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Abstract

Background: Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large
family of actin crosslinkers and is considered as a marker for many cancers. Phosphorylation of L-plastin on residue Ser5
increases its F-actin binding activity and is required for L-plastin-mediated cell invasion.

Methodology/Principal Findings: To study the kinetics of L-plastin and the impact of L-plastin Ser5 phosphorylation on L-
plastin dynamics and actin turn-over in live cells, simian Vero cells were transfected with GFP-coupled WT-L-plastin, Ser5
substitution variants (S5/A, S5/E) or actin and analyzed by fluorescence recovery after photobleaching (FRAP). FRAP data
were explored by mathematical modeling to estimate steady-state reaction parameters. We demonstrate that in Vero cell
focal adhesions L-plastin undergoes rapid cycles of association/dissociation following a two-binding-state model.
Phosphorylation of L-plastin increased its association rates by two-fold, whereas dissociation rates were unaffected.
Importantly, L-plastin affected actin turn-over by decreasing the actin dissociation rate by four-fold, increasing thereby the
amount of F-actin in the focal adhesions, all these effects being promoted by Ser5 phosphorylation. In MCF-7 breast
carcinoma cells, phorbol 12-myristate 13-acetate (PMA) treatment induced L-plastin translocation to de novo actin
polymerization sites in ruffling membranes and spike-like structures and highly increased its Ser5 phosphorylation. Both
inhibition studies and siRNA knock-down of PKC isozymes pointed to the involvement of the novel PKC-d isozyme in the
PMA-elicited signaling pathway leading to L-plastin Ser5 phosphorylation. Furthermore, the L-plastin contribution to actin
dynamics regulation was substantiated by its association with a protein complex comprising cortactin, which is known to be
involved in this process.

Conclusions/Significance: Altogether these findings quantitatively demonstrate for the first time that L-plastin contributes
to the fine-tuning of actin turn-over, an activity which is regulated by Ser5 phosphorylation promoting its high affinity
binding to the cytoskeleton. In carcinoma cells, PKC-d signaling pathways appear to link L-plastin phosphorylation to actin
polymerization and invasion.
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Introduction

Cell motility is driven by remodeling of the actin cytoskeleton

and cell contacts with the extracellular matrix (ECM) [1], a

process which is under the control of a plethora of actin-binding

proteins. In particular, actin filament crosslinkers have been

proposed to play a critical role in the organization and dynamics of

the actin cytoskeleton and its cellular functions.

L-plastin (also termed L-fimbrin), the hematopoietic plastin

isoform, was initially detected in leukocytes [2]. Aberrantly

expressed in cancer cells derived from solid tissues [3–7], L-

plastin promotes invasion of cultured epithelial cells supporting its

role in cancer progression [8,9]. L-plastin is a representative

member of a large family of actin-crosslinking or -bundling

proteins, including a-actinin and filamin [10]. Members of this

family share a conserved ,250 amino acid F-actin binding

domain (ABD) [11] which is composed of two tandemly arranged

calponin-homology (CH) domains [12]. Plastins contain two ABDs

which are packed into a compact fold [13,14] enabling them to

organize actin filaments into tight bundles [15], as well as an

amino-terminal calmodulin-like headpiece that comprises two

Ca2+-binding EF-hand modules [16]. In cells, L-plastin localizes to

various actin-rich membrane structures involved in locomotion,

adhesion, signaling and immune defense, including focal adhe-

sions, podosomes, filopodia and the phagocytic cup, thus

supporting a role for L-plastin in the organization of the actin

cytoskeleton and in signal transduction [9,17–19]. Biochemical in

vitro data have shown that L-plastin not only organizes filaments

into arrays but also prevents them from depolymerization

suggesting that it may regulate their turn-over [20]. Further
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evidence for a role in the control of actin turn-over is provided by

the observation that L-plastin could substitute for yeast plastin in a

Sac6 null mutant which exhibited defects in actin polymerization

[21].

Among the three human plastin isoforms which also include T-

and I-plastin, only L-plastin has been reported to be regulated

through phosphorylation [22] in response to signals triggering the

activation of the immune response, cell migration and prolifera-

tion. Phosphorylation on residue serine-5 (Ser5), the major L-

plastin phosphorylation site [22–24], has been shown to increase

its F-actin-binding and -bundling activities in vitro and to be

required for efficient targeting of L-plastin to focal adhesion sites as

well as for cancer cell invasion [8,9]. However, the impact of L-

plastin Ser5 phosphorylation on L-plastin binding-unbinding

kinetics and on actin turn-over in live cells remains to be

investigated.

Distinct protein kinases appear to be responsible for L-plastin

phosphorylation depending on the cell type and environment. In

hematopoietic cells and in various other non-transformed cell

types, it is well-established that L-plastin can be phosphorylated on

residue Ser5 by the cAMP-dependent Protein Kinase A (PKA)

which has also been shown to directly phosphorylate L-plastin in

vitro [9,24]. However, in addition to PKA, other kinases such as

PKC have been suggested to contribute to L-plastin phosphory-

lation in leukocytes, fibroblasts and neutrophils [22,25].

Here we studied L-plastin/actin kinetics in live cells and L-

plastin phosphorylation in response to signals triggering cytoskel-

etal rearrangements. Quantitative fluorescence recovery after

photobleaching (FRAP) assays revealed that L-plastin associated

with focal adhesions following a two-binding-state model and that

L-plastin phosphorylation increased its association rates and,

hence, its capacity to stably dock to specific cytoskeleton structures.

Importantly, L-plastin induced an increase of the F-actin content

at focal adhesion sites by decreasing the actin dissociation rate.

These effects on actin turn-over were considerably enhanced by L-

plastin phosphorylation on residue Ser5. Furthermore, treatment

of MCF-7 breast cancer cells with the cell invasion promoting

agent phorbol 12-myristate 13-acetate (PMA), triggered the

translocation of endogenous L-plastin to ruffling membranes and

spike-like structures as well as L-plastin Ser5 phosphorylation,

through activation of PKC-d signaling pathways.

