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Abstract

Identification of stem cell-like brain tumor cells (brain tumor stem-like cells; BTSC) has gained substantial attention by
scientists and physicians. However, the mechanism of tumor initiation and proliferation is still poorly understood. CD44 is a
cell surface protein linked to tumorigenesis in various cancers. In particular, one of its variant isoforms, CD44v6, is associated
with several cancer types. To date its expression and function in BTSC is yet to be identified. Here, we demonstrate the
presence and function of the variant form 6 of CD44 (CD44v6) in BTSC of a subset of glioblastoma multiforme (GBM).
Patients with CD44high GBM exhibited significantly poorer prognoses. Among various variant forms, CD44v6 was the only
isoform that was detected in BTSC and its knockdown inhibited in vitro growth of BTSC from CD44high GBM but not from
CD44low GBM. In contrast, this siRNA-mediated growth inhibition was not apparent in the matched GBM sample that does
not possess stem-like properties. Stimulation with a CD44v6 ligand, osteopontin (OPN), increased expression of
phosphorylated AKT in CD44high GBM, but not in CD44low GBM. Lastly, in a mouse spontaneous intracranial tumor model,
CD44v6 was abundantly expressed by tumor precursors, in contrast to no detectable CD44v6 expression in normal neural
precursors. Furthermore, overexpression of mouse CD44v6 or OPN, but not its dominant negative form, resulted in
enhanced growth of the mouse tumor stem-like cells in vitro. Collectively, these data indicate that a subset of GBM
expresses high CD44 in BTSC, and its growth may depend on CD44v6/AKTpathway.
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Introduction

Glioblastoma multiforme (GBM) is one of the most lethal types

of human cancers, with a median patient survival of 12–15 months

[1,2]. Current therapy, including surgery followed by chemother-

apy and radiation, is generally only palliative and does not result in

marked improvement in patient survival [2,3]. Although the initial

treatment regimen generally shrinks the tumor mass, recurrence of

the tumor is virtually inevitable, suggesting that at least a subset of

tumor cells is resistant to therapy [2]. Emerging evidence indicates

that at least some of this resistance is mediated by brain tumor

stem-like cells (BTSC) [4,5]. Therefore, identification of BTSC

inhibitors is a high priority for the development of effective GBM

therapies. However, the development of therapies directed against

BTSC is complicated partly due to the fact that they are

heterogeneous, lacking a definitive marker set, even within tumors

of the same histopathological types [6,7,8].

CD44 is a cell surface protein expressed in multiple types of

tumors. It is also expressed in certain normal tissues where it

functions in the regulation of cell proliferation, cell migration,

transmission of survival signals, and other cell-cell and cell-matrix

interactions [9,10,11,12,13] demonstrated that CD44 antagonists

attenuate in vivo growth of mouse tumors derived from glioma cell

lines, suggesting that CD44 is a potential therapeutic target for

GBM. Further, Anido et al. [14] recently reported that GBM

tumor initiation is attenuated by targeting TGF-b and its receptor

CD44 in vivo.

Recent studies, however, have been inconclusive regarding

which isoforms of CD44 are the key molecules in BTSC. CD44

exists as a large family of isoforms, produced by the alternative

splicing of up to 20 exons, which generate different binding sites

for the molecule [9,15]. Exons 1–5 and 16–19 are spliced together

to form the transcript for CD44s (s for standard form), which is

expressed in a wide range of normal tissues as well as in tumors of

ectodermal origin [15]. Exons 6–15 are alternatively spliced into

the mRNA to form the variable exons v1–v10 [11,15, and 16].

These variant isoforms are expressed in many different organs and

have been strongly linked to tumor progression behaviors in
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various cancers [15,17,18,19]. The variant 6 isoform (CD44v6), in

particular, is associated with several cancer types but not in

somatic cells [17,20,21]. CD44v6 and its ligand, osteopontin

(OPN) are highly expressed in breast cancer [20,22] as well as

leukemia [23] and gastric cancer [24], and regulate malignant

transformation by inducing tumor cell proliferation and control-

ling migration [20,21].

