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P H Y S I C S

Probing quantum walks through coherent control 
of high-dimensionally entangled photons
Poolad Imany1,2,3*, Navin B. Lingaraju1,2, Mohammed S. Alshaykh1,2,  
Daniel E. Leaird1,2, Andrew M. Weiner1,2

Control over the duration of a quantum walk is critical to unlocking its full potential for quantum search and 
the simulation of many-body physics. Here we report quantum walks of biphoton frequency combs where the 
duration of the walk, or circuit depth, is tunable over a continuous range without any change to the physical foot-
print of the system—a feature absent from previous photonic implementations. In our platform, entangled 
photon pairs hop between discrete frequency modes with the coupling between these modes mediated by electro-
optic modulation of the waveguide refractive index. Through control of the phase across different modes, we 
demonstrate a rich variety of behavior: from walks exhibiting enhanced ballistic transport or strong energy con-
finement, to subspaces featuring scattering centers or local traps. We also explore the role of entanglement di-
mensionality in the creation of energy bound states, which illustrates the potential for these walks to quantify 
high-dimensional entanglement.

INTRODUCTION
A quantum particle can exist in a superposition of paths, or modes, 
and interference between the probability amplitudes of these out-
comes results in phenomena unique to random walks of quantum 
systems (1–3)—enhanced propagation, otherwise called ballistic 
transport (4), or Anderson localization, where the wave function 
becomes confined in a disordered system (5, 6). Quantum walks of 
two or more particles can exhibit nonclassical phenomena such as 
bunching or antibunching for bosons and fermions, respectively 
(7). The complex dynamics observed in these walks cannot be ex-
plained by classical models and, therefore, can serve as a probe of 
entanglement or interactions between particles (1, 7–11). Owing to 
the variety of nonclassical behavior that they can exhibit, quantum 
walks have the potential to provide a marked speedup in certain 
computational tasks like physical database searches (12) and tests of 
graph isomorphism (13).

Quantum walks come in two flavors—continuous and discrete 
(14). Discrete-time quantum walks can evolve through a sequence 
of discrete events characterized by a “coin flip” that scatters the walker 
into adjacent modes. In continuous-time quantum walks, the state 
evolves through continuous tunneling to neighboring modes. These 
walks have been observed in atomic systems (1), and their depth is 
determined by the evolution time of the quantum state. Continuous 
evolution of the quantum state, coupled with the ability to choose 
an arbitrary walk duration, allows one to explore a wide range of 
parameter space. Consequently, these walks are especially well suited 
to simulating Hamiltonian dynamics (9) and solving certain black-
box problems exponentially faster (15). To achieve even comparable 
performance with discrete quantum walks, additional system com-
plexity is required, primarily through an extra degree of freedom (14).

Walks of correlated particles have also been implemented in 
photonic systems, as they offer a more robust platform in terms of 
decoherence and room temperature operation (2, 3, 9, 16, 17). How-

ever, photonic quantum walks demonstrated to date suffer from the 
drawback that their circuit depth can only be incremented by phys-
ically altering the footprint of the system. Here, we report continu-
ous quantum walks with photon pairs entangled across multiple, 
discrete frequency modes (8, 18) where the effective duration of the 
walk is fully tunable without necessitating any physical change to 
the system. With arbitrary control of the phase across different modes, 
we demonstrate walks exhibiting enhanced ballistic transport or 
strong energy confinement, as well as subspaces featuring scattering 
or trapping of two-photon correlations. We also explore the role of 
entanglement dimensionality in creating energy bound states—
states whose energy remains unaltered over the duration of a walk—
and show that their sensitivity to multilevel entanglement hints 
at the potential for these walks to quantify entanglement in high-
dimensional systems.

