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Abstract

The basal ganglia (BG) and the cerebellum historically have been relegated to a functional role in producing or modulating
motor output. Recent research, however, has emphasized the importance of these subcortical structures in multiple
functional domains, including affective processes such as emotion recognition, subjective feeling elicitation and reward
valuation. The pathways through the thalamus that connect the BG and cerebellum directly to each other and with
extensive regions of the cortex provide a structural basis for their combined influence on limbic function. By regulating
cortical oscillations to guide learning and strengthening rewarded behaviors or thought patterns to achieve a desired goal
state, these regions can shape the way an individual processes emotional stimuli. This review will discuss the basic
structure and function of the BG and cerebellum and propose an updated view of their functional role in human affective
processing.
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Introduction
The basal ganglia (BG) and the cerebellum traditionally have
been assigned to roles within the motor domain, yet recent
research has recognized their contributions to a variety of
functions, including affective processing. Specifically, the
roles of these subcortical structures have expanded beyond
simple motor control to diverse limbic and cognitive processes
including emotion recognition, reward- and error-based learn-
ing, language, decision-making, working memory and spatial
attention (Haber and Knutson, 2010; Cavanagh et al., 2011; Bostan
et al., 2013; Buckner, 2013; Péron et al., 2017; Wojtecki et al., 2017;
Bostan and Strick, 2018; Eisinger et al., 2018; Schmahmann,
2019). The current review will focus on the aspects of affective
processing supported by each of these structures via their
connections with a broad limbic network and on how recently
identified direct subcortical connections between them may
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allow for coordinated modification of cortical responses to
emotion in humans.

In general, limbic cortical and subcortical regions supporting
emotion allow individuals to identify and prepare reactions to
salient environmental stimuli, shaping how one perceives the
world and interacts with positive or negative cues (Scherer, 2009;
Brosch et al., 2013). The amygdala has long been recognized
as a central structure for the detection of salient emotional
stimuli, modifying responses in sensory cortex to favor relevant
items, recruiting top-down attention in frontal-parietal cortex,
driving hypothalamic and brainstem autonomic reactions and
biasing hippocampal memory formation (Sander et al., 2003;
Vuilleumier, 2005; Brosch et al., 2013). Neocortical regions such as
ventromedial and orbitofrontal cortex, anterior cingulate cortex
and anterior insula also are involved in emotion and reward
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processing, further guiding the recognition of relevant sensory
input, motivation for action and generation of an appropriate
emotional response (Dolan, 2002; Thielscher and Pessoa, 2007;
Haber and Knutson, 2010; Rudebeck and Rich, 2018).

Recent evidence from neuroimaging studies suggests that
these core limbic regions are supported by the BG and cerebel-
lum during affective tasks (Tanaka et al., 2004; Baumann and
Mattingley, 2012; Schraa-Tam et al., 2012). Additionally, clinical
assessments have highlighted the deficits in emotion processing
following lesions to the BG or cerebellum (Schmahmann and
Sherman, 1997; Le Jeune et al., 2008; Péron et al., 2017; Thomasson
et al., 2019), while structural and functional alterations have been
reported in several psychiatric disorders (Gunaydin and Kreitzer,
2016; Lupo et al., 2018). These findings support the idea that
the BG and cerebellum contribute to a range of affective func-
tions including recognition of emotional stimuli such as faces or
voices, reward processing, generation of autonomic responses,
inferring the emotional state of others (theory of mind) and
awareness of subjective feelings (Clausi et al., 2019b; Cox and
Witten, 2019; Ferrari et al., 2018; Péron et al., 2010; Schmahmann,
2019; Strata, 2015).

Furthermore, connections exist between many parts of the
limbic network (e.g. amygdala, orbitofrontal cortex) and the BG
and cerebellum, which, in addition to the direct connection
between these two regions, allow for a modulatory influence on
affective processing across the brain (Hoshi et al., 2005; Habas
et al., 2009; Lambert et al., 2012). Historically, these multisynaptic
connections between the BG and cerebellum, and with the neo-
cortex, have been difficult to identify, but newer viral tracing pro-
cedures have allowed researchers to isolate their input/output
channels in animal studies (Hoshi et al., 2005; Bostan et al., 2010).
In humans, advances in neuroimaging techniques have provided
evidence of similar connectivity between the BG, cerebellum
and cortex (Habas et al., 2009; Pelzer et al., 2013; Milardi et al.,
2016). The BG and cerebellum, indeed, are connected structurally
and functionally with most of the neocortex and contain sen-
sorimotor, associative and limbic functional domains organized
in multiple input/output loops (Figure 1; Buckner et al., 2011;
Mathai and Smith, 2011). The highly connected nature of the
BG and cerebellum (Hoshi et al., 2005; Bostan and Strick, 2018)
allows them to perform parallel and integrated processing of
cortical inputs to select and modify behavioral response pat-
terns, resulting in a broad influence on emotion, informed by
higher cognition, and with ready access to the motor network.
The following sections of this review will describe the anatomy
and function of the BG and cerebellum in relation to emotion
processing, focusing primarily on human studies from healthy
individuals as well as clinical populations, before highlighting
their direct connectivity and proposed combined influence on
cortical affective responses.