Expression of CD44 is widely identified in cancer stem cells in

various organs, such as breast, colon, and pancreas [25,26,27]. In

these tumors, tumor-forming cells in vivo are restricted to CD44-

positive tumor cells [25,27]. However, little is known about which

isoforms are specifically associated with cancer stem cells. A recent

study demonstrated that CD44v6 is likely expressed by bladder

carcinoma stem cells, suggesting that this isoform may be of

particular link to cancer stem cells [28]. To our knowledge, no study

has identified the specific CD44 isoforms that are present in BTSC.

Here, we demonstrate that a subset of BTSC in GBM express

CD44 and its variant form 6 (CD44v6) plays a positive role in their

growth in vitro. CD44-neutralizing antibody inhibits the growth of

BTSC derived from GBM samples that contain cells with high

CD44 (CD44high GBM), while it has no significant effect on the

BTSC from GBM containing population of cells with low

expression of CD44 (CD44low GBM). BTSC derived from

CD44high GBM depend on CD44v6 to maintain proliferation.

Targeting CD44v6 has, therefore, potential impact in eradicating

therapy-resistant BTSC in GBM.

Materials and Methods

Ethics
Experiments using human tissue-derived materials were carried

out under the approved institutional review board at UCLA.

Informed consent was obtained in written form from all human

subjects and families of autopsy patients to publication of their case

details prior to the experiments performed in this study. All animal

experimentation was performed with the approval of the UCLA

Animal Research Committee, following NIH guidelines, using

animal protocol number 93-285. The mice were experimentally

used in accordance with the Institutional Animal Care and Use

Committee guidelines at UCLA.

Tissue culture
Tumors derived from mice deficient in both p53 and patched

were kindly provided by Dr. James A. Waschek at UCLA [29].

Neurosphere (NS) cultures were prepared as previously described

[30]. Briefly, small GBM samples were dissociated with a fire-

polished glass pipette and resuspended at 50,000 cells/ml in

neurosphere medium, containing Dulbecco’s modified Eagle

medium (DMEM)/F12 medium (GIBCO, Invitrogen, Carlsbad,

CA) supplemented with B27 (final concentration 2%, GIBCO,

Invitrogen, Carlsbad, CA), basic fibroblast growth factor (bFGF)

(20 ng/ml, Peprotech, Rocky Hill, NJ), epidermal growth factor

(EGF) (50 ng/ml, Peprotech), penicillin/streptomycin (1%,

GIBCO, Invitrogen, Carlsbad, CA), and heparin (5 mg/ml, Sigma

Aldrich, St. Louis, MO). To differentiate the BTSC, spheres were

dissociated into single cells, added to poly-L-Lysine coated dishes

containing Neurobasal medium (GIBCO, Invitrogen, Carlsbad,

CA) with B27, and maintained for up to five days, followed by

culture in serum containing medium.

RT-PCR
Total RNA was isolated with TRIzol (GIBCO, North Andover,

MA) from GBM specimens and adjacent normal brains of autopsy

samples. One mg of each total RNA was reverse transcripted to

cDNA with ImProm-II Reverse Transcriptase (Invitrogen for

conventional polymerase chain reaction (PCR), Promega, Madi-

son, WI, for quantitative PCR), according to the manufacturer’s

protocol. Reverse transcription-polymerase chain reaction (RT-

PCR) with primers for the glyceraldehyde-3-phosphate-dehydro-

genase (GAPDH) gene served as an internal control. After correc-

ting for GAPDH signals by electrophoresis, reverse transcripted

cDNA was subjected to quantitative PCR analysis using the gene

specific primers. The primers for the CD44; forward: TTTGC-

ATTGCAGTCAACAGTC and reverse: GTTACACCCCAAT-

CTTCATGTCCAC, for the CD44v6; forward: GAAGAAACA-

GCTACCCAGAAGGAACAG and reverse: GCCAAGAGGGA-

TGCCAAGATG and for the GAPDH; forward: AAGGTGA-

AGGTCGGAGTCAA and reverse: AATGAAGGGGTCATT-

GATGG were constructed based upon GenBank accession

number NM000610. The protocol for the thermal cycler was

described previously [30]. Control experiments excluded reverse

transcriptase and/or template cDNA. Each reaction was visual-

ized after electrophoresis with 2% agarose gel. Relative quanti-

fication for quantitative real-time polymerase chain reaction

(qRT-PCR) was determined with the LightCycler Relative

Quantification Software (Roche Diagnostics, Indianapolis, IN).

