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ABSTRACT
Using administrative data on all Veterans who enter 
Department of Veterans Affairs (VA) medical centres 
throughout the USA, this paper uses artificial intelligence 
(AI) to predict mortality rates for patients with 
COVID-19 between March and August 2020. First, using 
comprehensive data on over 10 000 Veterans’ medical 
history, demographics and lab results, we estimate five AI 
models. Our XGBoost model performs the best, producing 
an area under the receive operator characteristics curve 
(AUROC) and area under the precision-recall curve of 0.87 
and 0.41, respectively. We show how focusing on the 
performance of the AUROC alone can lead to unreliable 
models. Second, through a unique collaboration with 
the Washington D.C. VA medical centre, we develop a 
dashboard that incorporates these risk factors and the 
contributing sources of risk, which we deploy across local 
VA medical centres throughout the country. Our results 
provide a concrete example of how AI recommendations 
can be made explainable and practical for clinicians and 
their interactions with patients.

INTRODUCTION
The recent COVID-19 pandemic represents 
the largest global shock to health and 
economic systems in at least a century, 
leading to significant declines in economic 
activity,1 2 mortality3 and well-being.4 These 
patterns and the resulting aftershock have 
led to a surge in research activity to generate 
risk profiles to understand how individuals 
and communities might be heterogeneously 
exposed to the virus.5 6 However, researchers 
have struggled to obtain bias-free, reliable, 
and externally-valid predictions on represen-
tative datasets.7

The primary contribution of this paper 
is to develop a reliable predictive model 
for understanding mortality rates among 
Veterans and to take these predictions to 
practice by creating an accessible and infor-
mative dashboard that clinicians can use to 
improve their treatment of patients. Moti-
vated by an increasing recognition that 

socio-economic factors are important for 
understanding health and well-being8–10 and 
race,11 we draw on administrative data from 
the Department of Veterans Affairs (VA) and 
estimate a series of artificial intelligence (AI) 
models that incorporate medical history, 
demographics, and lab results for over 10 000 
Veterans. Others have emphasised the role 
of other comorbidities, like asthma, as risk 
factors for COVID-19,12 but none have inte-
grated all these factors together, particularly 
in a representative sample or full population.

We obtain an area under the receive oper-
ator characteristics curve (AUROC) and area 
under the precision-recall curve (AUPRC) of 
0.87 and 0.41, as well as F1 and recall scores 
of 0.40 and 0.76. We decompose the contri-
bution of each feature, identifying a handful 
of vital signs and lab indicators that matter 
even more than age in predicting mortality. 

Summary box

►► We build a model using artificial intelligence (AI) 
and machine learning (ML) techniques to predict 
mortality among all Veterans that have been in the 
Department of Veterans local medical centres be-
tween March and August 2020.

►► Our preferred model achieves a 0.87 area under the 
the receiver operator characteristics curve and an 
area under the precision-recall curve of 0.41.

►► In addition to age, our model reveals that an indi-
vidual’s labs and vitals are significant predictors of 
mortality, followed by medical history.

►► We pilot our predictive model by creating a platform 
for clinicians across local VA centres that produc-
es individual-specific risk scores for their patients, 
thereby allowing clinicians to offer more tailored 
treatment plans for patients.

►► Our paper suggests that artificial intelligence has 
the potential to substantially improve clinical ex-
periences and patient outcomes, but the artificial 
intelligence-driven results must be accessible, in-
terpretable and actionable.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-6547-5897
http://orcid.org/0000-0002-0495-7059
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjhci-2020-100312&domain=pdf&date_stamp=2021-06-09