Basic anatomy and function of the BG
The BG are a set of subcortical nuclei including the stria-
tum (caudate/putamen/nucleus accumbens), globus pallidus
(internal/external segments), substantia nigra and subthalamic
nucleus (STN). The primary input nucleus in the BG is the
striatum, which receives excitatory input from most of the
cortex (Mink, 1996), the thalamus (Nambu et al., 2002) and
the deep cerebellar nuclei (DCN) (as discussed below; Hoshi
et al., 2005; Chen et al., 2014; Xiao et al., 2018). Cortical input
to the striatum is organized according to functional domains,
in broadly topographic stripes, with sensorimotor, associative
and limbic subdivisions (Parent and Hazrati, 1995a; Mink, 1996;

Arsalidou et al., 2013). The striatum then sends inhibitory
projections to other BG nuclei via the direct and indirect
pathways, which largely maintain these functional subdivisions,
ultimately shaping the appropriate behavioral response in
cortical output regions via decreased or increased inhibition
of thalamocortical pathways, respectively (Parent and Hazrati,
1995a; Lanciego et al., 2012; Simonyan, 2019).

Affective functions of the striatum and STN

Cortical input to the striatum is supplemented by motivation-
and reward-sensitive dopamine release from the substantia
nigra pars compacta and the ventral tegmental area in the
midbrain (Jin et al., 2014; Keeler et al., 2014; Ikemoto et al.,
2015; Bostan and Strick, 2018). These reward signals support
reinforcement learning (Box 1) in the BG, with positive or
negative feedback to a behavior or internal state shaping its
affective value and how the individual will respond to future
occurrences of a given condition (Schultz et al., 1997; Caligiore
et al., 2019). Dopaminergic neurons encode the reward signal
as a prediction error, representing the difference between the
expected reward and the actual reward received, meaning that
unexpected rewards result in the largest responses because they
are the most informative for updating values associated with a
stimulus or condition (Schultz et al., 1997; Daniel and Pollmann,
2014).

Box 1: Learning in the cortex, BG and cerebellum

Current models of learning posit distinct mechanisms in
different regions of the brain: unsupervised learning occurs
in the cortex, supervised learning occurs in the cerebel-
lum, and reinforcement learning occurs in the BG (Doya,
2000; Bostan and Strick, 2018). Unsupervised learning refers
to strengthening the associations between stimuli and/or
responses based on simultaneous neuronal firing (Hebbian
plasticity; Markram et al., 1997). Supervised learning refers
to improving performance based on minimization of pre-
diction error signals (Wolpert et al., 1998; Peterburs and
Desmond, 2016). Finally, reinforcement learning refers to
increasing the likelihood of a behavior based on a history of
positive reward (or decreasing the likelihood of a punished
behavior; trial and error learning (Doya, 2000; Caligiore
et al., 2019)). These learning mechanisms undergo complex
transformations across the life span and interact as the
various brain regions work collectively to achieve optimal
performance in a given context (Caligiore et al., 2019). All
three systems require coordinated interactions to gener-
ate normal functioning for ongoing behavior. It remains
undetermined, however, whether these models based on
motor learning apply to affective processing. Presumably,
the limbic domain within the BG and cerebellum functions
in a similar manner to the motor domain but utilizes
its connections with limbic regions to impact emotion
processing.

Even with these unique functional connections, how-
ever, it may seem that rapid emotional responses would
not rely heavily on slower learning processes. Nonethe-
less, even the simple case of viewing an emotional face
could initiate learning in these subcortical regions. Emo-
tion recognition could recruit the BG to process how the
face or the individual’s response was rewarded and recruit
the cerebellum to adjust the response based on how the
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Fig. 1. Motor, associative and limbic functional subdivisions in the cortex, BG and cerebellum. The colored portions of each brain region highlight the major areas

associated with each general function, illustrating the most distinct connectivity of each subcortical subdivision with widespread cortical areas. The cerebral cortex

is shown from a lateral and midsagittal view, the BG from a coronal view and the cerebellum from a midsagittal view. GPi/GPe, internal/external globus pallidus; STN,

subthalamic nucleus; VIII, IX, X, cerebellar hemispheric lobules VIII, IX, X. Adapted from Krack et al. (2010) with permission.

individual’s current state matches a prediction for the
specific emotional context. These modifications may be
relevant particularly when the individual’s response to
the emotional face is unexpectedly rewarded or punished,
generating a large prediction error and strong dopamine
release (Schultz et al., 2000; K. S. Wang et al., 2016; Yin et al.,
2008). The violation of the cerebellum’s internal model
prediction would drive strong output signals to the cor-
tex to correct the behavior according to the new reward
signals from the BG. Together, the BG and cerebellum
could synchronize and modulate activity in the amygdala,
orbitofrontal cortex and visual cortex that corresponds to
the appropriate emotional response and strengthen this
response pattern for future appearances of such a stimulus
(Péron et al., 2013). The specifics of these learning pro-
cesses remain to be clarified, however, and future research
could manipulate rewards or prediction errors in emotion
recognition tasks to elucidate how the different learning
mechanisms contribute to affective processing.

Furthermore, the size of the reward drives the neural
response within the ventral portion of the striatum, with the
nucleus accumbens showing a greater response to large rewards
of various types (e.g. food, money (Knutson et al., 2005; Haber
and Knutson, 2010), as well as to punishments (Shigemune et al.,
2013). The dorsal striatum, on the other hand, may be more
sensitive to motivation (Miller et al., 2014) and instrumental

learning of action–outcome contingencies (Delgado, 2007; Yin
et al., 2008). This reward valuation process is related closely to
the appraisal of the emotional valence of the stimulus with
relevant rewarding stimuli tending to elicit positive emotions
and motivate approach behaviors (Brosch et al., 2010; Barbaro
et al., 2017; Sander et al., 2018), although the causality and timing
of these factors are complex and context-dependent (Grandjean
and Scherer, 2008; Paul et al., 2020). Overall, the stimulation
of dopamine-sensitive neurons across the striatum results in
increased activity in the direct pathway and decreased activity in
the indirect pathway, further strengthening a selected behavior
following a positive outcome (Kravitz et al., 2012; Calabresi et al.,
2014).