RESULTS
Frequency domain quantum walks with tunable depth
A photon can “walk” across different modes in any one of its many 
degrees of freedom, whether it be time (2, 3), path (8, 16, 17, 19), 
orbital angular momentum (20), or frequency (21–23). All that is 
required to observe such behavior is the presence of coupling be-
tween different modes in the particular degree of freedom. In the 
case of a quantum walk in the frequency domain, this coupling is 
mediated by a periodic (temporal) modulation of the waveguide re-
fractive index. Such coupling, or mode splitting, can be realized in 
electro-optic phase modulators driven with a single sinusoidal radio 
frequency (RF) tone. The effect of this perturbation is that the wave 
function of a photon traversing the waveguide picks up a factor of 
eicosmt. Here,  corresponds to the strength of the modulating RF 
field, and m denotes the frequency of this RF modulation. Viewed 
from the perspective of the frequency domain, phase modulation 
scatters a single frequency into a comb-like spectrum with adjacent 
frequency modes separated by m in frequency (Fig. 1A). The 
amplitude of a comb line a distance nm away from the original 
frequency is given by nth-order Bessel function Jn(). In analogy to 
quantum walks based on path encoding, the depth of such a fre-
quency domain quantum walk can be incremented simply by cascading 
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one modulator after another. However, a particular strength of the 
frequency domain approach is that a cascade of n identical phase 
modulators is equivalent to increasing the strength of the modu-
lating RF field in a single modulator by this factor of n. In other 
words, the depth of the walk can be tuned over a continuous range 
by simply modifying the strength of the modulating RF field. This is 
in contrast to quantum walks in the spatial domain where evolution 
of the state is determined by propagation length (9, 24).

Figure 1A shows results from quantum walks of a single photon that 
starts out in a single-frequency mode. As the strength of the modu-
lating RF field () increases, the extent to which the input mode scatters 
to outer frequency modes also increases. In Fig. 1A, the output photon 
distribution is plotted as a function of modulation strength , which, 
in our platform, is equivalent to the effective walk duration. The 
“rabbit ears” observed in this distribution signify the presence of 
ballistic energy transport—a signature of random walks with quan-
tum systems. In particular, the standard deviation (SD) of the out-
put photon distribution grows linearly with  (25). For a classical 
random walk, transport to neighboring modes is not nearly as fast 
and its SD grows only as ​​√ 

_
  ​​ (25).

Quantum walks of entangled particles, particularly those fea-
turing high-dimensional entanglement, exhibit a richer variety of 
behavior than is possible with just a single photon occupying a single-
frequency mode. To explore the effect of entanglement on quantum 
walks in the frequency domain, we studied the evolution of two-
photon quantum frequency combs, commonly referred to as biphoton 
frequency combs (BFCs) (Fig. 1B), as they traverse the system.

Quantum walks and multilevel entanglement
BFCs have been generated directly in on-chip optical microresona-
tors (26–29) or carved from continuous down-conversion spectra 

(30). For results reported here, BFCs were generated by the latter 
approach as it allows flexibility in the choice of comb linewidth () 
and free spectral range (FSR). Broadband time-energy entangled 
photons (~5 THz) were generated by type-0 down-conversion in a 
periodically poled lithium niobate (PPLN) waveguide. In this pro-
cess, a pump photon from a continuous wave laser (~775 nm) is 
converted into a pair of daughter photons in the telecommunications 
band (~1520 to 1580 nm). As energy is conserved in this process, 
the energies (frequencies) of the daughter photons must add up to 
that of the pump photon. In other words, the two photons in an 
entangled pair are anticorrelated in frequency. This two-photon 
spectrum is carved into a BFC using a Fourier transform pulse shaper. 
The 3-dB linewidth of each frequency mode is set to 9 GHz—the 
resolution limit of our pulse shaper. To ensure minimal cross-talk 
between adjacent modes, the FSR of the BFC is chosen to be 25 GHz.