2 Makridis CA, et al. BMJ Health Care Inform 2021;28:e100312. doi:10.1136/bmjhci-2020-100312

Open access�

While age alone helps obtain ‘reasonable’ AUROC 
scores, we show that these results are an artefact of the 
nature of an imbalanced dataset where mortality rates 
are low. Furthermore, we find that models with age alone 
produce high AUROC scores, but low AUPRC scores. 
The inclusion of chronic and acute medical conditions 
helps, but the F1 and recall scores do not rise to much 
until we introduce vital and lab indicators. Through a 
unique partnership with the Washington D.C. VA medical 
centre, we subsequently create a dashboard that uses our 
preferred predictive model to provide clinicians with 
personal risk scores for each patient and the leading indi-
cators that are driving the score. Importantly, these risk 
scores enumerate the primary contributing factors so that 
clinicians are provided with not only actionable informa-
tion, but also context over the logic behind the score. We 
are piloting the dashboard and making it available across 
local VA medical centres, which is a general contribution 
that extends even beyond the Veterans context.

Our paper contributes to a timely research agenda on 
the effects of COVID-19 and the identification of individ-
uals who are more exposed to it than others. For example, 
age has emerged as one of the most important comorbid-
ities.13 14 However, we show that age alone does a poor 
job in producing robust predictions. Because COVID-19 
mortality rates are low to begin with, and most datasets are 
fairly imbalanced, it is easy to obtain a reasonable AUROC 
with a weak predictive model simply by producing many 
true negatives. Moreover, we show that there is a lot of 
heterogeneity even within age brackets, which could be 
a function of social capital within the local community or 
other preventative health measures.15

We also join a broader literature that embeds AI into 
tools for clinicians, including predictive tools for viral 
pneumonia and even secure analytics platforms, as in the 
case of OpenSAFELY that covers over 17 million adults in 
the UK to estimate hazard models as a function of comor-
bidities and other demographic characteristics.16 12 The 
VA has been a pioneer in creating COVID-19 models. 
For example, Osborne et al17 construct a care assessment 
need (CAN) score that is correlated with COVID-19 
outcomes, showing that patients with a higher CAN also 
had a higher risk of COVID-19 infection and death. Simi-
larly, King et al18 estimate the probability of mortality as 
a function of demographic and medical characteristics. 
We use AI to estimate the risk factors and optimizing for 
multiple performance metrics. We also include variables 
from operational services that are typically available to 
clinicians. In addition, we create a dashboard to facilitate 
trustworthy AI by making the risk factor easily accessible 
and interpretable for clinicians, among others, consistent 
with the recent principles around trustworthy AI.19

To our knowledge, we are the first to create and 
deploy an AI-driven tool to enhance clinicians’ treat-
ment of patients. To the extent that clinicians can 
obtain reliable predictions of individual health risks, 
then they can provide more tailored treatments and 

better monitoring of patients during their visits in the 
hospital. We are working to deploy these predictions 
across medical centres, together with a simple heuristic 
that flags patients as low, medium and high risk based 
on whether our classifier predicts a probability of death 
in the top, middle or bottom percentile of the mortality 
distribution. While our focus is on Veterans, our results 
generalise to broader contexts since there is overlap in 
the distribution of covariates between Veterans and non-
Veterans (eg, age, education, race).

Traditional measures of health among Veterans focus 
on physical conditions obtained from, for example, 
a combination of medical history and demographic 
factors.20 These factors are important since they may influ-
ence individuals’ predisposition to certain ailments.21 For 
example, especially with the recent COVID-19 pandemic, 
age has emerged as one of the most important individual-
level predictors of infection risk and mortality.5 6 However, 
researchers have struggled to obtain bias-free, reliable and 
externally-valid predictions on representative datasets.7

On top of these individual-level characteristics that serve 
as important mediating characteristics in the ongoing 
pandemic, there is also an increasing recognition that 
geographic factors matter for understanding variation 
in healthcare utilisation. For example, differences in life 
expectancy vary significantly across commuting zones, 
although the dispersion is smaller in higher income 
areas.22 Moreover, confidence in healthcare systems and 
their ability to care for the needs of their communities 
varies across metropolitan areas.23

However, while there is a general understanding that 
demographics play a role in understanding differences in 
physical and mental health among individuals, including 
Veterans, there is also an increasing recognition that social 
determinants are potentially even more important.24 25 26 
This comes at a time when new data is becoming avail-
able. For example, recent work provides a methodology 
for mining electronic health record (EHR) textual data 
to detect the presence of homelessness and adverse child-
hood experiences as predictive factors behind individual 
health.10 Unstructured data can provide valuable infor-
mation about Veteran experiences, allowing researchers 
to map qualitative information about experiences into 
comparable indices.

