurrence, genetic association, gene expression and drug data—and

propose a framework for fusion of these similarities using quantile

normalization. The fused similarities define a disease map: a network

of diseases connected at one or more biological levels. We explore the

unexpected disease links revealed by this approach and their relation

to existing disease classifications and drug-sharing relationships.

2 Materials and methods

2.1 Disease dataset construction
The disease dataset which formed the basis of this work was manually

compiled by searching Gene Expression Omnibus (Barrett et al.,

2013) for common diseases and selecting those where patient-derived

transcriptomic data were available. This resulted in a dataset of 84

diseases, some of which were closely related (e.g. asthma and allergic

asthma; see Supplementary File S1). These diseases were mapped to

the most closely matching disease terms in each space (e.g. ‘teratozoo-

spermia’ may map to ‘azoospermia’ or simply ‘male infertility’, de-

pending on what representation is available in each space; see

Supplementary File S2 for details). Feature sets for each disease were

then constructed in each of ontological, phenotypic, literature co-

occurrence, genetic, transcriptomic and drug spaces using R version

3.3.2 (R Core Team, 2015). Figure 1 shows an overview of this pro-

cess (see Supplementary Text S1 for details). The feature set size of

phenotypic space was restricted to �21 by the dataset used; the fea-

ture set size of drug space was restricted by the number of drugs pre-

scribed for each disease. For the remaining spaces, a feature set size of

100 was chosen, as this captured sufficient information in each space

whilst not being overly large compared to the fixed-size feature

spaces. The exact number may be slightly more or less than 100 for

some diseases due to e.g. ties in the data (see Supplementary Text S2,

Supplementary Table S1 and Supplementary Figs S1 and S2 for details

and exploration of different feature set sizes).

2.2 Similarity fusion
Pairwise similarity scores between each of the 84 diseases were cal-

culated based on the Jaccard index of their feature sets. In the case

of transcriptomic data, where the sizes of the up- and down-

regulated sets are unequal, the Jaccard score was calculated as a

weighted mean of Jaccard scores for the two sets. As the distribu-

tions of similarity scores within each space are uneven, fusion of the

raw similarity scores would cause those spaces with higher average

scores to dominate the fused similarity. Even if the scores are nor-

malized to the same sum, the fused similarities would still be

affected by the differences in distribution of similarity values in each

space (e.g. causing sparse spaces to dominate the fused scores at

high similarities). We therefore applied quantile normalization

(Bolstad et al., 2003) to adjust the distributions of similarity scores

towards each other, enabling comparison and combination of each

space. Similarity values were quantile-normalized using the

normalizeQuantiles function from limma (version 3.30.13), includ-

ing adjustment for tied values. A single ‘fused’ similarity score was

then computed by taking the mean of the individual quantile-

normalized similarity values for each space, resulting in a 3486-di-

mensional similarity vector (or an 84�84 symmetric similarity ma-

trix) forming the basis of the disease map. The map presented here is

Fig. 1. Disease similarity fusion workflow. Disease data from six different ‘fea-

ture spaces’ are transformed into symmetric similarity matrix representa-

tions. Feature sets for each disease are formed of the approximately 100 top

features in each space, although the exact number varies depending on the

available data. Similarity matrices representing each individual feature space

are then normalized and combined into a single fused similarity matrix. The

disease relationships represented by this matrix can be analyzed to find novel

links between diseases or links which may represent drug-sharing

opportunities
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based on an unweighted mean of spaces, although the method

allows the specification of weights in order to adjust the influence of

each space on the fused similarities. An example of the similarity cal-

culation for a pair of diseases is given in Supplementary Text S3.

2.3 Defining a significance threshold for disease

similarity
To construct the disease map, we defined a threshold of significant

similarity above which diseases are linked, based on 1000 random

similarity matrices. Randomized feature vectors were constructed

for each disease by sampling from the feature universe, defined as

the union of all features in that space across all diseases in the data-

set, according to their distribution (frequency) in the dataset.