Results

Binding Kinetics of L-Plastin Follow a Two-Binding-State
Model and Are Modulated by Ser5 Phosphorylation in
Live Vero Cells

To investigate the steady-state dynamics of L-plastin and actin in

living cells and the role of L-plastin phosphorylation on Ser5 herein

(Fig. 1A), we performed confocal microscopy-based fluorescence

recovery after photobleaching (FRAP) experiments using previously

characterized L-plastin variants in fibroblast-like Vero cells which

do not express endogenous L-plastin [9]. FRAP, which is a powerful

approach for studying molecular mobility in live cells [26,27] was

combined with mathematical modeling to estimate the steady-state

kinetics of L-plastin variants and actin turn-over which reflects actin

polymerization and depolymerization reactions [28,29]. Similar to

epitope-tagged wild type L-plastin [9], wild type (WT-) L-plastin

fused to GFP colocalized with actin in focal adhesions, membrane

protrusions and along stress fibers, as visualised by epifluorescence

microscopy (Fig. 1B, upper panels). To study the kinetics of the

phosphorylated pool of L-plastin in Vero cells, we took advantage of

the fact that transfected WT-L-plastin is phosphorylated on Ser5

and targeted to focal adhesions in these cells [9]. The bleach was

therefore performed in a small region of interest (ROI) in focal

adhesions (Fig. 1C). For each ROI, the experimental intensity

recoveries were normalized and averaged. The obtained curves

exhibited a fast and a slow phase of recovery (Fig. 1D). Twenty

seconds after photobleaching, 89% of recovery was reached for WT

GFP-L-plastin suggesting that the protein is highly mobile,

undergoing rapid cycles of association and dissociation, as reported

for other crosslinking proteins [26,30]. Quantitatively, the best fits of

the FRAP curves were obtained with a ‘‘two-binding-state’’ model

[31]. This model may be applied to a system in which a molecule

exhibits two distinct binding states involved in the interaction with

the free binding sites of a partner molecule to form a complex.

Analysis with the two-binding-state model allowed the separation of

FRAP recovery curves into two largely independent phases, a first

relatively quick phase from zero to ten seconds (k1off = 0.616 s21 for

WT) and a second much slower phase that represented the plateau

(k2off = 0.03 s21 for WT), such that k1off & k2off. Based on this model,

we estimated the equilibrium normalized concentration of free WT-

L-plastin molecules Feq (Feq(WT) = 0.51360.01) and the association

rates k*1on (k*1on(WT) = 0.33860.032 s21) and k*2on (k*2on(WT) =

0.0160.001 s21) by fitting the normalized experimental FRAP

curves with equation (5) (Fig. 1E, see Materials and Methods).

To estimate how phosphorylation of L-plastin affects these

parameters, we used two previously characterized phosphorylation

variants of L-plastin in which residue Ser5 of L-plastin was

replaced with an alanine (L-plastin Ser5/Ala) or a glutamate

residue (L-plastin Ser5/Glu), to inactivate or to mimic phosphor-

ylation respectively [9]. In agreement with previous results

obtained with epitope-tagged variants, a comparable yet more

pronounced localization to F-actin structures was observed with

Ser5/Glu (S5/E) GFP-L-plastin as compared to WT GFP-L-

plastin. In contrast, Ser5/Ala (S5/A) GFP-L-plastin exhibited a

diffuse cytoplasmic staining with merely a weak localization in

focal adhesions and membrane protrusions (Fig. 1B).

The recovery curve of GFP-coupled S5/A-L-plastin varied from

that of WT- and S5/E-L-plastin. Indeed the S5/A variant

exhibited a faster recovery curve as compared to WT and S5/E

variants suggesting a higher mobility of this variant (96% of

recovery twenty seconds after photobleaching) (Fig. 1D). This

difference was unlikely to be merely due to fast molecule diffusion,

as an additional set of FRAP experiments, in which the size of the

bleached region was increased at least three-fold, yielded similar

recoveries (data not shown). Calculation of Feq confirmed that, for

the GFP-coupled S5/A-L-plastin variant, more unbound mole-

cules were observed at the equilibrium than for the WT or S5/E

GFP-L-plastin variants (Fig. 1E). The rate of association at the

first ‘quick’ binding state k*1on was two-fold lower for S5/A- as

compared to WT-L-plastin (k*1on(WT) = 0.33860.032 s21;

k*1on(SA) = 0.17360.012 s21), reflecting a lower association rate

of the phosphorylation-defective S5/A variant. Conversely, the

phosphomimetic S5/E-L-plastin variant exhibited a k*1on which

was even higher than that of the WT (k*1on(SE) = 0.4260.04 s21).

Accordingly, the association rate at the second so-called ‘slow’

binding state k*2on was also two-fold lower for S5/A-L-plastin as

compared with WT- and S5/E-L-plastin variants which exhibited

similar k*2on association rates. Interestingly, WT-L-plastin and

Ser5 substitution variants exhibited very similar dissociation

rates at the quick-binding state k1off (k1off(WT) = 0.61660.041 s21;

k1off(SA) = 0.07360.041 s21; k1off(SE) = 0.61260.042 s21; see Fig. 1E)

and at the slow-binding state k2off (data not shown).

Altogether, these findings suggest that the interaction of L-

plastin with specific F-actin structures follows a ‘‘two-binding-

state’’ model and that the association rates are up-regulated by L-

plastin phosphorylation on residue Ser5.

L-Plastin and Actin Dynamics
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Figure 1. L-plastin phosphorylation modulates its mobility in focal adhesions. (A). Schematic representation of wild-type (WT) L-plastin
showing the headpiece domain followed by two independent actin binding domains (ABDs). Residue serine-5 (Ser5) of the headpiece was mutated
to alanine (SA) to generate unphosphorylatable L-plastin or to glutamic acid (SE) to generate an L-plastin variant mimicking constitutive
phosphorylation. (B). Expression and localization of GFP-coupled L-plastin phosphorylation variants in Vero cells. Vero cells were transfected with
cDNA encoding GFP-L-plastin phosphorylation variants. After 48 hours, cells were fixed and processed for immunofluorescence. The localization of L-
plastin and F-actin was analyzed with an epifluorescence microscope (Leica DMRX microscope) after staining with Rhodamine-conjugated phalloidin
to visualize polymerized actin. Scale bar, 20 mm. (C). A typical FRAP experiment carried out on a Vero cell transfected with WT GFP-L-plastin. The
boxed region in the upper panel (scale bar, 10 mm) is shown enlarged in the bottom panels (scale bar, 4 mm). Circular spots, surrounded by a white
line, are regions of interest (ROI) that are submitted to photobleaching and that have a diameter of 5 mm. Such spot size was selected to smooth local
area effects and visually well-represents the focal adhesion region. Pictures were recorded before bleaching, immediately after bleaching and 90
seconds after bleaching. (D). Normalized FRAP recovery curves of wild type (WT, red), Ser5/Ala (SA, blue) and Ser5/Glu (SE, green) GFP-L-plastin
fusions are compared to the curves predicted by the two-binding-state model (black curves). Data were obtained from three independent
experiments representing 10 FRAP recordings for each condition. (E). Charts representing biochemical parameters obtained from fitting data with a
two-binding-state model. Bars represent the mean 6 s.d. P-values were calculated using standard Student’s t-test. A p-value,0.05, considered as
statistically significant, was obtained for Feq, k*1on and k*2on but not for k1off.
doi:10.1371/journal.pone.0009210.g001
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L-Plastin Modulates Actin Dynamics in a
Phosphorylation-Dependent Manner in Vero Cells

L-plastin appears to affect actin dynamics by binding along

actin filaments, as supported by previous biochemical data [9,20].