The pulse shaper is used to manipulate not only the amplitude of 
the biphoton spectrum but also its phase before any quantum walk. 
In particular, the spectral phase can be set to vary continuously or to 
make discrete jumps from one mode to the next. Once the desired 
state has been prepared, it is sent to an electro-optic phase modula-
tor that implements the mode-mixing operations, which give rise to 
a quantum walk. Our modulator is driven with a 25 GHz sinusoidal 
RF waveform, identical to the FSR of the BFC, with the RF power 
tunable over a continuous range. Downstream of the modulator is a 
second pulse shaper, which selects a pair of output frequencies and 
routes each one to a superconducting nanowire single-photon detec-
tor (SNSPD). Two-photon events between different frequency modes 
are identified by correlations in their arrival time, and these data are 
used to construct a measurement of the joint spectral intensity (JSI) 
of the BFC—a two-photon correlation map that illustrates the effects 
of a quantum walk in energy (frequency) space.

Fig. 1. Frequency domain mode splitting and biphoton frequency comb. (A) Experimental data showing the effect of phase modulation on a single frequency mode 
for various modulation depths. These spectra were acquired with classical light but also serve as an illustration of how each single mode, even in the quantum regime, is 
scattered by a phase modulator. The modulation speed was chosen to match the mode separation in our quantum source, and therefore, frequency shifts are presented 
in terms of the biphoton frequency comb (BFC) mode index. (B) Illustration of a BFC in frequency space. Each photon of the entangled pair is in a superposition of eight 
distinct frequency modes with pairwise correlations about center of the biphoton spectrum. This two-photon state has the form ​∣〉 = 1 / ​√ 

_
 8 ​ ​∑ 

m=1
​ 8  ​​ ​∣ m, − m〉​ SI​​​, and orange 

lines in the figure highlight correlations between each frequency pair ∣m, − m⟩SI. A pulse shaper is used to manipulate the phase on each frequency mode before the 
quantum walk. FSR, free spectral range.
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Enhanced ballistic energy transport
As noted earlier, one hallmark of a quantum walk is the observation 
of ballistic energy transport of the quantum state across modes of 
the system. We demonstrate even stronger transport for the case of 
a BFC entangled across eight dimensions and having the form ​
∣⟩= 1 / ​√ 

_
 8 ​ ​∑ m=1​ 8 ​​ ​ ∣m, − m⟩​ SI​​​, where S and I denote the signal (high-

frequency) and idler (low-frequency) photons, respectively. The 
JSI of this state, i.e., in the absence of any RF modulation, is com-
pletely anticorrelated in frequency (Fig. 2A). Each pixel on the an-
tidiagonal corresponds to the same two-photon energy, i.e., the sum of 
mode indices of any pixel on this line is zero. Note that the sum 
of the mode indices on any line parallel to the antidiagonal is a con-
stant and corresponds to a different value for the total energy of the 
two-photon state. In Fig. 2B, we show the JSI of this state after a 
quantum walk when the modulator is driven to a depth  = 4.6 (see 
the Supplementary Materials for the JSI measurements at various 
modulation depths). Experimental data show diffusion, or transport, 
of two-photon correlations away from the original JSI, which matches 

results expected from theory (see the Supplementary Materials). 
Transport perpendicular to the sum-frequency axis (antidiagonal)
and toward the top right corner of the JSI corresponds to events 
where the overall energy of the biphoton increases, i.e., the modulator 
transfers energy to the two-photon state. The converse, when the 
biphoton transfers energy to the modulator, manifests as transport 
toward the lower left corner of the JSI. In other words, what we ob-
serve is two photons experiencing the same frequency shift, which 
resembles, but is qualitatively different from, the bosonic bunching 
(Hong-Ou-Mandel interference) in the frequency domain (31).