Random fused matrices were created from these random feature vec-

tors as described in section 2.2. A comparison of the distribution of

the random against the real fused similarity scores is given in

Supplementary Figure S4. The 99.99th percentile of the random

similarity scores (equivalently, the maximum similarity observed in

83% of the random matrices) was taken as the threshold of similar-

ity above which diseases were considered to be linked. 6.9% of simi-

larity values in the network were above this threshold. Cytoscape

(Shannon et al., 2003) was used for network visualization.

2.4 Evaluating the fused similarity scores
An initial evaluation of the fused similarity scores was carried out

against an independent disease comorbidity dataset (Hidalgo et al.,

2009), which covers 938 of our 3486 disease pairs with 7 duplicate

mappings; see Supplementary Text S1 for details.

Any disease-related evaluation data covering all diseases could

also be used as a feature space, and so for detailed evaluation we used

a ‘hold-out’ style measuring how well one feature space is represented

in the remaining five. Firstly, drug approval information (obtained

from ChEMBL as described above, although here we also included

drugs in Phase III clinical trials) measures whether similarity between

two diseases might indicate drug-sharing potential. Secondly, mem-

bership of Disease Ontology top-level classes measures how closely

disease associations match established notions of clinical similarity.

This was evaluated by training random forest classifiers on the pair-

wise similarity values, using the R package randomForest (Liaw and

Wiener, 2002) with default parameters. To ensure availability of suffi-

cient training data, DO class prediction was split into two binary

tasks—membership of disease of anatomical entity, and membership

of disease of cellular proliferation. Model performance was evaluated

using stratified Monte Carlo cross-validation, with an 80–20 split into

training and test sets. The true positive rate (TPR), false positive rate

(FPR) and area under the ROC curve (AUROC) were calculated using

the function performance from the package ROCR (Sing et al., 2005)

averaged over 1000 runs. In order to display ROC curves, TPR and

FPR were averaged only over those runs where the mode average

number of data points were recorded.

3 Results

3.1 Exploratory disease map analysis identifies existing

and novel disease relationships
The core of the disease mapping method is the conversion of feature

spaces from high-dimensional feature sets into similarity vectors

(Fig. 1), allowing comparison and combination of heterogeneous data

types to create a ‘disease map’: a network of diseases that are linked

at multiple biological levels. Links in the disease map represent simi-

larities above a threshold of significance (calculated as described in

Section 2.3) between the 84 diseases analyzed here, as shown in

Figure 2. 81 of the 84 diseases are included in the map, with cystic fi-

brosis, teratozoospermia and placental malaria not showing any sig-

nificant links to other diseases. Many links in the map correspond to

the traditional ontological classes represented by the Disease

Ontology (DO)—particularly within the DO classes disease of cellular

proliferation, disease by infectious agent and respiratory system dis-

ease—but we additionally observed many novel links that span trad-

itional disease categories, here defined as disease pairs which are not

in the same top-level DO class. These novel links make up 15% of the

links in the disease map. Many of the novel links represent diseases of

distinct etiology which share similar features, such as actinic keratosis

and psoriasis, or chronic obstructive pulmonary disease and malignant

pleural mesothelioma (Supplementary Table S3).

If diseases linked in the map are pathologically related, they may

be more likely to co-occur in the same patient. We therefore com-

pared links in the disease map to disease comorbidities based on the

medical records of 13 million patients (Hidalgo et al., 2009). The 63

links for which comorbidity scores are available had a median rela-

tive risk (RR) of 2.35 (i.e. diseases are 2.35 times more likely to co-

occur than expected by chance), compared to a median of 1.06 for

the 875 scored pairs not linked in the disease map. 71% of these

links co-occur in patients at a RR threshold above 1.5, compared to

27% of the non-linked pairs, or 2.6 times more often. At higher RR

thresholds of 2 and 5, this ratio increases to 4.6 and 10.6, respective-

ly. This relationship suggests that links in the disease map represent

clinically relevant associations.