There is also substantial evidence of geographic differ-
ences in life expectancy and mortality outcomes. For 
example, life expectancy is closely related with individual 
income and these outcomes also vary across geographies 
with different average incomes, suggesting that local 
health- care resources may play a role for explaining 
differences in mortality across space.22 Moreover, specif-
ically for Veterans, there are large differences in utili-
sation rates of healthcare services across space, at least 
in part because of the composition of practices among 
VA medical professionals at a local level.27 Additional 
research also explores how sociodemographic factors 
help explain differences in COVID-19 deaths across local 
VA medical centres.28
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METHODS
The data we use for model training and evaluation come 
from the EHR at the Department of Veterans Affairs 
Health Administration (VHA). To develop an ML algo-
rithm capable of predicting mortality within a 30-day 
window of infection, we analyse patient data from the 
EHR in the VA Corporate Data Warehouse (CDW). 
Specifically, we analyse data consisting of of patient demo-
graphics, International Classification of Diseases (ICD) 
Diagnosis codes, blood work and vital signs of patients 
infected with SARS CoV-2. Our training sample consisted 
of 11 097 (1294 deceased) treated for COVID-19 from 2 
March through 3 August 2020. Before dropping observa-
tions with over 25% missing, we have 129 station and 32 
706 patients whereas when we drop those with over 25% 
missing, we have 124 patients and and 11 962 patients. 
A second validation sample consisting of 1634 (128 
deceased) patients treated from 4 August through 24 
August 2020 was held out to assess model performance 
on data that is unbiased from the model training process. 
Laboratory results indicating positive detection of SARS 
CoV-2 were used as criteria for infection.

In an effort to create the most predictive model possible, 
we use the date of positive SARS CoV-2 PCR specimen 
collection as our chronological reference point for anal-
ysis and model training. Variables analysed fall within 
the following broad categories: patient demographics, 
comorbidities, chronic acute conditions, laboratory 
pathology and vital sign values. Several comorbidities are 
indicative of the mortality window for with patients SARS 
CoV-2. One distinguishable characteristic among patients 
that experienced mortality was a higher number of 
comorbidities. To summarise the level of multimorbidity 
in patients, we used the Quan-Elixhauser Mortality Index 
as a variable.29 30

We also experiment with data from the Census Bureau’s 
5-year American Community Survey from 2014 to 2018. 
The Census provides a wide array of demographic char-
acteristics at county or state level, including: the race 
distribution, the population density, the share male, the 
age distribution (the share under age 18, age 25–44, age 
45–64 and 65+), the share married, the education distri-
bution (the share with less than a high school degree, 
some college, and college or more), the income distribu-
tion (the share with less than US$15 000, US$15–29 000, 
US$30–39 000, US$40–49 000, US$50–59 000, US$60–99 
000, US$100–1 49 000, over US$150 000), and the poverty 
rate (the share of people living in poverty under age 
18, age 18–64 and 65+). However, after controlling for 
our individual characteristics, these location characteris-
tics do not improve the model performance. While our 
prior work has found that these characteristics matter for 
predicting cross-sectional differences in mortality and 
infections,31 our individual-level characteristics in the VA 
data subsume the zipcode characteristics since they are 
more granular.

We use the following variables in our predictive models:

►► Patient demographics: the latest available observa-
tions up until the point of SARS CoV-2 lab specimen 
collection, including: age, race, ethnicity and marital 
status.