Another important region of the BG in affective processing
is the STN, which receives input from other BG nuclei as well
as (frontal) cortex, the posterior thalamus (distinct from pro-
jections to the striatum) and the amygdala (Parent and Hazrati,
1995b; Nambu et al., 2002; Lambert et al., 2012; Péron et al., 2016).
These broad connections and findings of limbic and associative
functional subdivisions within the STN indicate a critical role
in emotional processing (Kuhn et al., 2005; Temel et al., 2005;
Brunenberg et al., 2012; Haynes and Haber, 2013; Péron et al.,
2013; Rossi et al., 2015; Sieger et al., 2015; Péron et al., 2016). It
has been proposed that the STN is responsible for integrating
input across functional domains to modulate neural oscillations
in cortical output regions, affecting multiple facets of emotion
processing from autonomic arousal to emotional motor expres-
sion to subjective feeling (Péron et al., 2013). Additionally, the



602 Social Cognitive and Affective Neuroscience, 2020, Vol. 15, No. 5

hyperdirect pathway from the cortex through the STN may have
a supervisory role in decision-making, establishing a threshold
for action and inhibiting irrelevant activity based on salient con-
textual information provided by the prefrontal cortex (Cavanagh
et al., 2011; Haynes and Haber, 2013; Eisinger et al., 2018).

Insight from patient studies

While healthy functioning of the BG leads to behavioral opti-
mization based on a history of rewarding outcomes, dysfunction
of the dopamine-sensitive neurons in the ventral striatum (Rob-
bins and Everitt, 1996; Schultz et al., 2000; Haber and Knutson,
2010; Ikemoto et al., 2015; Wang et al., 2016) factors strongly
into the occurrence of addiction disorders and substance abuse
(Belin et al., 2009; Calabresi et al., 2014; Cox et al., 2009; Makris
et al., 2008). The influence of dopamine on the BG results in
the reinforcement of the initial behavior or internal state, but
when these striatal reward processes are imbalanced, it can lead
to repetitive pleasure-seeking behaviors that are dissociated
from positive emotional feelings, as in cocaine dependency or
gambling addiction (Belin and Everitt, 2008; Contreras-Rodriguez
et al., 2015; Luijten et al., 2017). Furthermore, connections with
the ventromedial prefrontal cortex, the anterior cingulate cor-
tex, the hypothalamus and the amygdala allow the striatum to
influence limbic processing in diverse contexts associated with
reward valuation (Friedman et al., 2002; Heimer and Van Hoesen,
2006; Haber, 2008; Ahmad et al., 2017; Luijten et al., 2017) and
in psychiatric disorders such as depression and anxiety (Denys
et al., 2010; Robinson et al., 2012; Ubl et al., 2015; Gunaydin and
Kreitzer, 2016).

Another condition caused by dysfunction of the BG is
Parkinson’s disease, where a loss of dopaminergic neurons
in the substantia nigra leads to motor deficits such as
tremor. Importantly, however, the increasing use of deep brain
stimulation (DBS) of the STN as a treatment for Parkinson’s
disease has revealed the non-motor role of this structure as
well, based on observations of cognitive and emotional side
effects in some patients (Temel et al., 2006; Halpern et al., 2009;
Zangaglia et al., 2009; Rossi et al., 2015; Mehanna et al., 2017).
Although the target of the stimulation is the STN motor domain,
side effects include disruptions of verbal fluency (Anzak et al.,
2011; Eisinger et al., 2018; B. Wu et al., 2014), emotional facial
recognition (Drapier et al., 2008; Le Jeune et al., 2008), auditory
emotion recognition (Péron et al., 2010), emotional conflict
control (Irmen et al., 2017) and subjective emotion experience
(Vicente et al., 2009).

For example, Drapier et al. (2008) tested Parkinson’s disease
patients on measures of apathy and recognition of basic facial
emotions 3 months before and after STN DBS surgery. They
found that patients were significantly worse at recognizing fear-
ful and sad faces and exhibited greater apathy following DBS
treatment, although the two effects were not correlated. These
results supported previous findings on the role of the STN in lim-
bic facial recognition, potentially mediated by connections with
the amygdala, orbitofrontal cortex and anterior cingulate cortex
(Schroeder et al., 2004; Biseul et al., 2005; Drapier et al., 2008; Le
Jeune et al., 2008; for a recent review, see Wagenbreth et al., 2019).
Similar impairments with negative emotions were described by
Vicente et al. (2009) when asking STN DBS patients to report
their subjective feelings in response to emotional film clips:
the post-operative patients experienced diminished emotional
responses to fearful and sad clips compared to the pre-operative
and control groups. These effects may reflect a disruption of the
STN’s ability to bias an appropriate response pattern, introduc-
ing noise into limbic processing and creating ambiguity between

negative affective states that may share some underlying (e.g.
physiological) features.