3.2 Case study: psoriasis
The disease map also allows us to focus on connections of a disease of

interest. As a case study, we examine psoriasis and its related diseases,

which form a densely connected region of the map. Psoriasis is classi-

fied as a skin condition in Disease Ontology, but is known to have im-

mune and hereditary components (Boehncke and Schön, 2015). This

is reflected in the disease map, which links psoriasis to a number of

autoimmune diseases as well as to other skin diseases (Fig. 3), such as

the relationship between psoriasis and the inflammatory bowel dis-

eases Crohn’s disease (CD) and ulcerative colitis (UC). Interestingly,

there is known to be a degree of co-occurrence between these condi-

tions (Egeberg et al., 2016). Psoriasis, CD and UC share a number of

genetic associations including interleukin family genes IL12B and

IL23R, involved in cytokine-mediated immune response; STAT3,

which is activated by the interleukin IL6 (also shared) to produce in-

flammatory T-cells (Yang et al., 2007); and (in psoriasis and UC)

human leukocyte antigen HLA-B, which also plays an important role

in the immune system. Psoriasis, CD and UC also show shared dysre-

gulation in the expression of several genes including upregulation in

the pro-inflammatory S100 family (S100A8, S100A9) and CXC che-

mokines CXCL8, CXCL9 and CXCL10 (associated with immune

system activation). Importantly, some of their shared features are rele-

vant to the drugs prescribed for these diseases: the monoclonal anti-

bodies adalimumab and infliximab are antagonists of TNF (Park and

Jeen 2015), whose corresponding gene variation in a number of dis-

eases including CD, UC and psoriasis.

3.3 Similarity conversion allows comparison of

information content between feature spaces
The use of quantile normalization allows the direct comparison of

disease relationships present in the individual (and fused) feature

spaces. This can be quantified by the Pearson correlation between

the pairwise disease similarities in each space (Fig. 4). The most
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similar spaces are phenotype and literature co-occurrence, with a

Pearson correlation of 0.56. Both spaces are based on literature min-

ing, and there is also a degree of overlap between MeSH disease

terms and phenotypes (e.g. ‘diabetes mellitus’ is both a MeSH dis-

ease term and a phenotype in the Human Phenotype Ontology) so

the two spaces are not completely orthogonal. The ontological space

also has high correlation with these two spaces, suggesting that these

spaces capture ‘traditional’ knowledge of disease relationships. In

contrast, the low correlation (<0.2) across the three ‘non-tradition-

al’ representations (genetic association, gene expression and drug

approval) indicate that disease relationships are highly distinct in

each of these spaces.

Whilst the fused similarities have high correlation with each of

the individual spaces, the fused space seems to resemble the three

‘traditional’ spaces more than the others, despite each space con-

tributing equally to the fused similarities. As may be anticipated,

shared similarities in the ‘traditional’ spaces cause the averaged

similarities in the fused space to reflect these shared similarities

more highly. This can be adjusted by down-weighting these spaces

so that they have less influence on the fused similarities. Weighting

the ‘traditional’ spaces so that they together make up one-third of

the total similarity (instead of half), the similarity of the ‘tradition-

al’ spaces to the fused becomes 0.56, 0.65 and 0.68 for ontologic-

al, phenotypic and literature-based spaces, respectively; and 0.58,

0.63 and 0.61 for genetic, expression and drug spaces. Despite

doubling the contribution of the ‘non-traditional’ spaces, the

resulting disease map does not appear substantially different

(Supplementary Table S4, Supplementary Figs S5 and S6), suggest-

ing that the disease map is not overly affected by the similarity of

the ‘traditional’ spaces.

Fig. 2. Disease map resulting from fused similarity scores. Connecting the most similar diseases defines a disease network, where edges represent similarity in

multiple feature spaces. The network shown here is constructed from all six feature spaces and connects diseases not only within DO classes (the class ‘Disease

of anatomical entity’ has been split into subclasses for clarity) but shows novel links (highlighted in blue) which are in different DO classes. More detail on these

novel links is given in Supplementary Table S3. The network shown is based on a force-directed layout, with minor adjustments to node position for readability

Fig. 3. Diseases related to psoriasis. As well as known links to other skin

diseases, psoriasis has links to a number of phenotypically distinct dis-

eases with an autoimmune component, such as alopecia, arthritis and

lupus, as well as inflammatory bowel diseases with which it shares gen-

etic features related to drugs that can be used to treat both conditions.