To address this issue, FRAP experiments were performed on GFP-

actin in Vero cell focal adhesions, co-transfected with GFP-actin

and L-plastin variants fused to monomeric DsRed (Fig. 2A). In

agreement with previous kinetic studies of GFP-actin in cells [32],

the fast recovery phase of GFP-actin involved rapid diffusion of the

large free pool of actin monomers into the bleached area. Indeed,

diffusion of the free monomers led to recovery in less than one

second, which was below the characteristic time of the association/

dissociation kinetics and time resolution of our experiments. The

measured postbleach fluorescence intensity of GFP-actin was

strongly reduced in WT-L-plastin expressing cells as compared to

control cells (Fig. 2B), suggesting a decrease of the fraction of free

diffusible actin monomers in response to L-plastin expression.

We applied a one-binding-state model in a reaction dominant

regime to analyze our FRAP data [31]. This equation is applicable

to various FRAP behaviours for a single binding reaction in the

presence of fast monomer diffusion at steady-state. We estimated

the equilibrium concentration of free actin monomers Feq, the

dissociation rate koff and the association rate k*on by fitting the

normalized experimental FRAP curves with equation (3) (see

Materials and Methods). We also calculated the ratio of bound to

free G-actin molecules Keq, defined by Keq~k�on

�
koff [31]. These

parameters provide information on how L-plastin variants

influence the fraction of polymerized actin and the turn-over of

actin filaments in focal adhesions. The estimated values for Feq

revealed that the concentration of free actin monomers was clearly

decreased in cells expressing WT-, S5/A- or S5/E-L-plastin-

DsRed fusions when compared with control cells (Ctrl) expressing

DsRed alone (Feq(Ctrl) = 0.78760.002; Feq(WT) = 0.58860.002;

Feq(SA) = 0.66260.001; Feq(SE) = 0.53160.002) (Fig. 2C). Similarly,

more F-actin was present at focal adhesion sites as illustrated by

the Keq values (Keq(Ctrl) = 0.11260.009; Keq(WT) = 0.56360.064;

Keq(SA) = 0.2360.021; Keq(SE) = 0.69460.098). This effect was more

pronounced for the S5/E-L-plastin and less strong for the S5/A-L-

plastin variants than for WT-L-plastin. Moreover the actin

dissociation rate koff was affected in a comparable way by the

three L-plastin variants, with a koff decrease of two-fold observed

with the S5/A-L-plastin variant and a four-fold koff decrease

obtained with WT- or S5/E-L-plastin (Fig. 2C). No significant

changes in k*on could be detected between S5/A-L-plastin- or WT-

L-plastin-expressing cells and control cells, whereas the expression

of the S5/E-L-plastin variant in cells led to a notable increase of

the actin association rate k*on. Based on previous results, it can be

excluded that the observed differences described above are due to

dissimilar expression levels or stability of the phosphorylation

variants [9].

Altogether, these data demonstrate that L-plastin affects actin

dynamics and turn-over in focal adhesions by lowering the

dissociation rate of actin, an effect which appears to be

considerably enhanced by L-plastin Ser5 phosphorylation.

PMA Induces Translocation of L-Plastin to De Novo
Assembled Actin Structures and Enhances Its Ser5
Phosphorylation in MCF-7 Cells

Our results point to an important role for L-plastin in regulating

actin dynamics, an activity which is promoted by Ser5 phosphor-

ylation. In addition, it has been shown previously that Ser5

phosphorylation is required for L-plastin-mediated cell invasion

[8,9]. L-plastin phosphorylation in macrophages and leukocytes

has been shown to be increased upon treatment with the phorbol

ester PMA [24,33], which is an invasion inducing agent that is

generally used as a potent activator of classical (a, b, and c) and

novel (d, e, and g) PKC family members [34–36]. Here, we

wanted to investigate the effects of PMA treatment in a cancer cell

model, the MCF-7 breast carcinoma cell line. MCF-7 cells have

been shown to express endogenous L-plastin although the

expression level has been described as being heterogeneous [37].

Indeed, a fraction of MCF-7 cells highly expresses L-plastin,

whereas other cells express L-plastin at a level close to or below

immunofluorescence detection limits. Without PMA treatment,

MCF-7 cells exhibited few prominent actin structures, as

visualized by phalloidin staining, and L-plastin displayed a diffuse

cytoplasmic distribution with a very weak localization to the

cortical cytoskeleton (Fig. 3A, upper panels). PMA treatment of

MCF-7 cells led to an important modification of the actin

cytoskeleton organization and, in consequence, of the cell

morphology. Interestingly, the phenotype of MCF-7 cells following

PMA treatment was heterogeneous, with some cells exhibiting

more or less pronounced ruffling membranes (Fig. 3A, second and

third row panels) and others displaying protruding spike-like

structures (Fig. 3A, fourth row panels). Surprisingly, L-plastin

translocated to these newly assembled actin-rich structures in

response to PMA treatment. Notably, L-plastin was mainly

targeted to the proximal, membrane-embedded part of the

protruding spike-like structures, whereas actin could be visualized

throughout the entire length of the spikes. To discriminate

between de novo actin polymerization and reorganization of

existing actin filaments, cells were treated with the actin

polymerization inhibitor cytochalasin D (CytoD), prior to the

incubation with PMA. CytoD inhibited the PMA-induced actin

reorganization and translocation of L-plastin, suggesting that PMA

treatment induced de novo actin assembly rather than the

reorganization of existing actin filaments (Fig. 3A, lower panels).

Next, a highly specific anti-serine-5 phosphorylated L-plastin

(anti-Ser5-P) antibody, that had been characterized before [9], was

used to determine L-plastin phosphorylation in immunoblotting

experiments. Treatment of MCF-7 cells with PMA highly

increased L-plastin phosphorylation (Fig. 3B), suggesting that

PKC-elicited signaling upregulates L-plastin phosphorylation in

these cells. Notably, the treatment of MCF-7 cells with a lower

PMA concentration (0.1 mM) led to similar L-plastin translocation

and phosphorylation events (data not shown).

Finally, we investigated the intracellular localization of Ser5

phosphorylated L-plastin in PMA-treated MCF-7 cells (Fig. 3C).

Immunofluorescence analysis using the anti-Ser5-P antibody and

Rhodamine-phalloidin revealed that L-plastin translocated to F-actin

rich structures following PMA treatment was essentially the

phosphorylated form. Indeed both ruffling membranes (upper and

middle panels) and protruding spike-like structures formed at the cell

periphery (lower panels) were stained with the anti-Ser5-P antibody.