To quantify this energy transfer, we tabulate the total number of 
events along the antidiagonal and along each line parallel to the anti
diagonal, to determine the probability of a biphoton exiting the system 
with a particular total energy. Energy transfer between the quantum 
circuit and the two-photon state, expressed in terms of the sum of 
photon mode indices, is plotted in Fig. 2D as a function of modula-
tion depth . A similar walk for a fixed circuit depth was previously 
demonstrated with high-dimensional, path-entangled photon pairs (8).
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Fig. 2. Correlated and anticorrelated two-photon quantum walks. (A) A measurement of the JSI for an eight-dimensional BFC of the form ​∣〉 =1 / ​√ 
_

 8 ​ ​
∑ 

m=1
​ 8  ​​ ​∣m, − m〉​ SI​​​ before the quantum walk. Coincidences are observed for mode pairs m, −m, which are anticorrelated in frequency. The JSI is symmetric about the di-

agonal as any two-photon event ∣i, j⟩AB is equivalent to its mirror ∣j, i⟩AB. Diagonal terms ∣i, i⟩AB were measured by splitting frequency mode i between detector channels 
A and B and are measured after all the off-diagonal elements. The acquisition time for diagonal elements was twice as long since there is a 50% probability that both 
photons end up at the same detector and, consequently, fail to register coincidences. (B) JSI for a BFC after a quantum walk for the case when no additional phase is ap-
plied before the walk (​∣⟩= 1 / ​√ 

_
 8 ​ ​∑ 

m=1
​ 8  ​​ ​∣m, − m⟩​ SI​​​). This results in two-photon events where mode indices move in the same direction, i.e., we have bunching of photons 

in energy space. (C) Antibunching (mode indices of two-photon events move in opposite directions) is observed when adjacent modes start out with a  phase differ-
ence relative to one another ​​​(​​∣〉 = 1 / ​√ 

_
 8 ​ ​∑ 

m=1
​ 8  ​​ ​e​​ im​ ​∣ m, − m〉​ SI​​​)​​​​. (D and E) Energy transferred from the phase modulator to the total biphoton state. The correlated 

quantum walk exhibits enhanced ballistic energy transport, and we see strong energy confinement for the anticorrelated walk. The JSI for each step, or each increment 
to the modulation depth, is shown in the Supplementary Materials. Energy transfer in these plots is presented in units of h, where  = 25 GHz (h = 1.656 × 10−23 J). The 
variation in the coincidence rates shown in (E) is due to fluctuations of the photon flux in our entangled pair source. All the JSI elements are coincidences measured 
in 1 s. a.u., arbitrary units.
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Energy bound state
We break new ground in photonic quantum walks by demonstrat-
ing the opposite of ballistic energy transport—strong confinement 
of the biphoton energy. To achieve this, we modify the spectral 
phase of the BFC to create a state of the form ​∣⟩= 1 / ​√ 

_
 8 ​ ​∑ m=1​ 8 ​​  ​e​​ im​ ​

∣m, − m⟩​ SI​​​, i.e., a state in which adjacent modes have a  phase with 
respect to one another. This operation can be viewed as a linear 
spectral phase ramp, which is equivalent to delaying one photon 
with respect to its entangled counterpart by half the modulation pe-
riod. As a result of this delay, photons in an entangled pair acquire 
equal but opposite frequency shifts. This is clearly illustrated in the 
JSI measurement after a quantum walk (Fig. 2C), which shows that 
frequency correlations remain largely confined to the antidiagonal 
of the JSI measurement. In other words, the energy of the two-photon 
state is mostly unchanged. As the duration of the walk (modulation 
depth ) increases, frequency correlations merely propagate outward 

along the antidiagonal to include new combinations of high- and 
low-photon energies (see fig. S3B). However, this energy gain or loss 
is correlated within a photon pair. If the idler gains some energy, 
then the signal loses that same amount of energy with the result that 
the total energy of the state is preserved.
Time-domain perspective
The evolution of the biphoton, as depicted by two-photon correlation 
maps (Fig. 2, B and C), can also be understood from a time-domain 
illustration of the quantum walk that considers the effect of electro-
optic phase modulation on the time correlation function of entan-
gled photons (32). In Fig. 3, the strength of the modulating RF 
waveform is shown (in black) as a function of time. The signal pho-
ton, which can arrive at the modulator at any time owing to the 
random nature of the pair generation process, is designated by a 
blue arrow. In Fig. 3, we only show one possible arrival time. Here, 
for example, the signal reaches the modulator when the phase of the 