►► Comorbidities: Elixhauser Mortality Score was derived 
from patient ICD 10 diagnosis codes. These codes 
were derived from clinical encounters, active prob-
lems, inpatient and outpatient billing records ranging 
back 7 years from date of the patients first positive 
SARS CoV-2 laboratory test.

►► Chronic and other disease history: comprehensive 
groups were formed using the same set of ICD 10 
diagnosis codes for comorbidities to represent certain 
diseases: dementia, gait and mobility issues, athero-
sclerosis, prostate problems, hypertension, hyperlip-
idaemia, anaemia, diabetes and chronic obstructive 
pulmonary disease (COPD).

►► Acute conditions: a second set of ICD 10 codes extrap-
olated from active problems and encounters was used 
to code for acute conditions 3 days prior and up to 
the date of first positive SARS CoV-2 lab: encounter 
for palliative care, do not resuscitate, hypoxia, pneu-
monia, respiratory failure, kidney failure, acute 
respiratory distress syndrome, cardiac arrest and 
sepsis.

►► Lab work: pathology components from the date of the 
patients first positive SARS CoV- 2 Lab were analysed: 
erythrocyte mean corpuscular volume fL, erythrocyte 
sedimentation rate mm/hour, lactate mmol/L, bili-
rubin—total mg/dL, D-dimer ng/mL, white blood 
cell count K/cmm, platelets 10*9/L, lactate dehy-
drogenase U/L, lymphocytes, C reactive protein mg/
dL, CO2—partial pressure mm Hg, PO2 mm Hg, red 
blood cell count M/cmm, lymphocytes, ferritin ng/
mL, urea nitrogen mg/dL and albumin g/dL.

►► Vital signs: vital signs from the date of the patients 
first positive SARS CoV-2 lab were analysed: blood 
pressure, pulse, temperature, respiration, height, 
weight, body mass index, pulse oximetry and fraction 
of inspired oxygen (FIO2).

Table  1 documents the summary statistics for these 
characteristics separately for patients who recovered and 
those who died. Consistent with prior literature, we see 
stark differences in age between those who recovered 
and those who died: a mean (median) of 62 (64) years 
old versus 77 (75), respectively. We see greater dispersion 
in age among those who recovered (SD of 15 vs 10). We 
also observe substantial differences among a handful of 
other lab results, including: lymphocytes, urea nitrogen, 
platelets, D-dimer, and, perhaps most importantly, the 
Elix Mortality Score. For example, given that lymphocytes 
are the B and T cells that help fight infection, it is not 
surprising that we find that patients who recovered have 
roughly 43% higher counts than those who died.

For model calibration, we use five-fold cross validation 
AUPRC mean scores for hyper-parameter optimisation. We 
also bootstrap the training dataset using five-fold cross vali-
dation AUROC, F1 and recall mean scores. After model 
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calibration, we evaluate performance on the validation 
dataset using four metrics: AUROC, AUPRC, F1 and recall 
scores. We include recall as a primary evaluation metric to 
see how well the classifier identifies the positive class, that 
is, mortality in concordance with other metrics that assess 
overall classification performance.

Our selection of these models was based off of two priori-
ties. First, we require a probabilistic model—that is, one that 
produces predicted probabilities when fed a vector of 0/1 
values. This is useful from an operational standpoint. Users 
of the model using can adjust the probability threshold for 
the outcome of mortality to meet their operational needs. 
For example, consider a Primary Care clinic that uses the 
model to decide which patients require additional follow- 
up after diagnosis. If the clinic wants to be more cautious, 
clinicians can lower the probability threshold. Second, we 
desire explainability—that is, results that are interpretable 
and actionable for clinicians. We limit our pool of prospec-
tive algorithms to those that could be explained with weights 
given to each input, allowing us to rank the importance of 
different features for clinicians. There is a growing recogni-
tion that AI must be explainable for it to have the greatest 
impact and adoption across organisations.32