Other findings additionally suggest that STN stimulation
in Parkinson’s disease can lead to impulsivity disorders or
depressive symptoms (Volkmann et al., 2001; Volkmann et al.,
2010; Moum et al., 2012; Rossi et al., 2015). In one study, 25%
of Parkinson’s patients experienced depressive symptoms
following STN DBS surgery (Berney et al., 2002), although
reports of mood changes vary widely and may depend on
electrode placement or dopamine levels (Volkmann et al., 2010).
Interestingly, the impact of STN DBS on emotion or mood may
depend upon the laterality of the substantia nigra degeneration
in Parkinson’s disease: patients with predominantly left-sided
motor impairments (right BG dysfunction) showed worse vocal
emotion recognition for happy stimuli than patients with right-
sided impairments (left BG dysfunction) or controls (Stirnimann
et al., 2018). These results imply that the right BG play a greater
role in affective processes (Péron et al., 2017), but further research
is needed to confirm these findings and understand how
interactions with both the cortex and cerebellum impact this
laterality.

In addition to deficits in emotional behavior performance,
Parkinson’s disease patients also have exhibited changes in
glucose metabolism in emotion networks throughout the brain,
including the orbitofrontal cortex (Le Jeune et al., 2008; Péron
et al., 2013; Ory et al., 2017) and the cerebellum. An increased
cerebellar metabolism was associated with worse facial emotion
recognition (Le Jeune et al., 2008) and a decreased subjective
feeling of disgust after viewing emotional film clips (Ory et al.,
2017). Such widespread changes support the functional link
between the BG and cerebellum (see Section 5) and imply broad
effects on emotion processing when STN function is disrupted.
It is important to note, however, that these results partially may
reflect pathological brain function, dopaminergic medication
effects or other non-specific effects of the DBS procedure.

The BG select and coordinate cortical response patterns

The studies described above demonstrate that the BG support
not only motor functions (Graybiel, 1998; Yin et al., 2004; Keeler
et al., 2014; Pidoux et al., 2018) but also limbic functions such as
reward valuation and motivation (Yin et al., 2008; Miller et al.,
2014) that contribute to the assessment of affective valence and
formation of emotional states. Clinical reports highlight the key
function of the striatum in reward processing in addiction and
psychiatric disorders and the contribution of the STN to emo-
tion recognition. Overall, the dense connections and functional
organizations of the BG position them perfectly to exert a broad
coordinating influence on emotion processing, a function that is
supported further by their interactions with the cerebellum.

Basic anatomy and function of the cerebellum
The cerebellum contains more neurons than the neocortex, yet
historically has been relegated to a purely motor role, perhaps
due in part to its homogeneous cellular architecture arguing
against a complex functional role in limbic or cognitive process-
ing (Schmahmann, 2019). Nonetheless, recent research has reen-
ergized interest in this structure and illuminated its contribu-
tions to diverse processes, including those arising from connec-
tions with the BG (discussed in the following section). Here, the
intrinsic organization of the cerebellum and its numerous con-
nections are described in relation to our growing understanding
of its functional role in emotion processing.
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The cerebellum consists of the vermis, paravermis, hemi-
spheric lobules I–X and the DCN (consisting of the dentate,
emboliform/globose (interpositus) and fastigial nuclei). It
receives input from the inferior olivary complex and other
brainstem areas, as well as from pontine nuclei that transmit
signals from the neocortex (Kelly and Strick, 2003; Granziera
et al., 2009). The output of the cerebellum occurs via inhibitory
Purkinje cells, which project to the DCN and then to the
thalamus and ultimately feedback to the same regions of
the cortex from which the cerebellum receives input. The
multisynaptic nature of these connections has made them
difficult to identify until recently, but it is recognized now that
nearly all of cortex, not merely motor areas, projects to and
receives projections from the cerebellum (Middleton and Strick,
1994; Kelly and Strick, 2003; Bostan et al., 2013; Buckner, 2013).

The cerebellum also has functional subdivisions, similar to
those identified in the BG: motor, association and limbic zones
with broadly topographic organization (Leggio and Olivito, 2018;
Schmahmann, 2019). The anterior lobules are connected pri-
marily with sensorimotor cortical and brainstem regions, the
posterior lobules are connected heavily with cortical association
regions, and parts of the vermis and flocculonodular lobe are
connected via the fastigial nucleus to limbic cortical and sub-
cortical regions (Figure 1; Anand et al., 1959; Heath and Harper,
1974; Olivito et al., 2017a; Schmahmann, 2019). The anterior
lobe mainly performs the traditional motor coordination role
attributed to the cerebellum, yet the association regions in the
posterior lobe constitute the greatest proportion of cerebellar
volume in humans, reflecting an evolutionary expansion in
attention and executive functions in frontal and parietal cortices
(Schmahmann, 2019). Furthermore, these functional domains
may be maintained in the DCN, with studies identifying both
motor and non-motor projections of the dentate nucleus in
particular (Dum and Strick, 2003; Kuper et al., 2011; Bostan et al.,
2013).

In the limbic cerebellum, the vermis has been associated
with basic emotions such as fear, while regions of the poste-
rior cerebellar hemispheres have been associated with com-
plex emotions and social interactions, reflecting the former’s
anatomical connections with brainstem nuclei controlling auto-
nomic functions and the latter’s connections with associative
prefrontal cortex controlling theory of mind and higher cognitive
functions (Stoodley and Schmahmann, 2009; Watson et al., 2013;
Van Overwalle et al., 2014; Strata, 2015; Leggio and Olivito, 2018).
Rodent studies have demonstrated that the limbic cerebellum
and its connections with the amygdala contribute to fear-related
learning (Supple Jr. et al., 1987; Sacchetti et al., 2002; Zhu et al.,
2011; Strata, 2015), while human studies (described below) have
indicated activity in the vermis in response to both negative and
positive emotions (Baumann and Mattingley, 2012; Schraa-Tam
et al., 2012).