It is noteworthy that transfected S5/A-L-plastin also translocated to

F-actin structures although to a lesser degree than WT- or S5/E-L-

plastin, suggesting that phosphorylation is not strictly required for its

translocation (data not shown). Altogether, these data support a PKC-

dependent mechanism for L-plastin phosphorylation and its

concomitant translocation to de novo assembled actin-rich structures

in epithelial cancer cells, linking the regulation of L-plastin

phosphorylation to that of actin dynamics.

L-Plastin Associates with a Protein Complex Containing
Cortactin, a Regulator of Actin Dynamics

To biochemically corroborate these observations, we investi-

gated whether L-plastin associates with protein complexes

L-Plastin and Actin Dynamics
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Figure 2. L-plastin phosphorylation modulates actin dynamics in focal adhesions. (A). Expression of L-plastin and actin in live Vero cells.
Vero cells were cotransfected with monomeric L-plastin-DsRed-N1 fusion variants and GFP-actin. Wild type L-plastin-DsRed is shown here. Scale bar,
20 mm. (B). Normalized FRAP recovery curves obtained for actin in presence of wild type (WT, red), Ser5/Ala (SA, blue) and Ser5/Glu (SE, green) L-
plastin-DsRed fusions or DsRed alone (control, orange) are compared to the curves predicted by the one-binding-state model (black curves). Data
were obtained from three independent experiments representing 10 FRAP recordings for each condition. (C). Charts representing biochemical
parameters obtained from data fitted with a one-binding-state model. Bars represent the mean 6 s.d.
doi:10.1371/journal.pone.0009210.g002
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Figure 3. PMA induces the translocation of L-plastin to de novo assembled actin structures and triggers L-plastin phosphorylation. (A).
PMA induces actin reorganization with concurrent local accumulation of L-plastin in actin-rich structures. MCF-7 cells were pretreated with or without
0.5 mM cytochalasin D (CytoD) and then treated with 1 mM PMA as indicated. The localization of L-plastin and F-actin was analyzed by epifluorescence
microscopy after staining with an anti-L-plastin antibody and Alexa 488-conjugated phalloidin. The merged image of the boxed region indicated in the
fourth row middle panel is shown enlarged on the right; scale bar, 2.5 mm. Other scale bars, 10 mm. (B). PMA induces phosphorylation of L-plastin on
residue Ser5. MCF-7 cells were treated for 1 hour with or without 1 mM PMA at 37uC. Total cell extracts (50 mg) were analyzed by immunoblotting using
antibodies specific for Ser5 phosphorylated L-plastin (anti-Ser5-P, upper panel), L-plastin (middle panel) or GAPDH (lower panel) to monitor equal
protein loading. (C). Intracellular localization of Ser5 phosphorylated L-plastin in PMA-treated MCF-7 cells. MCF-7 cells treated for 1 h with 1 mM PMA
were analyzed by epifluorescence microscopy after staining with an anti-Ser5-P antibody and Rhodamine-conjugated phalloidin. Upper panels illustrate
the colocalization of Ser5 phosphorylated L-plastin with F-actin in ruffling membranes. Middle panels represent an enlarged detail of the cell shown in
the upper panels (squared area). Lower panels represent a magnified detail of another cell showing the colocalization of Ser5 phosphorylated L-plastin
with F-actin in spike-like structures. Scale bars, 10 mm (upper panels) and 2.5 mm (middle and lower panels).
doi:10.1371/journal.pone.0009210.g003

L-Plastin and Actin Dynamics
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involved in the regulation of actin polymerization. We decided to

use cortactin as a marker for sites of active actin polymerization.

Cortactin, a Src-kinase protein substrate, which localizes to

dynamic actin assembly sites such as lamellipodia, endosomes,

podosomes and invadopodia [38], translocates to ruffling mem-

branes upon PMA treatment [39]. As shown in figure 4A, a

fraction of L-plastin colocalized with cortactin in PMA-treated

MCF-7 cells, mainly in ruffling membranes (Fig. 4A, upper and

middle panels) and, at a lower extent, in the membranous area

where the spike-like structures protrude but not along the spikes

themselves (Fig. 4A lower panels). Immunofluorescence analysis of

PMA-treated cells using the anti-Ser5-P antibody provided

evidence for the colocalization of phosphorylated L-plastin with

cortactin in ruffling membranes (Fig. 4B).

Furthermore, we performed coimmunoprecipitation experi-

ments with PMA-treated MCF-7 cells, using GFP-nanotrap [40].

This assay makes use of bead-linked monovalent lama antibodies

directed against GFP and allows fast and efficient purification of

GFP fusion proteins and their associated complexes formed in the

cell. Importantly, immunoblot analysis revealed that cortactin

efficiently coprecipitated with WT GFP-L-plastin extracted from

PMA-treated cells (Fig. 4C). It is noteworthy that phosphorylation-

defective S5/A GFP-L-plastin as well as WT GFP-L-plastin in

PMA non-treated cells were both able to coimmunoprecipitate

cortactin in some experiments (data not shown). These observa-

tions suggest that Ser5 phosphorylation is not an absolute

requirement for binding, without excluding that it may modu-

late/promote L-plastin association with cytoskeletal protein

complexes, as suggested by the FRAP data. Accordingly, pull-

down assays with MCF-7 cell extracts using recombinant unpho-

sphorylated GST-L-plastin also revealed cortactin in a complex

with L-plastin (Fig. 4D). Altogether, our results identify L-plastin

as a component of a protein complex comprising cortactin and

provide further evidence for its recruitment to sites of active actin

polymerization in cells.

Novel PKC Isozymes Are Required for PMA-Induced Actin
Cytoskeleton Rearrangements and L-Plastin Ser5
Phosphorylation

We have shown very recently that, in the highly invasive 1001

cells, PKC-d is the major PKC isozyme responsible for

endogenous L-plastin phosphorylation [37]. To identify the

PKC isozymes involved in L-plastin phosphorylation in non-

invasive epithelial carcinoma MCF-7 cells treated with PMA, we

used two different PKC inhibitors GF109203X (specific for a, b1,

d, e, f isozyme inhibition) or Gö6976 (inhibiting a and b1

isozymes) [41]. Interestingly, treatment with GF109203X but not

with Gö6976 prevented PMA-induced L-plastin phosphorylation

(Fig. 5A).

Accordingly, GF109203X, but not Gö6976, strongly inhibited

the formation of ruffling structures and spikes and consequently,

the PMA-induced translocation of L-plastin to these structures

(Fig. 5B). A role for the atypical PKC-f could be excluded at the

outset, since unlike classical and novel PKC isozymes, atypical

PKC isozymes do not respond to phorbol esters [42]. These results

argue in favor of an involvement of novel PKC isozymes (d and/or

e) in L-plastin phosphorylation and actin cytoskeleton reorgani-

zation in response to PMA.