Western blot
Total lysate of brain tissue were prepared from GBM specimens

and adjacent normal brains of autopsy samples using sodium

dodecyl sulfate (SDS) sample buffer. Whole-cell lysates were

prepared in lysis buffer containing Protease Inhibitor CockTail

(P8340, Sigma Aldrich, St. Louis, MO) and protein concentrations

determined by bicinconic acid (BCA) protein assay kit (Thermo

SCIENTIFIC, Rockford, IL) according to the manufacturer’s

protocol. Equal amounts of proteins were fractionated on sodium

dodecyl sulfate-polyacrylamide gel electrophoresis and transferred

to polyvinylidene fluoride (PVDF) membrane (Invitrogen, Carls-

bad, CA). The membrane was incubated with AKT (rabbit,

1:1000, Cell Signaling Technology, Danvers, MA), phospho-AKT

(rabbit, 1:1000, Cell Signaling Technology, Danvers, MA), and

GAPDH antibody (rabbit, 14C10, Cell Signaling Technology),

followed by signal amplification with anti-rabbit immunoglobulin

G (1:250, GE Healthcare, Pataskala, OH) and detection with

enhanced chemiluminescence.

Tissue Microarray
Tissue microarray (TMA) consisting of three to six representa-

tive 0.6-mm cores from formalin-fixed, paraffin-embedded tissue

blocks was generated at the Department of Pathology and

Laboratory Medicine at UCLA, under the protocols approved

by the UCLA Institutional Review Board. The tissue samples were

collected either from autopsies of patients with GBM within

24 hours of death or from patients who underwent surgery at

UCLA Medical Center. After immunohistochemistry, tissues too

small and/or crushed were eliminated, and 64 samples from 37

patients were introduced to further analysis. All samples were

diagnosed as high grade glioma (corresponding to glioblastoma

and anaplastic astrocytoma) or low grade glioma by nuclear atypia

and cell density, or tumor-free region. CD44 expression was

analyzed by two neuropathologists in a blind protocol, and

staining patterns were determined according to the immunoreac-

tive site as cell surface and process. Overall staining intensity was

scored as 2 (negative), + (weak), ++ (moderate to strong). For the

characterization of TMA samples and appropriate patients,

highest grade tissues of patients showing multiple features were

adopted. Overall survival period was defined as from initial

diagnosis to decease.

CD44v6 in Brain Tumor Stem Cells
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Immunohistochemistry
Surgical GBM tissues were fixed in 10% formaldehyde and

embedded in paraffin. Slides were deparaffinized in xylene and

rehydrated with ethanol. For the antigen retrieval, slides were

immersed in 0.01 M citrate buffer (Thermoscientific Fisher,

Rockford, IL), pH 6, and heated with a microwave for

10 minutes. Peroxidase activity was quenched with 0.3% hydro-

gen peroxide in methanol. After blocking for one hour with 10%

normal goat serum, slides were incubated with mouse anti-human

monoclonal CD44 antibody, Phagocytic Glycoprotein-1 (Clone

DF1485, Dako, Carpentaria, CA) for two hours at room

temperature. Antibody binding was detected using EnVision+
(Goat, anti-mouse,Dako), followed by Vector DAB substrate kit

(Vector Laboratories, Burlingame, CA), counterstained with

Hematoxylin.

Immunocytochemistry
Immunocytochemistry of GBM neurospheres using the CD44

antibody (BioLegend, San Diego, CA) was performed as

previously described [30]. Primary antibody was visualized with

Alexa 488 (Cell Signaling Technology, Danvers, MA), and

Hoechst 333342 (Sigma Sigma Aldrich, St. Louis, MO) was used

for a fluorescent nuclear counterstain.