Neuroimaging studies on the affective functions
of the cerebellum

The use of neuroimaging and sensitive neurological assess-
ments in recent years has vastly expanded our understanding
of the human cerebellum’s role in a wide range of non-motor
functions (Koziol et al., 2014). Early studies showed cerebellar
activation during a word generation task (Petersen et al., 1989)
and a problem-solving task (Kim et al., 1994), while more recent
reviews and meta-analyses have highlighted the cerebellum’s
functional involvement in diverse tasks related to emotion,
attention, working memory and language (Buckner, 2013;

Adamaszek et al., 2017; Guell et al., 2018; Pleger and Timmann,
2018; Stoodley and Schmahmann, 2018; Schmahmann, 2019).
Additionally, resting-state neuroimaging studies have reported
cerebellar co-activation with common cortical functional
networks, and noted an expanded cerebellar representation of
frontal-parietal association areas (Buckner et al., 2011; Marek
et al., 2018), as well as co-activation with limbic networks that
included the amygdala, insula and BG (Sang et al., 2012; Habas,
2018).

Neuroimaging studies of healthy individuals recently have
demonstrated the relevance of the cerebellum (particularly the
vermis, hemispheric Crus I and II and the fastigial nucleus) to
emotion perception and recognition (Lee et al., 2004; Bermpohl
et al., 2006; Stoodley and Schmahmann, 2009; Baumann and
Mattingley, 2012; Schraa-Tam et al., 2012; Adamaszek et al., 2017;
Ferrari et al., 2018). Baumann and Mattingley (2012) proposed
that the vermis, as part of the limbic cerebellum, assesses
emotional relevance (threat) and regulates emotional responses,
supported by connections with the medial prefrontal cortex
and the amygdala. Additionally, they reported partially distinct
cerebellar activation patterns for individual emotion categories
with significant activation for both negative and positive
emotions (Baumann and Mattingley, 2012), although others have
reported activation primarily for negative emotions (Beauregard
et al., 1998; Schraa-Tam et al., 2012; Adamaszek et al., 2017).
These results are complemented by functional connectivity
studies and meta-analyses of task data that have identified
co-activation of widespread emotion networks with portions of
the cerebellum (Habas et al., 2009; Stoodley and Schmahmann,
2009; Schienle and Scharmuller, 2013; Guell et al., 2018; Habas,
2018).

Interestingly, some findings demonstrated a lateralization
of cerebellum function with greater language activation in the
right cerebellum and greater spatial attention activation in the
left cerebellum (Petersen et al., 1989; Habas et al., 2009; Lesage
et al., 2012; Wang et al., 2013; Schmahmann, 2019). This cerebellar
lateralization mirrors neocortical lateralization, reflecting the
contralateral anatomical connectivity between, e.g. left frontal
cortex language centers and right cerebellar cortex (Connor et al.,
2006; Frings et al., 2006; Kelly and Strick, 2003; D. Wang et al., 2013;
Xiao et al., 2018).

While neuroimaging studies describe functional activation
correlated with task performance, neuromodulatory studies
seek to assess the causal impact of the cerebellum on emotion
processing by directly affecting neural activity. In a study
by Schutter and van Honk, repetitive transcranial magnetic
stimulation (TMS) was applied to the cerebellar vermis and
occipital cortex of healthy subjects prior to an emotion regu-
lation task (Schutter and van Honk, 2009). Following inhibition
of only the cerebellum, an increase in negative mood was
reported after viewing aversive scenes, suggesting a disruption
of the limbic network’s ability to regulate or suppress negative
affect. In another study, high-frequency, excitatory TMS of the
medial cerebellum resulted in increased reaction times for an
implicit processing of masked happy faces, suggesting enhanced
attention to these emotional stimuli (Schutter et al., 2009).
Further work utilizing transcranial direct current stimulation
of the cerebellum also reported improved processing of negative
(but not positive) facial expressions (Ferrucci et al., 2012). The
differences in positive vs negative emotion effects remain to
be clarified, although the specific region of the cerebellum that
is targeted, the task design and the modulation strength may
all contribute to the pattern of results in these stimulation
studies.
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Many human studies on the cerebellum have focused on
basic emotion recognition, yet the cerebellum also has been
shown to be involved in reward processing in relation to pre-
diction error. Studies in mice have demonstrated that climbing
fibers and granule cells signal reward occurrence, omission or
predictability to functional microzones of Purkinje cells (Wag-
ner et al., 2017; Kostadinov et al., 2019), while reward-related
activations also have been reported in human neuroimaging
studies (Ramnani et al., 2004; Tanaka et al., 2004; Shigemune
et al., 2013), likely in relation to updating of internal models
(Peterburs et al., 2018). Furthermore, the cerebellum has been
shown to have direct connections with the dopaminergic ventral
tegmental area and BG nuclei (Ikai et al., 1992; Herrera-Meza et al.,
2014; Carta et al., 2019), providing a further link with the reward
system and affective valuation.