For all evaluated models excluding XGBoost, missing 
values were imputed using a K-nearest neighbours (KNN) 
method. To mitigate the effects of data sparsity biasing our 
models, observations missing less than 25% of their depen-
dent variables were dropped from both training and eval-
uation datasets. While there is no perfect way to deal with 
missing data, one of the desirable features of XGBoost is its 
built-in support for sparsity. When decision tree nodes are 
constructed during the training process, optimal traversal 
pathways are decided for both for non-missing and missing 
values.33 Other models require dense datasets, forcing users 
to either to drop observations or impute missing values. To 
compare the performance of XGBoost native support for 
data sparsity, we evaluate two XGBoost models: one trained 
and evaluated using KNN imputation and one without.

RESULTS
There has been a proliferation of studies evaluating 
risk factors behind COVID-19 infections and mortality.7 
Many of these studies have assessed their performance 
based only on the AUROC. However, looking solely at 
the AUROC can lead to misleading inferences and weak 

Table 1  Descriptive statistics for recovered and deceased patients

Convalesced mean 
std 25% 50% 75%

Mortality 
mean Std 25% 50% 75%

Age 62.41 15.25 52.78 64.38 72.99 77.01 10.86 70.45 75.85 86.02

Lymphocytes % 21.78 11.21 13.50 20.20 28.40 15.14 11.58 7.70 12.70 19.42

C-reactive protein 
mg/dL

6.35 6.87 1.16 3.85 9.48 11.33 8.63 4.24 9.47 16.08

Urea nitrogen mg/dL 19.92 15.41 12.00 15.00 22.00 35.29 25.37 18.00 27.00 44.00

Platelets 10*9/L 207.80 80.16 154.00 194.00 246.00 189.76 88.74 135.00 170.00 230.00

CO2—partial 
pressure mm Hg

38.76 9.25 32.60 37.40 43.60 39.16 12.06 31.10 36.80 44.90

Erythrocyte mean 
corpuscular volume 
fL

88.34 6.26 84.90 88.60 92.20 90.10 6.91 86.10 90.20 94.40

Red blood cell count 
M/cmm

4.56 0.72 4.15 4.62 5.04 4.12 0.83 3.54 4.15 4.68

D-Dimer ng/mL 616.93 3155.99 70.00 175.00 408.00 1332.36 5836.19 139.25 328.00 774.75

Elix Mortality Score 5.20 14.67 −5.00 2.00 14.00 16.30 15.88 4.00 16.00 28.00

Bilirubin—total mg/
dL

0.67 0.55 0.40 0.60 0.80 0.83 1.66 0.40 0.60 0.90

Albumin g/dL 3.66 0.61 3.30 3.70 4.10 3.21 0.64 2.80 3.20 3.70

Pulse 87.23 17.07 75.00 86.00 98.00 89.29 18.93 76.00 88.00 101.00

Systolic 133.03 20.79 119.00 132.00 146.00 129.94 23.87 114.00 128.00 145.00

Diastolic 78.28 12.64 70.00 78.00 86.00 72.97 13.72 64.00 72.00 81.00

Pulse oximetry 96.01 3.42 95.00 96.00 98.00 94.31 5.17 93.00 95.00 97.00

FIO2 30.55 19.58 21.00 24.00 28.00 41.98 27.43 24.00 28.00 50.00

Respiration 18.81 3.68 17.00 18.00 20.00 20.53 5.13 18.00 20.00 22.00

Temperature 99.05 1.45 98.10 98.70 99.90 99.11 1.68 98.00 98.80 100.10

Sources: Department of Veterans Affairs. The table reports the mean, SD and percentiles of key variables used in the predictive models.
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predictive models since infection, as well as mortality, is so 
rare, meaning that over predicts negative rates will actu-
ally boost the AUROC.