Flow cytometry
Cells were incubated with CD44 or CD44v6 antibody

(BioLegend, San Diego, CA), or CD133 antibody (1:200, Miltenyi

Biotec, Bergisch Gladbach, Germany), conjugated to Alexa 488

(Cell Signaling Technology, Danvers, MA) for 30 minutes at room

temperature and separated into positive and negative fractions

using fluorescence-activated cell sorter, FACSCalibur (Becton,

Dickinson and Company, Franklin Lakes, NJ). Gating parameters

were set by side and forward scatter to eliminate dead and

aggregated cells. Apoptosis assay was performed using the

Apoptosis Detection Kit (R&D Systems, Minneapolis, MN),

according to the manufacturer’s instructions. U87 glioma cell line

was purchased from American Type Culture Collection (Rock-

ville, MD).

Sphere forming assay
To assay for sphere-forming potential, 100 cells from dissociated

GBM neurospheres were plated on each well of 96-well plates with

NS media, and the number of neurospheres were counted at day

seven [30]. The small interfering RNA (siRNA) transfectants were

removed from plates with TrypLE Express (GIBCO, Invitrogen,

Carlsbad, CA) and replated to 96-well plates six hours after

transfection.

Xenotransplantation of tumor spheres into NOD/SCID
mice

Nonobese diabetic/severe combined immunodeficiency (NOD/

SCID) mice of 6–8 weeks of age (Charles River Laboratories,

Wilmington, MA) were anesthetized with intraperitoneal adminis-

tration of ketamine. GBM neurospheres were dissociated and

500,000 cells were stereotactically transplanted in the right striatum.

After 12 weeks, the mice were undergone intracardiac perfusion-

fixation with 4% paraformaldehyde. Brains were removed and

retrieved for frozen sections, followed by hematoxylin and eosin

staining, except for the tumor derived from GFP expressing cells.

siRNA construction and transfection
siRNA was synthesized using the Silencer siRNA Construction

Kit (Applied Biosystems/Ambion, Austin, TX), according to the

manufacturer’s protocol. The two sequences targeting CD44v6

are: sense1. AATTGTACTACTAGGAGTTGCCCTGTCTC;

antisense1. GCAACTCCTAGTAGTAC AATTCCTGTCTC;

sense2. AATGTTT GGCGATATCCCTCACCTGTCTC; anti-

sense2. TGAGGGATATCGCCAAACATTCCTGTCTC. Trans-

fection using Lipofectamine2000 (Invitrogen, Carlsbad, CA) was

performed as previously described [30].

PI3K/AKT signal inhibition
Stock solutions of inhibitors for AKT (AKT V/IX/X), PI3K

(LYS294002), and rapamycin (Calbiochem, San Diego, CA) were

made by dissolving in dimethyl sulfoxide (DMSO) (Sigma Aldrich,

St. Louis, MO) and stored at 220uC. Inhibitors were added to

each well at final concentrations of 1, 3, and 10 mM, respectively.

For combined treatment with siRNA transfeciton, 1 mM of AKT

inhibitor X was used. An equal concentration of DMSO served as

control.

Statistical analysis
Results were analyzed by using SAS version 9.2 and STATA

10. For parametric data; Statistical Analysis was performed by

using 1-way ANOVA and t-test followed by Bonferroni post hoc

testing and Repeated measurement ANOVA followed by Tukey

post hoc testing. For nonparametric data; Wilcoxon Rank test was

used followed by Bonferroni post hoc testing. Additionally for the

count data Fisher Exact test was used to investigate the

relationship between two categorical data. Significance was

accepted if p,0.05.

Results

Overall CD44 expression is elevated in GBM
To investigate the roles of the CD44 pathway in GBM, we first

examined the expression of pan-CD44 (all CD44 isoforms) in

GBM surgical specimens. Quantitative RT-PCR demonstrated

that the average of pan-CD44 mRNA expression from 20 cases of

GBM was higher than that from five adjacent normal brains

(Fig. 1A, left panel). Likewise, the average of pan-CD44 protein

expression in GBM, determined by Western blot, was higher than

that of adjacent normal brains (Fig. 1A, right panel).