Insight from patient studies

Beyond neuroimaging studies of healthy cerebellar function,
studies of cerebellar lesion patients have elucidated the role
of this structure in affective processes by identifying specific
behavioral difficulties that occur in patients (Schmahmann,
2019). Reports have described problems with emotion recog-
nition and expression in patients, as well as alterations in
mood control and the experience of emotional states, with
cerebellar patients exhibiting a variety of behavioral and
mood disturbances (Schmahmann et al., 2007; Lupo et al.,
2015; Clausi et al., 2019a). Problems with social cognition and
understanding of others’ emotions have been reported in
patients with cerebellar degeneration, including spinocerebellar
ataxia, potentially related to disrupted formation of internal
models that predict others’ behavior using theory of mind
processes (Sokolovsky et al., 2010; Leggio and Olivito, 2018; Clausi
et al., 2019b). More generally, damage to or reduced volume
of the cerebellum is associated with high rates of depression,
anxiety, psychosis and autism spectrum disorders, and patients
may experience blunted affect, uncontrollable laughter or crying
or increased aggression (Escalona et al., 1993; Leroi et al., 2002;
Schmahmann et al., 2007; Schutter et al., 2012; Lupo et al., 2018).

Considering autism spectrum disorders in more detail, dif-
ficulties with social interaction and emotion recognition are
common, as are cerebellar (and BG) structural abnormalities
including a reduction in the number of Purkinje cells in the
cerebellar hemispheres (Whitney et al., 2008; Fatemi et al., 2012;
Subramanian et al., 2017; Bruchhage et al., 2018). Reduced volume
of the posterior vermis also is associated with autism spectrum
disorders, although a variety of malformations, both within and
beyond the cerebellum, have been reported (Scott et al., 2009;
Bruchhage et al., 2018). The exact role of cerebellar dysfunction in
autism and other disorders remains to be defined fully, as even
a focal lesion may lead to network level changes in structure or
function over time (Hernandez-Castillo et al., 2015; Olivito et al.,
2017a; Olivito et al., 2017b), but it is clear that some associa-
tion exists between cerebellar abnormalities and social, emo-
tional and cognitive dysfunctions in several conditions (Bruch-
hage et al., 2018; Olivito et al., 2018; Schmahmann, 2019). Finally,
such clinical symptoms may depend upon the functional con-
nections of the cerebellum with the BG and limbic circuitry
as it has been suggested that hyperactivation of the cerebel-
lum in Parkinson’s disease results from the decreased activity
of BG dopaminergic nuclei (T. Wu and Hallett, 2005; Yu et al.,
2007).

Beyond these assessments of distinct clinical disorders, other
studies have addressed more subtle alterations in affective

performance in patients with cerebellar damage. One study
found that cerebellar patients experienced weaker positive
emotion than controls when viewing pleasant images and
that they differentially recruited an emotion network (greater
prefrontal/BG activation and weaker amygdala activation) when
viewing unpleasant images (Turner et al., 2007). Another study
showed that cerebellar patients had impaired awareness of their
own negative affect when it occurred as a result of their own
actions (i.e. regret) in a gambling task (Clausi et al., 2015). Finally,
a recent study reported that cerebellar patients ranked fear
stimuli higher on a surprise index than did control subjects and
that this misattribution was associated with right-sided lesions
in cerebellar hemisphere lobules VII, VIII and IX (Thomasson
et al., 2019; see also Biseul et al., 2005 for a similar misattribution
in STN DBS patients).

The cerebellum minimizes prediction error across
domains

Based on the variety of tasks that activate the cerebellum and
its largely uniform neuronal architecture, Schmahmann has
proposed that the function of the cerebellum is comparable
across motor, cognitive and limbic domains, performing an auto-
matic modulation of processing based on the widespread inputs
it receives about ongoing behaviors or thoughts compared to
the desired or predicted outcome (Schmahmann, 1991, 2019).
Subsequently, the cerebellum provides feedback to the cortex
for fine-tuning not only motor output but also processes such
as decision-making or emotion recognition (Bostan and Strick,
2018; Schmahmann, 2019). Similar theories emphasize the cere-
bellum’s role in detecting and minimizing prediction error based
on differences in current sensorimotor and cognitive informa-
tion and the intended goal state (referred to as supervised learn-
ing; see Box 1; Jueptner and Weiller, 1998; Sokolov et al., 2017;
Caligiore et al., 2019; Popa and Ebner, 2019).

Such a broad function in monitoring the current state relative
to a desired or expected state in order to adjust behavior is con-
sistent with the cerebellum’s closed loop connectivity with the
cortex (Kelly and Strick, 2003; Bostan and Strick, 2018) and with
the difficulty in pinpointing a single cognitive dysfunction across
patients with cerebellar lesions (Schmahmann and Sherman,
1997; Schmahmann et al., 2007; Lupo et al., 2018; Schmahmann,
2019). Combining this understanding of cerebellar anatomy and
function with that of the BG, the next sections will examine
evidence of the structural connectivity between these subcorti-
cal regions and how this allows for a coordinated influence on
affective processing.