In particular, we found that using the AUROC as a 
primary evaluation metric on imbalanced class datasets 
produced models with low sensitivity at the default prob-
ability rate (0.5). Furthermore, lowering the probability 
threshold revealed that these models performed very 
poorly along both sensitivity and specificity. We discovered 
that, in order to develop a model that is both accurate and 
captures a greater number of true positives, we applied a 
broader set of metrics, namely the AUPRC. Nonetheless, 
figure  1 reports the AUROC, which is 0.87—a score in 
line with many prior studies.

Of all the models analysed, the XGBoost decision tree 
ensemble using sparse datasets performed best. Using 

bootstrapping and five-fold cross validation this model 
achieved a mean AUROC score of 0.87 (0.86 to 0.88 
95% CI), a mean F1 score of 0.49 (0.48 to 0.59 95% CI) 
and a mean recall score of 0.73 (0.7 to 0.76 95% CI). On 
the validation dataset, the XGBoost model achieved a 0.87 
AUROC score, a 0.41 AUPRC, an F1 score of 0.40 and 
recall score of 0.11. Figure 2 presents these performance 
metrics. Part of the reason the performance does not 
differ much across the different models stems from the 
fact that we are working with a small sample. A growing 
literature from computer science suggests that the gains 
of sophisticated AI models are realised in larger datasets.

Given that the specific algorithm that we use to predict 
mortality does not have a large quantitative effect on 
model quality, we now explore the role of different 
features as predictive characteristics in figure 3. While the 
AUROC is highly similar across specifications, the other 
performance metrics, such as F1 and recall scores, differ 
significantly. Importantly, since a high AUROC can be 
obtained in an unbalanced dataset whenever the algo-
rithm produces low probabilities, then we might find an 
artificially high AUROC. In other words, we may produce 
a lot of true negatives, which lead to high sensitivity 
scores, but at the expense of true positives.

While some models yielded slightly higher recall scores 
at the default probability threshold (0.5), XGBoost 
performed better on all other metrics. Figure 3 summarises 
the ROC at various probability thresholds. If users of this 
model wish to be more cautious, they can simply choose 
a lower probability threshold at the expense of a higher 
false-positive rate. At each probability threshold, the table 
displays the sensitivity (true-positive rate) and specificity 
(true-negative rate) achieved on the validation dataset. To 
provide greater insight into the results from our XGBoost 
model, Figure 4 plots the decision tree and the resulting 
probabilities at each node. This algorithm is of the family 

Figure 1  Department of Veterans Affairs. The figure plots 
the area under the receiver operator characteristics curve for 
mortality as the outcome variable using XGBoost.

Figure 2  Department of Veterans Affairs. The figure reports 
the area under the receiver operator characteristics curve 
(AUROC), area under the precision recall curve (AUPRC), 
the F1 score, and the recallscore all using different modeling 
strategies. Recall is equal to the ratio of true positives to the 
sum of true positives and false negatives. Precision is equal 
to the ratio of true positives to the sum of true positives and 
false positives. The F1 score is equal to 2*(Recall * Precision) 
/ (Recall + Precision).

Figure 3  Department of Veterans Affairs. The figure reports 
the area under the receiver operator characteristics curve 
(AUROC), area under the precision recall curve (AUPRC), the 
F1 score, and the recallscore all using different features as 
predictive characteristics. Recall is equal to the ratio of true 
positives tothe sum of true positives and false negatives. 
Precision is equal to the ratio of true positives to the sum 
oftrue positives and false positives. The F1 score is equal to 
2*(Recall *Precision) / (Recall + Precision).
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of ensemble learning techniques and is based on the 
famous Random Forest algorithm. The term ensemble 
learning is used to describe a powerful machine learning 
method in which multiple machine learning models are 
used for prediction.