There is a high degree of interconnection amongst this group of dis-

eases, which form one of the most densely connected areas in the

network
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Similar results are seen for correlation of each individual space

to only the significant disease similarities included in the disease

map, rather than the entire fused matrix (i.e. setting non-significant

fused similarities to 0) (Supplementary Table S5). The disease map

therefore fundamentally resembles these traditional spaces, whilst

inclusion of the diverse relationships from the genetic association,

gene expression and drug spaces adds novel similarities which distin-

guish the disease map from traditional classification systems.

3.4 Top disease links in the fused space show high

overlap in shared drugs relative to the individual spaces
One aim of the disease map is the identification of similarities be-

tween diseases that could indicate where two diseases might be

treated with the same drug. We therefore assessed the extent to

which links in the disease map correspond to drug-sharing relation-

ships between the linked diseases. For this task, we included in the

definition of drug-sharing drugs that are in phase 3 clinical trials (as

opposed to approved drugs only, which were used to construct the

drug feature space). 61.6% of the links in the full disease map share

drugs (with 44.2% of links sharing approved drugs only).

Rather than simply looking at the percentage of links which share

at least one drug, we can evaluate the mean Jaccard drug overlap of

diseases linked by the map. This accounts for differences in the num-

ber of drugs prescribed for each disease, as well as the number of

drugs shared. However, this score is less intuitive and is best under-

stood in comparison with the individual disease maps. Excluding any

information from drug space, we therefore compared the remaining

individual spaces to a disease map constructed from the fusion of

these five spaces. At the cut-off of the top 6.9% of similarity values

(used to construct the full disease map), links in this non-drug fused

space have a higher Jaccard overlap of drugs approved and in Phase

III trials (0.050) than in any of the individual spaces (mean of 0.040).

This analysis was repeated across multiple similarity thresholds,

from all values to the top 1% highest similarity scores (Fig. 5). As

expected, the higher the similarity threshold used, the greater the

mean Jaccard drug score of diseases linked in the resulting map.

Indeed, at the top thresholds of similarity (the top 5% or above), links

in the non-drug fused map show greater mean drug overlap than links

in any of the maps constructed from individual spaces, although the

difference is relatively small. Importantly, drug overlap at the top

thresholds is higher for the fused similarities than the average over the

five spaces (grey line on Fig. 5), despite the fact that the fused similar-

ities are constructed from the average of similarities in each space. A

similar result was also seen when considering only approved drugs

(Supplementary Fig. S7) and for the weighted disease map

(Supplementary Fig. S6), although for these cases ontological and/or

literature spaces slightly outperform the non-drug fused space at cer-

tain (including top) similarity thresholds. If only novel links (those in

different top-level DO classes) are considered, the fused space is out-

performed by ontological and literature spaces; this may be driven by

the presence of links between neurodegenerative and mental disorders

in these spaces (see Supplementary Fig. S8 for details).

3.5 Fused similarities outperform individual similarities

in the prediction of disease classes
We next used Random Forest classifiers to examine how well the