Direct connectivity between the BG and
cerebellum
It was initially assumed that the BG and cerebellum separately
impacted cortical activity through distinct thalamic pathways
(Mink, 1996; Middleton and Strick, 2000), yet the existence of
direct subcortical connections between these two structures is
now recognized and, thus, their ability to jointly influence motor,
cognitive and limbic functions (Figure 2; Caligiore et al., 2017;
Bostan and Strick, 2018). The first study to identify a structural
link between the BG and cerebellum in non-human primates
used transneuronal viral tracing to label neurons in the dentate
nucleus that project to the intralaminar nuclei of the thalamus
and then to the striatum and the external globus pallidus (Hoshi
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Fig. 2. Connections and select functions of the BG, cerebellum and cortex. This diagram shows the structural organization and functions of relevant pathways in the

BG, cerebellum and cortex. During processing of an emotional stimulus, these regions (as well as, e.g. amygdala, hippocampus) cooperatively analyze the incoming

information and generate an appropriate response, which includes action tendencies, physiological changes and subjective feelings. Green arrows indicate excitatory

pathways, red arrows indicate inhibitory pathways, and the blue arrow indicates the dopaminergic pathway from the SN. SN, substantia nigra; GPi/GPe, internal/external

globus pallidus; STN, subthalamic nucleus; PN, pontine nuclei; DCN, deep cerebellar nuclei; IO, inferior olive.

et al., 2005). Later work expanded this finding by showing a
connection in the opposite direction, with the STN projecting
to the pontine nuclei and then to the contralateral cerebellar
hemisphere (Bostan et al., 2010). In both cases, these projec-
tions innervated the motor and non-motor functional domains,
meaning the BG and cerebellum can modulate a wide range of
habitual and goal-directed behaviors (Xiao et al., 2018). Further-
more, it has been shown that these connections exhibit short
latency responses which would allow for rapid communication
to impact early stages of processing (Chen et al., 2014).

Importantly, the existence of these connections in humans
has been supported by diffusion-weighted imaging studies,
which can measure the strength of white matter tracts non-
invasively. Pelzer et al. identified tracts between the dentate
and striatum and the STN and cerebellum via the thalamus and
pontine nuclei (Pelzer et al., 2013; Pelzer et al., 2017), mirroring the
results from the earlier animal studies. Another study in humans
extended these findings by reporting structural connections
between the dentate and globus pallidus and substantia nigra
(Milardi et al., 2016). Functional connectivity studies also have
confirmed the co-activation of BG nuclei and the cerebellum and
associated these subcortical structures with multiple resting-
state networks that encompass large portions of the neocortex,
including limbic regions such as the orbitofrontal cortex and the
amygdala (Habas et al., 2009; Brunenberg et al., 2012).

Combined functional role of the BG and
cerebellum in emotion
The direct connections between the BG and cerebellum allow
these regions to work together to modulate processes such
as motor control and emotion recognition or expression, with
the two regions guiding the selection and precision of behav-
ioral output. Both structures participate in learning appropri-
ate responses (Box 1), primarily using reward feedback in the
BG and prediction error feedback in the cerebellum to adjust
response selection and execution (Doya, 2000; Tanaka et al., 2004;
Bostan et al., 2013; Taylor and Ivry, 2014; Fermin et al., 2016;
Bostan and Strick, 2018; Eisinger et al., 2018; Caligiore et al., 2019).
Importantly, their functions are not entirely distinct, however,
but overlapping, with the BG also encoding prediction error (Cox
and Witten, 2019; Pine et al., 2018) and the cerebellum responding
to reward presentation (Kostadinov et al., 2019). The reward-
related BG circuitry with differential dopaminergic sensitivity in
the direct and indirect pathways allows for the selection and
strengthening of an appropriate cortical response and inhibi-
tion of other, unrewarding responses. In conjunction with this
selection process, the cerebellum’s uniform cellular architecture
performs fine-tuning of the selected response (whether it be
an emotional reaction, linguistic rehearsal or motor movement)
to optimize the outcome based on the internal model of the
individual’s current state.
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Fig. 3. Example of the chunking process in the limbic domain using vocal emotion processing. As proposed by Schirmer and Kotz (2006), processing of an emotional

utterance proceeds in three steps from primary auditory cortex to superior temporal cortex to inferior frontal cortex. Simultaneously, connections with the BG allow

them to iteratively assess contexts and select actions to form or control the expression of emotional (or motor/cognitive) sequences, explaining the BG’s sensitivity

to the temporal and structural organization of events. When the emotional sequences are recurrent, the BG creates units of these sequence representations called

‘chunks’ at each level of the limbic auditory processing stream. These smaller chunks then can be combined into a larger representative chunk for a single sequenced

response to a given stimulus that is activated without the need for attentional control of each step. Meanwhile, the cerebellum monitors prediction errors of internal

models relying upon the performance of these chunks and can trigger adjustments to the ongoing sequenced behavior and recruit controlled processing as needed for

optimal responding. Adapted with permission from Schirmer and Kotz (2006).

Subcortical synchronization and modulation of cortical
emotional responses

The ventromedial STN, based on its advantageous position in
the hyperdirect pathway consisting of closed loop connections
with limbic frontal cortex, may be critical for (de)synchronizing
cortical neural oscillations that produce an emotion response
pattern following a salient environmental cue (Péron et al., 2013).
The BG’s sensitivity to the temporal characteristics of a stimulus
(Buhusi and Meck, 2005; Péron et al., 2017) allows for precise
control of distant cortical activity with the inhibitory effect of
increased STN output modulating cortical responses to emo-
tional stimuli to generate an appropriate response while limiting
competing signals from task-irrelevant or task-incidental co-
activations. This modulatory effect on cortical targets is influ-
enced further by dopaminergic input to the BG, which increases
cortical excitability following rewarding stimuli or behaviors
(Costa et al., 2006).