Correlated quantum walk Anticorrelated quantum walk

-dimensional
entanglement

-dimensional
entanglement

Frequency

Fig. 3. Time-domain illustration of phase modulation for four different conditions (correlated or anticorrelated quantum walk, 8- or 64-dimensional entanglement). 
The strength of the modulating RF waveform is shown with the black sinusoid. A signal photon (blue arrow) arrives at the modulator at random times owing to the nature 
of the photon pair generation process. However, the arrival time of the idler photon is highly correlated with that of the signal photon and is characterized by a distribu-
tion of joint arrival times that repeats at multiples of the BFC FSR. Since the spacing between the comb lines in the BFC is set to match the modulation frequency, the 
period of pulse-like features in the BFC time correlation function matches the period of the driving RF waveform. As the number of frequency modes across which the 
photons are entangled increases, the tighter the distribution of arrival times becomes. In the correlated walk where no phase is applied to the initial state, relative timing 
between signal and idler photons reduces to an integer multiple of the modulation period. Consequently, both photons in a pair experience the same frequency shift, 
which results in enhanced ballistic energy transport. Conversely, in the anticorrelated walk, when there is a relative  phase difference between adjacent modes, the rel-
ative timing between signal and idler photons is instead centered at half-integer multiples of the modulation period. The net effect is that photons in a pair experience 
equal, but opposite, frequency shifts, forming a biphoton energy bound state. The change in the color of output photons reflects their frequency shifts. The cloud 
around the idler photon in the eight-dimensional entangled case illustrates the wider range of possible frequency shifts due to wider time-correlation function pulse 
features.
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modulating RF waveform is /6. While the idler photon also reaches 
the modulator at a random time, its arrival is highly correlated with 
that of the signal photon. This correlation is characterized by a dis-
tribution of possible values for the delay between signal and idler. 
The distribution, in delay space, is given by the Fourier transform of 
the complex biphoton spectrum (33). Consequently, for a narrow-
band biphoton spectrum with entanglement across a limited num-
ber of dimensions (“8-dimensional entanglement” in Fig. 3), there 
is a wide range of possible values for the relative delay between 
signal and idler. As the entanglement dimensionality of the state 
increases, i.e., as the biphoton spectrum gets broader, the distri-
bution of possible delays gets narrower (“64-dimensional entangle-
ment” in Fig. 3). The discretization of the biphoton spectrum in 
frequency space, owing to its comb-like structure, results in a distri-
bution of relative arrival times that repeats at integer multiples of 
the inverse comb FSR. Since the spacing between comb lines 
matches the frequency of the RF waveform, this repetition of the 
distribution in arrival times occurs at integer multiples of the modu-
lation period. The net effect is that both photons “see” nearly the 
same phase modulation slope (d/dt), which means that they expe-
rience correlated instantaneous frequency shifts (34) (“correlated 
quantum walk” in Fig. 3).

For the energy bound state, the situation is slightly different. 
Here, there is a  phase difference between adjacent comb lines, 
which corresponds to a linear spectral phase ramp or simply a time 
delay. This time delay corresponds to exactly half the RF modula-
tion period. In other words, the distribution in the relative arrival of 
signal and idler is now spaced at half-integer multiples of the modula-
tion period. Here, unlike in the case of enhanced ballistic transport 
described earlier, photons in an entangled pair experience anticor-
related instantaneous frequency shifts (“anticorrelated quantum walk” 
in Fig. 3), which manifests through confinement of two-photon correla-
tions to the antidiagonal (sum-frequency axis) of a JSI measurement.