Furthermore, figure  5 ranks the features, by impor-
tance, as predictors of mortality outcomes using the F 
score. Consistent with prior literature, age ranks as the 
top comorbidity, followed by lymphocytes, C-reactive 
protein, urea nitrogen, platelets, FIO2, red blood cell 
count, enthrocyte mean corpuscular, and D-dimer. These 

are all intuitive characteristics that would enter into the 
risk factor. For example, since lymphocytes are the B and 
T cells that help fight infection, they can decrease during 
viral diseases. Similarly, platelets allow blood to clot and 
can decrease with viral infection.

Consider, for example, the AUROC with only age vs 
the full model, which contains medical conditions, vital 
signs, and labs. While the AUROC between the two 
are nearly identical (0.84 vs 0.87), the full model has a 
substantially higher AUPRC, F1 score, and recall score. 
For example, the AUPRC and F1 score grow from 0.17 
and 0.16 to 0.41 and 0.40, respectively, which is over a 
two-times order of magnitude increase. We focus on 
not only who dies (ie, sensitivity=true positives / (true 
positives+false negatives), but also who recovers (ie, true 
negatives=true negatives / (true negatives+false posi-
tives). The inclusion of chronic conditions, and to a 
larger extent acute conditions, helps increase the perfor-
mance of the model, the inclusion of vital signs and labs 
are the features that improve the model the most. Given 
that many of the studies in this emerging literature on 
COVID-19 have focused on AUROC as a metric for eval-
uating model performance, we view our broader set of 
metrics as not only a form of model validation, but also a 
contribution in and of itself for obtaining more reliable 
predictions.

While there is no strict AUROC and AUPRC threshold 
for defining reliable models, it is important to focus on 
the AUPRC in settings with an imbalanced dataset.34 
For example, here we have a small share of patients 
who died from COVID-19, which puts the AUPRC in 
perspective, since they show the number of true posi-
tives among positive predictions. In this sense, given a 
mortality rate of 0.043, the baseline AUPRC is 4.43%, so 
our actual AUPRC of 0.41 is well above what a classifier 
would predict randomly. Moreover, to better understand 
the quality of our predictions, figure 6 plots the distribu-
tion of the risk factors (eg, convalescence and mortality) 
across patients with the associated CI. Although we see 
significant dispersion in the risk factors, the CIs are still 
fairly narrow, suggesting that these predictions have been 
reliably estimated.

Figure 4  Department of Veterans Affairs. The figure plots 
the tree for our mortality outcomes using all the variables that 
were embedded in the model.

Figure 5  Department of Veterans Affairs. The figure reports 
the most important features from the estimation of XG Boost 
using the F score as the metric. BMI, body mass index.

Figure 6  Department of Veterans Affairs. The figure 
reports the distribution of our predicted risk factor and 
convalescence with their associated confidence intervals.
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DISCUSSION WITH CLINICAL APPLICATIONS
In addition to creating a predictive model for under-
standing the role of different comorbidities and obtaining 
predicted probabilities for mortality, we also create 
an operational tool that aids in point of care decision-
making for treating patients afflicted with SARS CoV-2. 
We pilot our 30-day mortality model in a PowerBI dash-
board available to VA clinicians, built using data from 
the VA CDW. The dashboard is refreshed daily and uses 
well-established security practices to keep patient data 
safe and ensure that information is limited to users’ local 
VA facility. Figure 7 provides a spatial illustration of the 
VA medical facilities, weighted by the number of patients, 
across the USA.

The dashboard has two views: one for primary care 
and another for inpatient care providers. The primary 
care view allows primary care teams to filter the datasets 
by patient provider, track COVID-19 testing and view 
mortality risk scores which are the probabilities generated 

by the model. For in-patient providers, they can filter the 
inpatient dataset by specialty and hospital location. These 
features are embedded so that the AI-driven tool adheres 
to the principles of trustworthy AI, particularly as they 
apply to Veterans,19 namely with a clear purpose (i.e., 
informing clinicians about the mortality risk of patients), 
with reliability and accuracy (i.e., reporting perfor-
mance metrics), and with understandable and actionable 
analytics (i.e., enumerating the primary factors behind 
the patient’s risk factor).