similarities in fused and individual spaces (excluding the ontological

space) correspond to known disease categories, reasoning that the

ability of the fused similarities to reconstruct known categories

would grant greater confidence that any novel relationships are like-

ly to be biologically relevant. To ensure the existence of sufficient

training data to build a robust classifier, we aimed to predict the

two largest Disease Ontology classes: disease of anatomical entity

and disease of cellular proliferation. Receiver Operating

Characteristic curves for each space show that there is high variation

between each space, although all spaces did better than random

(Fig. 6). Of the individual spaces, literature-based similarities were

best able to classify diseases into known categories, with an

AUROC of 0.905 for disease of anatomical entity and 0.968 for dis-

ease of cellular proliferation. Phenotypic similarities were also good

predictors of disease classes, with an AUROC of 0.901 and 0.927

for disease of anatomical entity and disease of cellular proliferation,

respectively. Genetic and transcriptomic spaces do not closely cor-

relate with the known categorizations (Fig. 6), which is expected as

Fig. 4. Correlation of pairwise similarity scores between feature spaces. The

high correlation between phenotypic-, ontological- and literature-based simi-

larity indicates that relationships in these ‘traditional’ spaces are relatively

similar to each other, whereas there is little resemblance between relation-

ships in genetic association, gene expression and drug spaces. The fused

space resembles relationships in all spaces, but appears more similar to the

‘traditional’ spaces due to the multiple representation of relationships shared

between these spaces

Fig. 5. Mean Jaccard overlap of drugs between disease pairs linked at differ-

ent thresholds of similarity. The mean Jaccard overlap of drugs (approved or

in Phase III clinical trials) was measured at 100 similarity thresholds, from

0.00 to 0.99. Diseases that are highly similar in the fused space (constructed

without drug information) are more likely to share approved or trialled drugs

than diseases that are highly similar in the five individual spaces on average.

Drug overlap in the sparse feature spaces, which have comparably few links

between diseases, is static until higher thresholds of similarity are used (no-

ticeable for the ontological and phenotypic spaces)
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traditional disease classifications (such as the slightly outperform

the non-drug fused space at certain (including top) similarity thresh-

olds) do not take into account genetic or transcriptomic similarities.

The (non-DO) fused similarities outperformed any of the individual

spaces, with AUROC scores of 0.920 for disease of anatomical entity

and 0.986 for disease of cellular proliferation, despite the integration

of spaces which are not such good predictors of disease classes. The

mean performance over the five individual spaces was 0.795 for the

prediction of disease of anatomical entity and 0.910 for the prediction

of disease of cellular proliferation, meaning that the non-DO fused sim-

ilarities outperformed the individual similarities by 10% on average

(mean AUROC over the two tasks of 0.953 for the fused similarities

versus 0.852 for the individual similarities). Largely similar results

were seen for different feature sizes (Supplementary Fig. S2), although

phenotypic and/or literature spaces slightly outperformed the fused

space at some feature set sizes. Weighting the fused similarities so that

the overlapping phenotype and literature co-occurrence spaces

accounted for only 25% of the fused similarities (instead of 40%, as

ontological space is excluded) did not significantly affect classification

of disease of cellular entity, but slightly reduced the AUROC score to

0.891 for disease of anatomical entity (slightly less than phenotypic

and literature similarities, see Supplementary Table S4).

4 Discussion

In this study, we have introduced a method to integrate biological

data across multiple domains through conversion of feature sets into

normalized similarity scores, such that each space contributes evenly

to the fused similarity. For the first time, we applied this similarity

fusion approach across six feature spaces (ontological, phenotypic,

literature co-occurrence, genetic association, gene expression and

drug indication data) in an unbiased manner, avoiding the need to

make any judgements as to the importance of different data types.

Following the normalization step relative, spaces may be weighted

according to the desired application of the map (in terms of the im-

portance placed on finding novel links versus reflecting known links,

for instance). Given that this choice is application-dependent, we

here used a balanced fusion of each space to create a ‘disease map’:

a network linking diseases with significant similarities across mul-

tiple spaces. As well as known disease connections involving clinic-

ally related and comorbid diseases, the disease map reveals novel

connections between diseases in different ontological categories

(Fig. 2), and highlights shared features between diseases—for ex-

ample, shared gene expression patterns which may underlie an

observed common phenotype. In the case study of psoriasis, we

showed how genetic variants shared with inflammatory bowel dis-

eases were also related to drugs used for both conditions, illustrating

how the identification of similarities between diseases at a ‘molecu-

lar’ level can indicate potential opportunities for sharing drugs, and

to generate early drug-repositioning hypotheses in a ‘guilt-by-associ-

ation’ approach (Chiang and Butte 2009). This example illustrates

how ‘molecular’ (e.g. genetic and gene expression based) approaches

to disease similarity can identify disease relationships which are not

captured by traditional classifications of disease: the link between

psoriasis and autoimmune disease, for example, is present in

SNOMED but absent from other major classifications including

MeSH, DO and ICD.