Controllable diffusion in energy subspaces
The cases of enhanced ballistic scattering (Fig. 2B) and energy con-
finement (Fig. 2C) are a good illustration of the role that spectral 
phase plays in the evolution of two-photon correlations. While the 
diffusion of correlations along, or perpendicular to, the antidiagonal 
represents the most straightforward forms of transport, they en-
compass but a subset of possible behavior that one can observe. For 
example, by preparing BFCs with quadratic spectral phase, we ob-
serve remarkable features in two-photon correlations—distinct en-
ergy subspaces featuring ballistic scattering or energy confinement. 
Figure 4 (A and B) shows results from these quantum walks with a 
16-dimensional entangled state. Increasing the number frequency 
modes across which the photons are entangled (16 compared to 8 in 
preceding experiments) allows us to clearly delineate regions exhib-
iting correlated energy transfer (scattering) from those exhibiting 
anticorrelated energy transfer (confinement). In Fig. 4B, we use an 
additional linear phase pattern, reduce the dispersion, and increase 
the modulation depth to pin a single site where correlations are 
“trapped” to the center of the JSI.

While the two-photon correlation maps in Fig. 4 (A and B) use 
quadratic spectral phase, one can certainly use more complex spectral 
phase patterns to engineer the features of quantum walks. As a result, 
the relative delay between the photon pair is controlled by the fre-
quency derivative of the biphoton spectral phase in each frequency 
subspace. In other words, each input frequency mode pair, or lattice 
point, exhibits modified scattering amplitudes that depend on the 
relative phase of the modulating RF waveform. This allows one to 
simulate certain features of walks with inhomogeneous potentials.
Effects of high-dimensional entanglement
The critical role played by spectral phase hints at strong differences 
between quantum walks featuring coherent superpositions of multiple 
frequency pairs ∣m, − m⟩SI, as compared to mixtures of those same 
frequency pairs. While both states have identical frequency correlations, 
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Fig. 4. Two-photon quantum walks with quadratic and incoherent input phase. (A) The application of quadratic spectral phase (equivalent to 1800 m of single-mode 
fiber) to a 16-dimensional BFC results in energy subspaces with either correlated or anticorrelated walking character. The lower applied modulation depth compared to 
previous JSIs results in smaller diagonal spreading in the correlated subspaces. The low coincidence rate along the diagonal, relative to neighboring pixels, is an artifact 
of drift in the pump-to-PPLN coupling efficiency. As all diagonal elements are acquired in consecutive measurement windows, the onset of drift in photon flux during this 
measurement interval makes such drift noticeable along this axis. (B) Results for a walk similar to that in (A), but with higher modulation depth and smaller quadratic 
phase (equivalent to 900 m of single-mode fiber). An additional linear phase was applied to ensure energy confinement at the center of the JSI, with the transition from 
anticorrelated to correlated character occurring further away along the antidiagonal. (C) Experimental construction of a quantum walk for a mixed state that has the same 
initial JSI as the state in Fig. 2A. There is no indication of either ballistic energy transport or energy confinement, pointing to a clear distinction between correlated and 
entangled quantum walks. All the JSI elements are coincidences measured in 1 s.
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in the latter, the relative phase between any two basis states (∣m, − m⟩SI 
and ∣m′, − m′ ⟩SI for m ≠ m′) is completely random. To simulate 
the effect of this random phase, we construct a JSI measurement of 
the mixed state by adding together JSI measurements resulting 
from quantum walks of individual frequency pairs ∣m, − m⟩SI for 
m = 1, …,8 (see the Supplementary Materials). A clear effect of 
incoherence is that two-photon correlations are smeared out without 
any sharp or well-defined features (Fig. 4C).