PKC-d Is the Major Kinase Involved in PMA-Enhanced
L-Plastin Ser5 Phosphorylation

Although the majority of the non-conventional PKC isozymes

are expressed in MCF-7 cells [43], it is the novel PKC-d isozyme

that has been extensively described as a regulator of the actin

cytoskeleton in epithelial cells [44,45]. To further dissect the

contribution of novel PKC isozymes in PMA-triggered L-plastin

phosphorylation, we performed knock-down experiments using

siRNA technology resulting in 85% of PKC-d or 71% of PKC-e
knock-down. The knock-down of PKC-d significantly inhibited

PMA-dependent L-plastin phosphorylation in MCF-7 cells (63%

decrease of the amount of phosphorylated L-plastin), whereas

PKC-e knock-down had no significant effect (Fig. 5C). Accord-

ingly, knock-down of PKC-TM, but not of PKC-e considerably

impaired the formation of ruffling membranes and spike-like

structures (data not shown). These findings suggest that PKC-TM is

the major PKC isozyme involved in PMA-triggered signaling

pathways leading to L-plastin phosphorylation. Altogether our

results point to a role for PKC-d signaling in the regulation of L-

plastin activity in MCF-7 carcinoma cells.

Discussion

L-plastin is an actin filament bundling protein which contributes

to cancer cell invasion in a phosphorylation-dependent manner. In

the present study, we have shown that L-plastin associates with the

cytoskeleton following a two-binding-state model, in support of

biochemical and structural models. Phosphorylation on Ser5

increased its association rate and, hence, appears to promote the

L-plastin capacity to dock efficiently to the actin cytoskeleton and

regulate actin turn-over. In support of this hypothesis, we have

provided evidence for the first time that L-plastin modulates actin

dynamics in focal adhesions and increases their F-actin content by

decreasing the actin dissociation rate at actin filament ends, this

effect being also promoted by L-plastin Ser5 phosphorylation. In

carcinoma cells, consistent with the role of L-plastin in controling

actin dynamics, the PKC activator PMA induced the translocation

of L-plastin to de novo actin polymerization sites in ruffling

membranes and protruding spike-like structures, and significantly

enhanced its phosphorylation on Ser5 via PKC-d signaling

pathways. In agreement with these findings, we identified L-

plastin as a component of a protein complex comprising cortactin,

a major regulator of actin dynamics. Altogether, our data support

a role for L-plastin in the control of actin turn-over which is

modulated by its phosphorylation on residue Ser5. In MCF-7

carcinoma cells, invasion-promoting pathways appear to upregu-

late L-plastin phosphorylation in parallel to actin cytoskeleton

reorganization.

In our FRAP assays, the recovery of GFP-L-plastin fluorescence

fitted a two-binding-state model [31], comprising a first quick and

a second slow binding phase. Such a mechanism would be in good

agreement with previous data suggesting that the two ABDs of L-

plastin have non-identical interactions with F-actin [20] and that

ABD2 binds actin first, enabling the subsequent binding of ABD1

to a second filament [14]. Phosphorylation on residue Ser5 was

proposed to regulate the targeting of L-plastin to the actin

cytoskeleton [9,33]. Here we found that the non-phoshorylatable

S5/A-L-plastin variant exhibited a lower association rate with

focal adhesions in Vero cells than WT-L-plastin, in line with its

weak colocalization with actin-rich structures, as reflected by the

large pool of unbound S5/A-L-plastin in the cytosol. Phosphor-

ylation of L-plastin mainly increased the association rates k*1on and

k*2on and decreased the concentration of free unbound L-plastin

molecules Feq. Although our experimental set-up does not allow to

determine the order of binding of the two ABDs, our FRAP data

favor a mechanism in which phosphorylation regulates the

docking of the protein to the cytoskeleton rather than its

dissociation. Interestingly, the two ABDs have been described as
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Figure 4. L-plastin associates with cortactin in protein complexes. (A). Colocalization of L-plastin with cortactin in MCF-7 cells. MCF-7 cells
were treated with 1 mM PMA as described and analyzed by epifluorescence microscopy after staining with antibodies specific for L-plastin and
cortactin. Immunofluorescence images illustrate the colocalization of L-plastin (red) and cortactin (green) in ruffling membranes (upper and middle
panels) and at a lower extent in the membrane-embedded portion of spikes (lower panel). Arrows point to regions of colocalization. Scale bars,
10 mm (upper panels) and 3 mm (middle and lower panels). (B). Colocalization of serine-5 phosphorylated L-plastin with cortactin in MCF-7 cells. PMA-
treated MCF-7 cells were stained with anti-Ser5-P and anti-cortactin antibodies and analyzed by epifluorescence microscopy. Serine-5 phosphorylated
L-plastin (green) and cortactin (red) are colocalized in ruffling membranes. Scale bar, 3 mm. (C). Coimmunoprecipitation of cortactin with GFP-L-
plastin in MCF-7 cells. GFP- or GFP-L-plastin-expressing MCF-7 cells were treated with PMA as described. Following cell lysis, protein extracts were
subjected to immunoprecipitation with GFP-nanotrap. Aliquots of input [In], flow-through [FT], and bound fraction [B] were separated by SDS-PAGE
and visualized either by Coomassie Blue staining (upper panels) or by immunoblot analysis using antibodies specific for GFP (middle panels) or
cortactin (bottom panels). (D). Pull-down assay with cell extracts. GST and GST-L-plastin (20 mg) immobilized on glutathione-sepharose beads were
incubated with untreated MCF-7 cell extracts (200 mg). The resulting complex was precipitated by centrifugation, separated by SDS-PAGE and
visualized by Coomassie Blue staining (upper panel) or by immunoblotting using a cortactin-specific antibody (lower panel).
doi:10.1371/journal.pone.0009210.g004
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being packed tightly together in an approximately antiparallel

arrangement. Since a subset of the presumed actin-binding

sequences within the ABDs face toward the ABD1-ABD2

interface, a conformational rearrangement appears to be required

for their participation to F-actin binding [13]. Whether L-plastin

phosphorylation contributes to such a conformational change

enabling efficient F-actin binding remains to be investigated.