Through the fusion of multiple data types, the disease map gives

a new perspective on disease relationships, where aspects of disease

not ordinarily considered by established classification systems (such

as genetics and gene expression) reveal novel similarities between

diseases. These spaces contain similarities not captured in our ‘trad-

itional’ understanding of disease relationships (Fig. 4), and therefore

contribute greater depth of interest to the disease map.

From this perspective, the more data types that can be included

in the map, the more complete the description of the biological sys-

tem becomes. Using a ‘hold-out’ evaluation style, we were able to in-

corporate all six data types included in this study into the map,

without designating any data types as reserved for evaluation pur-

poses. In agreement with previous studies showing how inclusion of

more data types leads to greater accuracy in the prediction of disease

relationships (Sun et al., 2014a; �Zitnik et al., 2013), the fused simi-

larities outperformed any individual space in predicting disease class

membership, despite the inclusion of spaces that individually had lit-

tle relation to known disease classes (Fig. 6). In fact, the fused simi-

larities, which are based on averaging similarity values,

outperformed the average of individual similarity values by a mean

of 10% across the two classes. One explanation for this is that the

two spaces that are most similar to the ontological space (phenotyp-

ic and literature co-occurrence spaces) are also similar to each other

(Fig. 4), as they are based on literature mining of phenotype terms

and MeSH terms respectively, and there is some overlap between

Fig. 6. Ability of similarity scores from fused and individual spaces to predict Disease Ontology classes. Individual spaces differ widely in their predictive ability,

with literature-based similarity and phenotypic similarity performing particularly well. The fused similarity scores outperform all individual spaces for the predic-

tion of ‘disease of cellular proliferation’ (AUROC 0.986, right). The fused similarity scores also outperform the individual spaces for predicting ‘disease of anatom-

ical entity’ (AUROC 0.920), although for this class (which contains more diverse disease types) phenotype and literature co-occurrence perform almost as well

(AUROC 0.901 and 0.905, respectively)
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these term sets. The similar disease relationships contained in these

spaces therefore reinforce each other in the fused similarities.

However, even if these two spaces are down-weighted (with a corre-

sponding increase in influence of the ‘non-traditional’ spaces), the

fused similarities still markedly outperform the average of other

spaces in the prediction of disease classes (Supplementary Table S4),

suggesting that the classification performance is not driven purely by

these spaces; rather, the benefit in similarity fusion lies in the priori-

tization of disease relationships common to multiple spaces.

Our second evaluation measure was the sharing of drugs (either

approved or in Phase 3 clinical trials) between diseases. Although

the drug sharing space is highly distinct from any of the other spaces

(Fig. 4), drug-sharing relationships were captured well by the (non-

drug) fused space, which had a high mean Jaccard overlap of drugs

shared amongst its most similar disease pairs relative to the individ-

ual spaces (Fig. 5). This not only increases our confidence in the bio-

logical relevance of the linked diseases, it further illustrates the value

of incorporating multiple data types into the disease map. This pat-

tern fits what we have seen in computational drug-repurposing

approaches: while approaches based on individual data types such

as genome-wide association studies (Okada et al., 2014) or tran-

scriptomics (Dudley et al., 2011; Jahchan et al., 2013; van Noort

et al., 2014) are possible, successful drug-repurposing methods often

incorporate multiple data types (Gottlieb et al., 2011; Iwata et al.,

2014); data fusion may therefore become an increasingly important

approach in drug discovery.

In summary, we have demonstrated the utility of similarity fu-

sion for integrating different types of biological data in the analysis

of disease relationships, showing that the fused data is not only able

to reconstruct known disease and drug-sharing associations, but

also offers the possibility of highlighting new relationships between

diseases. Our similarity-based approach is particularly suited for the

integration of high-throughput datasets where dimensionality would

otherwise pose a problem, such as proteomics and metabolomics

data. This approach could be extended to any number of spaces,

leading to the possibility of a fully comprehensive disease map. Such

a map could transform our current understanding of disease and dis-

ease relationships, revealing shared mechanisms behind diverse dis-

eases which could eventually help to drive novel drug repurposing

and treatment opportunities.
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