These results, together with walks presented earlier, suggest that the 
total energy of the two-photon state after a quantum walk can serve 
as an indicium of the coherence between frequency mode pairs. 
One metric to quantify this is the SD of biphoton energy measured at 
the output. This is presented in terms of the mode index (single-
photon case) and the sum of mode indices (two-photon case), as function 
of walk duration, in Fig. 5A. We see a clear indication of enhanced en-
ergy transfer for the two-photon state. In the limit of infinite multilevel 
entanglement, energy transfer increases at twice the rate for two-
photon correlations compared to the single-photon quantum walk 
since both photons experience exactly the same frequency shift.

To elucidate the effect of the entanglement dimensionality, we 
present data for biphoton energy transfer in the cases of enhanced 
ballistic scattering (Fig. 5C) and strong energy confinement (Fig. 5D). 
Figure 5B shows how the SD of the output biphoton energy changes 
as the degree of multilevel entanglement increases for a fixed walk 
depth ( = 6.1). The clear change in the distribution of biphoton 
energies as a function of entanglement dimensionality, especially in 
the case of the energy bound state, points to how these results can 
potentially be used to certify, or even quantify, high-dimensional 
frequency-bin entanglement (28, 29).

DISCUSSION
Here, we have explored the use of electro-optic modulation in a 
waveguide to realize single-photon and two-photon quantum walks 
in the frequency domain. Unlike analogous systems in the spatial 
domain, where the effective walk duration is determined by propa-
gation length, our spectral platform reaches arbitrary walk depths 
without the need for any physical reconfiguration of the system. All 
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(B), the SD is computed after background subtraction (coincidence-to-accidental ratio, ~50) and the error bars are calculated assuming Poissonian statistics. The error bars 
for single-photon energy transport in (A) are not shown since the experiment was carried out using classical light. (C and D) Energy transferred to the biphoton as a func-
tion of entanglement dimensionality for enhanced ballistic transport and the bound state, respectively (see the Supplementary Materials for JSIs corresponding to each 
dimensionality). In (C), the “rabbit ears” grow as the entanglement dimensionality increases, resulting in a slight increase in SD, as shown in (B). In (D), increasing entan-
glement dimensionality reduces occurrence of any net energy transport between the modulator and the BFC. Consequently, frequency correlations remain confined to 
the constant energy axis, i.e., the antidiagonal of the JSI shown in Fig. 2C, for example.
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that is needed is a change in the voltage swing of the modulating RF 
waveform. Furthermore, our experiments were carried out primarily 
using commercial telecommunications equipment, with little need 
for any specialized fabrication. Consequently, we were able to delve 
more deeply into the role of mode-dependent phase on two-particle 
quantum walks that feature multilevel entanglement.

An avenue ripe for further exploration relates to entangle-
ment certification. The most straightforward way to certify high-
dimensional frequency-bin entanglement, under the assumption of 
a symmetric noise model, is through a measurement of the time 
correlation function. However, such a measurement becomes chal-
lenging as the degree of multilevel entanglement (and biphoton 
bandwidth) increases because features in the substructure of the 
time correlation function become finer than the timing jitter of 
conventional SNSPDs (~60 to 80 ps). Consequently, time-domain 
techniques are limited in their ability to probe high-dimensional 
entanglement (35). While frequency mixing techniques have been 
developed to overcome this limitation (28–30), they become oner-
ous for high-dimensional states. The quantum walks demonstrated 
here and energy bound states in particular show promise as a tool to 
probe the joint temporal correlation of broadband, high-dimensional 
quantum frequency combs. Our results show that the width or tim-
ing uncertainty in the time correlation function is mapped to the 
spread in biphoton energies at the output of a quantum walk. While 
a rigorous proof is needed to establish the validity of this technique 
for entanglement certification and quantification (36), these walks 
clearly allow one to probe temporal features in the biphoton that 
cannot be resolved by direct measurements.