Importantly, our data support a role for L-plastin in the control

of actin dynamics and turn-over which is modulated by L-plastin

phosphorylation. Indeed, all L-plastin variants decreased the pool

Figure 5. The novel PKC-d isozyme is necessary for PMA-induced cytoskeleton reorganization and L-plastin Ser5 phosphorylation.
(A). Novel PKC isozymes regulate PMA-induced L-plastin phosphorylation in MCF-7 cells. MCF-7 cells were pretreated for 3 hours with 5 mM of
GF109203X (specific for a, b1, d, e, and f) or 0.5 mM of Gö6976 (specific for a and b1) and then treated for 1 hour with or without 1 mM PMA at 37uC.
Total cell extracts (50 mg) were analyzed by immunoblotting using anti-Ser5-P L-plastin (upper panel) or anti-GAPDH (lower panel) antibodies. (B).
PMA-induced actin cytoskeleton remodeling and L-plastin translocation involves novel PKC isozymes. MCF-7 cells were pretreated for 3 hours with
5 mM GF109203X or 0.5 mM Gö6976, then treated for 1 hour with 1 mM PMA at 37uC. Cells were then fixed and processed for immunofluorescence.
Labeled cells were analyzed with an epifluorescence microscope after staining with an anti-L-plastin antibody and Alexa 488-conjugated phalloidin.
Scale bar, 10 mm. (C). SiRNA knock-down of PKC-d decreased PMA-induced L-plastin phosphorylation in MCF-7. MCF-7 cells were transfected with
either PKC-d or PKC-e siRNAs as well as with negative control siRNA (Ctrl) for 48 hours and then treated with PMA as indicated. Total cell extracts
(50 mg) were analyzed by immunoblotting using antibodies specific for Ser5 phosphorylated L-plastin, PKC-e, PKC-d and total L-plastin. GAPDH was
used to monitor equal protein loading.
doi:10.1371/journal.pone.0009210.g005
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of free actin monomers Feq and the actin dissociation rate koff in

focal adhesions when compared with those of control cells,

indicating the presence of more F-actin. Several mechanisms may

account for the decrease in actin filament turn-over. L-plastin

may, by binding along actin filaments, protect them against

depolymerization as supported by previous in vitro data [20]. This

effect might not necessary rely on actin bundling since binding of

the single ABDs of L-plastin and its closely related T-plastin

isoform, were sufficient for decreasing actin depolymerization in

vitro [20,46]. Alternatively, L-plastin may protect actin filaments

against disassembly by cofilin, as previously proposed for T-plastin

[46]. The observed effect on actin turn-over was clearly more

pronounced for the phosphorylatable WT- or the phosphomimetic

S5/E-L-plastin variants than for the unphosphorylatable S5/A-L-

plastin. L-plastin phosphorylation may have a direct effect on actin

filament stabilization by enhancing L-plastin binding along their

side and/or L-plastin-mediated bundling, a mechanism which is

supported by previous biochemical data [9]. Such a mechanism of

regulation has also been reported for ABP-280, an actin-binding

protein that binds and crosslinks actin filaments more readily when

tyrosine phosphorylated [47]. Most interestingly, the S5/E-L-

plastin variant induced even more strikingly varying Keq, k*on and

Feq values for actin than WT-L-plastin as compared to non-

transfected control cells. These observations suggest that the

negatively charged glutamate residue, mimicking Ser5 phosphor-

ylation and escaping inactivation through dephosphorylation,

might keep the S5/E variant locked in a high affinity state. Thus

phosphorylation-dephosphorylation cycles of L-plastin might be

coupled to actin dynamics, as also supported by our results

obtained in MCF-7 cells. A similar, yet opposite phosphorylation-

dependent fascin activity has been proposed to regulate filopodial

dynamics, since an unphosphorylatable fascin mutant was

constitutively active and enhanced filopodia formation and length,

whereas a phosphomimetic variant acted as a dominant negative

mutant [26]. Compared to the actin-bundling protein fascin, L-

plastin may have a more pleiotropic function since it associates

with various actin-rich structures, including ruffling membranes, in

cells.

As L-plastin Ser5 phosphorylation has been correlated with the

progression to an invasive cell phenotype [8], there is growing

interest in studying the effect of L-plastin phosphorylation in

epithelial cancer cells. PMA, a potent PKC activator, is known to

have profound effects on MCF-7 breast carcinoma cell morphol-

ogy and motility [48], and to contribute to the invasive behaviour

of MCF-7 cells [49]. Here, we have shown that PMA treatment of

MCF-7 cells leads to L-plastin phosphorylation and cytoskeletal

rearrangements with concurrent L-plastin translocation to newly

formed spikes and ruffling membranes in these cells. Inhibition

assays using PKC isozyme-specific inhibitors have highlighted a

role for novel PKC isozymes in PMA-triggered L-plastin

phosphorylation and actin cytoskeleton remodeling, although the

contribution of other kinases is not necessarily excluded. More

precisely, our siRNA knock-down studies have revealed that PKC-

d signaling pathways are necessary for PMA-induced L-plastin

phosphorylation. Notably, constitutive L-plastin phosphorylation

in the highly invasive MCF-7-derived 1001 cells has also been

shown to depend predominantly on the novel PKC-d isozyme

[37]. In hematopoietic cells, the role of PKCs remains highly

controversial [22,24,50]. Whereas recent work has shown the

involvement of a distinct subset of PKC isozymes in L-plastin

phosphorylation in neutrophils upon N-formyl-L-methionyl-L-

leucyl-L-phenylalanine stimulation [25], most of the past studies

made no distinction between the different PKC isozymes.

Altogether our results suggest that, in carcinoma cells, PKC-d

signaling is involved in L-plastin phosphorylation, an event that

appears to link signal transduction pathways and cytoskeletal

dynamics. However, it is important to note that a direct L-plastin

phosphorylation by PKC-d or by any other PKC isoform could

not be demonstrated in vitro [51].

PMA treatment of MCF-7 cells induced a profound change in

cell morphology with concomitant L-plastin translocation to de

novo assembled actin-rich structures. Based on its actin filament

bundling activity, we had expected L-plastin to be recruited to F-

actin structures containing tightly bundled actin filaments such as

stress fibers. However, L-plastin associated barely with these

structures and mainly targeted to sites of active actin polymer-

ization such as the proximal part of protruding spikes or ruffling

membranes. While microspikes and filopodia contain aligned

actin filaments, ruffling membranes harbour a dendritic network

of actin (reviewed in [52]). Thus, unlike other bundling proteins

such as fascin [26], L-plastin appears to be able to associate with

both types of actin organization, dendritic networks and aligned

filaments. Notably, recent results using L-plastin nanobodies

have demonstrated that L-plastin bundling activity is necessary to

maintain filopodial integrity [53]. An implication of L-plastin in

controling actin dynamics is supported by our observation that

cortactin, an Arp2/3 complex-binding protein [54–56], was

found in a complex with phosphorylated L-plastin in PMA-

treated MCF-7 cells. It is noteworthy that cortactin could also be

associated with protein complexes containing unphosphorylated

L-plastin depending on the experiment. Thus, phosphorylation

of L-plastin does not appear to be strictly required for protein

complex formation, although it might stabilize such complexes.