Figure 8 presents visuals of these dashboards.
One of the most useful features of our dashboard is that 

providers do not have to take the risk scores at face value. 
They can search for a view that presents model inputs, 
variable weights, as well as a list of missing inputs. If they 
are want to learn more about a patient, they can order 
labs and/or obtain vital signs from the missing values 
list to obtain more accurate mortality risk assessments. 
Model weights are Shapley’s Additive Explanations 

Figure 7  VA medical center facilities in the USA.

Figure 8  Primary care and in-patient views for mortality predictions.
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(SHAP) values. SHAP is a game theoretical approach to 
explain the output of machine learning models.35 SHAP 
values allow users of our dashboard to see the direction 
and magnitude to which each variable input affects the 
patient’s risk score. Figure  9 plots a visual for the risk 
factor layout of the dashboard.

This view provides explains how the model arrived at its 
concluded risk score to clinicians. The table displays each 
dependent variable input used by the XGBoost model to 
derive the individual’s risk score. The ‘Feature’ column is 
the dependent variable name, the ‘Explanation’ column 
is the weight that is, the direction and magnitude that the 
input effected the risk score, and the ‘Value column is the 
numeric value of the dependent variable. Positive expla-
nation values imply that the input increased the risk score 
and negative values imply the inverse.

While our tool helps clinicians improve their treatment 
of patients and guide them to the most pressing risk 
factors, we recognise that the tool has at least two limita-
tions. First, it is not meant to tell clinicians what to do: 
our AI is designed to augment clinician responsibilities, 
not replace them. Second, since the tool provides a list of 
important determinants of the risk factor, the clinician is 
called to think about potential explanations behind the 
phenomena that they observe with the patient. In this 
sense, the AI is designed to help consolidate data and 
draw out the clinician’s knowledge and expertise to drive 
better patient outcomes.

CONCLUSION
While there is already a large literature exploring the 
contributions of demographic factors and pre-existing 
conditions to COVID-19, there is little empirical evidence 
on the role that sociodemographic factors play within a 
community. This paper draws on administrative data from 
the Department of VA and each of their medical centres 
to estimate predictive models for mortality as a function of 

individual demographic characteristics, medical history, 
and labs and vitals for every Veteran under the VA’s care.

Our model performs well on not only the conven-
tional AUROC metric, but also other metrics, such as the 
AUPRC, F1 score and recall score. We show that these 
metrics are important for producing reliable predictive 
models since the mortality rate for COVID-19 is so low, 
meaning that models tuned to maximise the AUROC are 
likely to produce many false positives.

Using our new predictive model, we develop and imple-
ment a dashboard for clinical application in the District 
of Columbia VA medical centre. Our dashboard provides 
clinicians with not only the medical history and demo-
graphic characteristics of patients, but also risk factors 
that incorporate the results of our predictive models. In 
particular, we use our estimated models, together with the 
individual-level characteristics, to generate personalised 
predicted probabilities that the individual will experience 
acute hospitalisation and mortality, which we flag for the 
clinicians to help them maximise the odds for a successful 
recovery by the patient.

Our results open up a number of interesting avenues. 
Most importantly, we are in the process of piloting our 
clinical diagnostic tool with more medical centres with an 
intent in gauging the effectiveness of the instrument and 
identifying ways of improving it. We are also interested 
in extending the tool into other conditions and viruses; 
COVID-19 is simply on specific application. Moreover, we 
believe that there is significant value in a ‘learning health-
care system’ where medical centres prototype different 
tools, pool their combined knowledge, and iterate over 
quality improvements for the purpose of driving better 
health outcomes for their patients.

OTHER INFORMATION
This work was supported by the Department of VA Office 
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Figure 9  Risk factors for mortality predictions.
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