Another key feature of our system is that the uniformity of po-
tentials at each lattice site, i.e., the respective mode coupling coeffi-
cients, is not limited by any fabrication tolerances as it is in the case 
of coupled waveguide arrays. This homogeneity can be a disadvan-
tage from the standpoint of demonstrating phenomena like Bloch 
oscillations and Anderson localization (1, 6)—effects that stem from 
site-to-site variations in lattice potentials. However, quantum walks 
in the spectral domain can accommodate inhomogeneous potentials 
by using resonant structures (22) or loop-based architectures where 
an element capable of suitable frequency transformations (37) is 
updated on each roundtrip that photons make through the loop. 
Further complexity can also be introduced by using a second degree 
of freedom, like the time domain, to provide a high-dimensional 
coin flip (38, 39). These walks can be used to implement quantum 
algorithms that certify isomorphism between two high-degree strongly 
regular graphs (13), for example.

In sum, quantum walks in the frequency domain offer an inter-
esting and alternate route for studying quantum walk behaviors. 
Our spectral platform offers more versatility from the standpoints 
of choosing an arbitrary walk depth and manipulating the phase 
across all modes in states featuring a high degree of multilevel 
entanglement. In addition to applications directed to search (12) 
and simulation (7), the phenomena that we demonstrated also 
show potential for quantifying entanglement in high-dimensional 
systems.

MATERIALS AND METHODS
The experimental setup is depicted in Fig. 6. We use a continuous-
wave 775-nm laser with about 1-mW power shining on a PPLN 
crystal to generate broadband time-frequency entangled photons 
with about 40-nm (5-THz) bandwidth, with a power of about 5 nW. 
A pulse shaper is then used to carve this spectrum to make a BFC 
with 25-GHz frequency spacing between the bins and about 9-GHz 
linewidth. The pulse shaper is also able to manipulate individual 
frequency bins’ phase. One advantage to the method of state prepa-
ration described above is that the degree of multilevel entanglement 
is limited by the biphoton bandwidth (~5 THz) and the resolution of 
the pulse shaper (~10 GHz). In other words, with an FSR of 25 GHz, 
one could prepare a 100-dimensional entangled state.

The duration of the walk is determined by the strength (voltage) 
of the RF waveform, which, in our experiments, corresponded to a 
value of up to 6.1 radians. This determines the extent to which dis-
tant modes are coupled to one another with a crude metric being 
the index of the most populated mode in a single-mode and single-
particle quantum walk. For the equipment used in our experiments, 
this index was ~5, which is comparable to that in other platforms 
(3, 17, 20, 24). However, with even small upgrades to our equip-
ment (cabling and amplifiers rated to 25 GHz), one can achieve 
modulation depths ~10. Furthermore, one can achieve even higher 
modulation depths by simply connecting more phase modulators 
in series, as is frequently done in the case of electro-optic comb 
generation (40).

After making the high-dimensional entangled state, it is sent to 
the quantum walk circuit, which is a phase modulator driven with a 
25-GHz RF sinusoidal waveform. After the quantum walk, another 
pulse shaper picks two frequency bins at a time and sends them to 
superconducting single-photon detectors (SNSPDs) (Quantum 
Opus). The relative arrival time of photons on the SNSPD pair is 
then monitored using an event timer (PicoQuant HydraHarp 400).

Photon pair
generation

PPLN crystal Pulse shaper 1 Pulse shaper 2
modulator

Event timer

generation and Quantum walk
circuit demultiplexing detectionphase manipulation

Fig. 6. The experimental setup. Broadband time-frequency entangled photon pairs are generated from a continuous-wave laser shining on a PPLN crystal. A BFC is then 
carved from this continuous spectrum with pulse shaper 1. Pulse shaper 1 can also manipulate the phase of each frequency mode. The high-dimensionally entangled 
photon pairs then enter the quantum walk circuit, namely, a phase modulator driven with a sinusoidal RF waveform whose frequency is identical to the frequency spacing 
between the adjacent modes of the BFC. After the quantum circuit, pulse shaper 2 selects two frequency modes at a time and sends them to two SNSPDs, where correlations 
between the two modes are measured.
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SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/29/eaba8066/DC1
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