Localization of L-plastin to ruffling membranes and its presence

in a complex comprising cortactin links this protein to the active

remodeling of actin filaments where it may contribute to stabilize

the filaments. In support of this mechanism, the T-plastin isoform

has also been reported to stabilize actin filaments and modulate

Arp2/3-mediated actin assembly in an in vitro reconstitution assay

[46].

Taken together, our results quantitatively demonstrate for the

first time that L-plastin affects actin dynamics and turn-over in live

cells, an effect which is modulated by its phosphorylation on Ser5.

Although phosphorylation of L-plastin does not appear to be

absolutely required for its recruitment to actin polymerization

sites, it might, by increasing the pool of high affinity L-plastin,

contribute to the fine-tuning of actin turn-over. Our study paves

the way for future investigations of the role of L-plastin in

carcinoma cell invasion as a modulator of actin turn-over.

Materials and Methods

Ethics
An ethics statement is not required for this work.

Cell Culture
Monkey kidney Vero cells were grown in DMEM (Dulbecco’s

modified Eagle’s medium). The human breast carcinoma MCF-7

cell line was grown in RPMI (Roswell Park Memorial Institute)

medium. Media were supplemented with 10% fetal bovine serum.

Cells were grown at 37uC, under 5% CO2 atmosphere.

Antibodies and Reagents
Polyclonal rabbit IgGs against L-plastin and serine-5 phosphor-

ylated L-plastin (anti-Ser5-P) have been characterized before [3,9].

Mouse monoclonal anti-GFP and anti-cortactin antibodies were

obtained from Sigma (Bornem, Belgium) and from Millipore

(Billerica, MA), respectively. Rabbit polyclonal anti-PKC-d and
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rabbit monoclonal anti-PKC-e were from Cell Signaling Tech-

nology, Inc. (Danvers, MA). Mouse anti-glyceraldehyde-3-phos-

phate dehydrogenase (GAPDH), Rhodamine-conjugated phalloi-

din and Alexa 488-conjugated phalloidin were purchased from

Molecular Probes (Invitrogen, Merelbeke, Belgium). Texas red-

and Cy2 green-conjugated secondary antibodies were from

Jackson ImmunoResearch Laboratories (De Pinte, Belgium). The

anti-rabbit and anti-mouse IgG antibodies coupled to horseradish

peroxidase were purchased from Amersham, GE Healthcare

(Diegem, Belgium). Phorbol 12-myristate 13-acetate (PMA) and

cytochalasin D (CytoD) were obtained from Sigma, the PKC

inhibitors GF109203X and Gö6976 from Calbiochem (Leuven,

Belgium) and lipofectamine 2000 from Invitrogen.

Construction of DNA Constructs
pDsRed-Monomer-N1 vectors (Takara Bio-Europe/Clontech,

Saint-Germain-en-Laye, France) containing wild-type- (WT),

unphosphorylatable Ser5/Ala (S5/A) or phosphomimetic Ser5/

Glu (S5/E)-L-plastin were generated from previously described

pGEX-2T-WT-L-plastin, pGEX-2T-S5/A-L-plastin and pGEX-

2T-S5/E-L-plastin vectors, respectively [9]. Briefly, WT-, S5/A-,

or S5/E-L-plastin 1880-bp EcoRI-restricted cDNA fragments were

inserted into DsRedN1 EcoRI-cut vectors. The correct orientation

of inserts was verified by sequencing. pEGFP-C vectors (Clontech)

containing WT-, S5/A-, or S5/E-L-plastin were generated

from pDsRedN1-WT-L-plastin, pDsRedN1-S5/A-L-plastin, or

pDsRedN1-S5/E-L-plastin vectors, respectively. Briefly, the

pEGFPC2-S5/A-L-plastin was cloned by EcoRI/BamHI restric-

tion of the pDsRedN1-S5/A-L-plastin vector. The resulting

fragment was inserted into the EcoRI/BamHI-restricted pEGFPC2

vector. The pEGFPC2-WT- or -S5/E-L-plastin vectors were

constructed by substitution of the 59-end of the pEGFPC2-S5/A-

L-plastin vector by the 59-end of WT- or S5/E-L-plastin, obtained

by EcoRI/ScaI restriction of pDsRedN1-WT- or -S5/E-L-plastin

vectors, respectively. All constructs were verified by sequencing.

Recombinant Proteins
GST and GST-fusion proteins were produced in E. coli from the

pGEX-2T expression vector and purified as described previously

[17]. The concentration of thrombin-cleaved proteins was

determined using the Bradford assay (Bio-Rad, Nazareth,

Belgium) and by SDS-polyacrylamide gel electrophoresis (PAGE)

using a BSA protein standard curve.

Transient Transfection of Cells
5–10 mg of cDNA encoding L-plastin phosphorylation variants

or b-actin were transfected into 56106 Vero cells by electropo-

ration at 240 V and 950 mF [57]. MCF-7 cells were transfected

using lipofectamine 2000. For knock-down experiments, cells were

seeded at a density of 56104 cells per well in a 6-well plate

24 hours prior to transfection. siRNA transfection was performed

using lipofectamine 2000 according to the manufacturer’s

protocol. Double stranded 21-mers validated siRNA for PKC-d,

-e and negative control were purchased from Qiagen (Venlo, The

Netherlands). The mRNA and protein levels of siRNA targeted

genes were analyzed 48 hours after transfection by RT-qPCR and

immunoblotting, respectively. Quantification of siRNA-mediated

knock-down of PKC-d and PKC-e was performed by densitomet-

ric scanning of the autoradiograms (hp scanjet 5470c and ImageJ

software). The percentage of PKC-d or PKC-e expression was

calculated as the ratio between PKC-d or PKC-e expression after

PKC-d or PKC-e siRNA transfection respectively versus their

expression after control siRNA transfection (100%).

Treatment of Cells with Pharmacological Agents
MCF-7 cells were pretreated for 3 hours in the presence or

absence of PKC inhibitors and incubated for 1 hour with or

without 1 mM PMA. In some experiments, MCF-7 cells were

pretreated for 1 hour with 0.5 mM cytochalasin D and then

incubated 1 hour with or without 1 mM PMA. Cells were then

processed either for indirect immunofluorescence or for cell

lysis.

Indirect Immunofluorescence
Cells were washed with PBS supplemented with 0.1 mM CaCl2

and 0.1 mM MgCl2, fixed with 3% paraformaldehyde and

processed for immunofluorescence labeling as described previously

[58]. Labeled cells were analyzed by epifluorescence microscopy

(Leica DMRX microscope) or a Zeiss laser scanning confocal

microscope (LSM-510 Meta, Carl Zeiss, Jena, Germany). Images

were acquired with a linear CCD camera (Micromax, Princeton

Instruments, Trenton, NJ) and analyzed with Metaview software

(Universal Imaging Corporation Ltd., Buckinghamshire, UK).