By gating the starting and stopping of emotional response
patterns (Ory et al., 2017), the BG influence cortical learning
as the relevant neural populations increase their connectivity
strength through synchronous firing. Over time, repetition of
this selection process leads to the creation of sequences of
cortical representations that are ‘chunked’ together into habit-
like responses that can occur nearly automatically following an
emotional cue (as in the motor domain; Graybiel, 2008). As such,
the BG may be particularly important during the acquisition of
new emotional response patterns or in new emotional contexts

when strong rewards or prediction errors lead to the formation
or alteration of cortical response chunks. This chunking process
allows for more rapid access to holistic sequenced responses
without the need for costly attentional intervention, which is
crucial when interacting with emotional stimuli such as a fearful
facial expression.

The limbic cerebellum, on the other hand, modulates the
amplitude of cortical oscillations based on prediction error
feedback of the selected response relative to the given context
(Booth et al., 2007; Schmahmann, 2019). Input to the cerebellum
regarding the salience and motivational value of emotional
stimuli guides internal models to determine how an emotional
response benefits individuals in their current state and, thus,
shapes how output from the cerebellum modifies the limbic
response pattern. By continuously monitoring performance
of the individual in terms of prediction error, the cerebellum
ensures that large deviations from the expected response/out-
come are quickly corrected (Peterburs and Desmond, 2016).
In cases of cerebellar lesions, however, a lack of cerebellar
amplification of emotional networks may lead to the blunted
affect and decreased subjective experience of emotions often
reported in patients (Adamaszek et al., 2017).

An example of the contribution of the BG and cerebellum to
emotion processing can be found during perception of an angry
voice (Figure 3). The recognition of relevant emotional prosody
information begins in primary auditory cortex with extraction
of basic acoustic features and then proceeds to more anterior
regions of superior temporal cortex for identification of general
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emotional cues and then to the inferior frontal cortex for elabo-
rated processing of the emotional salience and semantic content
of the voice (Schirmer and Kotz, 2006). Throughout this process-
ing pathway, the BG enhances activity within the neural repre-
sentation (i.e. a habit-like ‘chunk’) corresponding to a previously
reinforced experience with a similar angry voice, more quickly
activating downstream regions to reach a decision threshold or
generate a motor response that matches what was rewarded
in the earlier encounter. Simultaneously, the cerebellum checks
whether the state of the individual varies from the expected
state at any time during the emotion recognition process. If
this prediction error exceeds a given threshold defined by the
context (e.g. the individual’s goals, familiarity with the speaker,
stress levels), then the cerebellum can refine the cortical/BG
response and recalibrate the internal model. Nonetheless, since
the BG and cerebellum do not directly store or produce emotional
response patterns themselves, lesions to these regions do not
necessarily cause gross emotional deficits (but see Section 3.2
and Schmahmann and Sherman, 1998; Levisohn et al., 2000, for
significant clinical symptoms). Instead such damage leads to a
more subtle neural miscoordination that may hinder efficient
emotion recognition by introducing additional noise into the
system (Péron et al., 2013; Schmahmann, 2019).

Overall, in the healthy brain, repeated synchronization of
cortical regions by the BG and fine-tuning by the cerebellum
strengthen representations of a given response pattern and
allow learned emotional responses to be generated more
automatically in the future, just as with motor behaviors.
Furthermore, studies suggest that this emotional synchroniza-
tion occurs regardless of the valence (positive or negative) or
modality (auditory or visual) of the emotional stimuli (Turner
et al., 2007; Baumann and Mattingley, 2012; Péron et al., 2013,
2017), and during emotion recognition as well as production,
assuming the limbic network reactivates in a similar fashion
during perception without executing the motor expression of
an emotional response (Ferrari et al., 2018). Connections with
regions controlling motivation (nucleus accumbens, substantia
nigra, ventral tegmental area), relevance detection (amygdala)
and physiological responses (brainstem) also imply a broad
influence on emotion (Ikai et al., 1992; Baumann and Mattingley,
2012; Péron et al., 2013; Bostan and Strick, 2018; Habas, 2018) and
warrant further attention in future neuroimaging studies.

The synchronization mechanism proposed above is consis-
tent with the general function of the BG and cerebellum in
other domains, suggesting that subdivisions of these structures
perform similar processing in different tasks depending on the
pattern of cortical and subcortical connectivities with different
functional networks. Limbic, cognitive and motor functional
domains in the BG and cerebellum could allow for integration
of multiple cortical inputs within or across domains, perhaps
occurring within the STN (Mathai and Smith, 2011; Péron et al.,
2013) and the DCN (Habas, 2010), respectively, as these small
structures receive converging input from other parts of the BG
or cerebellar hemispheres. Most evidence, however, indicates
largely distinct processing streams for each functional domain
that output to the same cortical regions from which they receive
input (Middleton and Strick, 2000; Kuper et al., 2011; Stoodley
and Schmahmann, 2018). Additionally, different neural subpop-
ulations could utilize distinct oscillation frequencies to gate
activity for short- or long-range connections and to increase
the computing power of limited neural resources. Ultimately,
affective processing, like many other brain functions, relies on
the selection and inhibition of response patterns by the BG
and fine-tuning of the selected response by the cerebellum to

minimize mismatch between one’s expected and actual internal
state in a given context.

Conclusion
Subcortical structures often have been ignored in the study of
human cognition in favor of the larger and more accessible neo-
cortex. Recent work, however, has highlighted the importance of
the BG and cerebellum in emotion processing, which is mediated
by their dense cortical and subcortical connections. Evidence
for direct structural and functional connections between the BG
and cerebellum further has demonstrated that these regions
can influence brain activity both independently and through
synchronization of widespread limbic brain regions to select and
adjust responses based on the current contextual state, allowing
for efficient acquisition and production of appropriate response
patterns.
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