Immunoblotting
Cells were lysed for 30 minutes in ice-cold RIPA buffer (10 mM

Tris-HCl pH 7.4, 150 mM NaCl, 0.1% SDS, 1% Triton X-100,

and 1% Na-deoxycholate) containing a cocktail of protease

inhibitors (Roche Diagnostics GmbH, Mannheim, Germany).

Lysates were cleared by centrifugation at 200006g for 10 minutes

at 4uC. The total protein concentration was determined using the

Bradford assay. Total cell lysates (50 mg of proteins) were

separated by SDS-PAGE and transferred onto nitrocellulose

membrane (Amersham, GE Healthcare) using a semi-dry transblot

apparatus. Primary antibodies were revealed using secondary

antibodies coupled to horseradish peroxidase and enhanced

chemiluminescence (ECL) detection method. Quantification of

L-plastin phosphorylation was performed by densitometric

scanning of the autoradiograms obtained using the anti-Ser5-P

antibody (hp scanjet 5470c and ImageJ software). The percentage

of L-plastin phosphorylation was expressed as the ratio of

phosphorylated L-plastin after PKC isozyme-specific siRNA

transfection versus phosphorylated L-plastin after control siRNA

transfection (100%).

Pull-Down and Immunoprecipitation
GST or GST-fusion proteins (20 mg), immobilized on glutathi-

one-sepharoseTM 4B beads (Amersham, GE Healthcare), were

incubated overnight with cell extracts (200 mg) on an end-over-end

rotor at 4uC. The bead pellet was rinsed three times with cold

PBS, then resuspended in 2 x SDS-containing sample buffer and

boiled for 5 minutes at 95uC.

For immunoprecipitation, 106 cells transiently transfected with

expression vectors encoding GFP or WT GFP-L-plastin were

homogenized in 500 ml lysis buffer (10 mM Tris-HCl, pH 7.5,

100 mM NaCl, 0.5 mM EDTA, 1 mM PMSF, 0.5% Nonidet P-

40). After a centrifugation step of 10 minutes at 200006g at 4uC,

the supernatant was adjusted to 1 ml with dilution buffer (10 mM

Tris-HCl, pH 7.5, 150 mM NaCl, 0.5 mM EDTA, 2 mM

PMSF). 20 ml (2%) were added to SDS-containing sample buffer

and used for SDS-PAGE (referred to as input). 30 ml of GFP-

nanotrap beads [40] were added and incubated for 30 minutes on

an end-over-end rotor at 4uC. After a centrifugation step of 2

minutes at 27006g at 4uC, the supernatant was removed, and

20 ml (2%) of the supernatant were used for SDS-PAGE (referred

to as flow-through). The bead pellet was washed three times with

500 ml dilution buffer. After the last washing step, the beads were
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resuspended in 2 x SDS-containing sample buffer and boiled for

10 minutes at 95uC.

The obtained samples were analyzed by SDS-PAGE with

subsequent Coomassie Blue staining or immunoblotting.

FRAP Experiments
FRAP experiments were performed with a Zeiss LSM510 Meta

laser scanning confocal microscope. Transfected Vero cells were

kept at 37uC using an air-stream incubator-XL and a heating

frame (Carl Zeiss). The excitation wavelength and emission filters

were 488 nm/band-pass 505 to 530 nm and 543 nm/long-pass

560 nm for GFP and DsRed respectively. Image processing was

performed using Zeiss LSM510 Image Browser version 4.0.

For FRAP experiments, a 63x/1.4 NA oil-immersion objective

was used, and the confocal pinhole was set to 2.5 mm. Prebleach and

recovery images were acquired at a rate of 1 image/second. We

intentionally used the rather long time step (1 s) in order to acquire

fluorescence recovery over the optimal time range (90 s) for

investigation of L-plastin binding and actin polymerization proper-

ties. For photobleaching, all argon laser lines (458, 477, 488, and

514 nm) were used simultaneously at 100% transmittance for 3

iterations to bleach a circular area of 5 mm diameter, the region of

interest (ROI). Normalized FRAP curves were generated from raw

data as described [59]. Briefly, intensity in the bleached region

(Ifrap tð Þ) and in the whole cell (Iwhole tð Þ) at each time point are

initially subtracted by the corresponding background intensity

(Ibase tð Þ). These intensities are then rescaled to the average

prebleach intensities in the corresponding regions (Ifrap{pre and

Iwhole{pre). The normalized FRAP curve (Ifrap{norm tð Þ) is the ratio of

FRAP and whole cell rescaled intensities. The resulting equation is

Ifrap{norm tð Þ~ Iwhole{pre

Iwhole tð Þ{Ibase tð Þ
: Ifrap tð Þ{Ibase tð Þ

Ifrap{pre

ð1Þ

To fit the normalized recoveries, we applied the models of

binding reactions in a reaction dominant regime; a one-binding-

state or a two-binding-state [31]. The general chemical rate

equation for a single binding reaction is

FzS {{{{{{?kon

/{{{{{{{{{
koff

C, ð2Þ

where F represents a free protein, S is a vacant binding site, C

denotes bound [FS] complexes, and kon and koff are the association

and dissociation rates respectively. Assuming that the biological

system is in equilibrium and the number of binding sites is

constant, then the fluorescence intensity within the bleached spot

is

FRAP tð Þ~ Feq 1z
k�on

koff

1{e{koff t
� �� �

, ð3Þ

where Feq is the equilibrium normalized concentration of free

monomers, the pseudo-association rate k*on is the product of the

association rate, kon and the steady-state concentration of vacant

binding sites, Seq (k*on = kon?Seq) [59]. From the values of model

parameters, the ratio of bound to free molecule concentrations

(Keq) is calculated as Keq~k�on

�
koff .

In a two-binding-state model, the chemical rate equations are

FzS1

k1on
{{{{{{{?
/{{{{{{{
k1off

C1, FzS2

k2on
{{{{{{{?
/{{{{{{{
k2off

C2, ð4Þ

where subscripts 1 and 2 refer to the different binding states. Using

similar assumptions as for the one-binding-state model the total

fluorescence intensity is

FRAP tð Þ~ Feq 1z
k�1on

k1off

1{e{k1off t
� �

z
k�2on

k2off

1{e{k2off t
� �� �

, ð5Þ

where k*1on, k*2on, k1off, k2off are the pseudo-association and -

dissociation rate constants at the first and second binding states,

respectively [31].

FRAP curves were fitted with equations (3) or (5), yielding the

parameters Feq, k*on and koff, k*1on and k1off, k*2on and k2off. All fitting

procedures were performed with Nonlinear Regress function in

Mathematica 6 (Wolfram Research).
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