Expression of pan-CD44 is associated with poorer
prognosis in GBM

Next, we investigated the potential link between CD44

expression and patient prognosis. Tissue microarray containing

64 tumor samples from 37 patients was performed to assess any

correlation between pan-CD44 protein expression and the overall

survival of the affected patients (Fig. 1B, 1C and 1D). Patients

included in this analysis were initially diagnosed as low grade

astrocytoma (n = 3), anaplastic astrocytoma (n = 5), or GBM

(n = 29), and all patients eventually developed GBM (Table 1).

In accordance with previous findings [31,32] we analyzed the

immunohistochemical staining results with respect to two different

features: histopathological grade and the subcellular localization of

pan-CD44. The evaluated samples contained 42 GBMs, 6 low

grade gliomas, and 16 tumor-free regions. Figure 1B shows

representative pan-CD44 staining patterns of GBM (Fig. 1B,

upper middle and upper right panels), low grade glioma (Fig. 1B,

lower middle panel), and tumor-free region (Fig. 1B, lower right

panel). Subcellular localization of pan-CD44 immunoreactivity

was divided into 3 patterns; cell surface (Fig. 1B, upper middle

panel), process (Fig. 1B, upper right and lower middle panels), and

negative (Fig. 1B, lower right panel). Pan-CD44 immunoreactivity

on cell surface was identified only in GBMs, whereas low grade

CD44v6 in Brain Tumor Stem Cells
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gliomas and tumor-free regions exhibited faint or no signal on the

processes (Fig. 1C). Furthermore, among 37 patients, the average

of overall survival of pan-CD44-positive cases was significantly

shorter than the pan-CD44-negative cases (Fig. 1D). This also

agrees with a recent study by Anido et al. [14]. These data suggest

that pan-CD44 immunoreactivity is linked to pathological

malignancy as well as poorer prognosis of patients with GBM.

Overall CD44 is upregulated in a subset of BTSC in GBM
Recent studies suggest that therapy resistant GBM cells possess

tumor stem cell–like properties [1,33]. We sought to determine a

potential role of CD44 in BTSC in GBM. The varied expression

levels of pan-CD44 in GBM raised the possibility of the existence

of two BTSC subgroups; CD44high and CD44low. We established

GBM neurosphere cultures from five surgical specimens (Table 2).

These specimens met the criteria for GBM; i.e. increased

cellularity with marked nuclear atypia (Fig. 2A, upper left panel),

increased mitotic activity (Fig. 2A, upper left panel inset), necrosis

with pseudopalisading (Fig. 2A, upper middle panel), and vascular

proliferation (Fig. 2A, upper right panel). In agreement with the

data in a recent study by Anido et al. [14], immunohistochemistry

with the pan-CD44 antibody confirmed that four of these tumors

(GBM107, 177, 1600, and 30) contained tumor cells with high

expression of pan-CD44 (Fig. 2A, lower left and middle panels).

Another sample (GBM157) exhibited low expression of pan-CD44

(Fig. 2A, lower right panel).

We then investigated the expression of pan-CD44 in BTSC

derived from GBM. Neurosphere forming capacity under serum-

free conditions is a property of BTSC, although cells in

neurospheres contain both stem cells and their progeny

Figure 1. Expression of CD44 in glioma and clinical prognosis. A: The average level of mRNA (left panel) and protein (right panel) of CD44
were upregulated in GBM. Samples from five normal and 20 GBM cases were analyzed. B: Immunohistochemistry of 64 specimens from 37 GBM
patients (left panel). Representative staining pattern showing diagnostic criteria (middle and right panels). Magnification 660. C: The analysis of
different grades of gliomas and tumor free regions, and their correlation with the localization of CD44 expression. The number in each column
indicates the number of appropriate samples. D: The analysis of patient survival in high grade gliomas with respect to localization of CD44 expression.
‘‘n’’ indicates the number of appropriate patients. Graph showing the number of cases with negative (2), positive (+), or highly positive (++)
immunoreactivity for CD44 on cell surface and process of either primary specimens (gray) or recurrent specimens (black) (right panel). *, p,0.05. For
figure 1C, Fisher Exact test was performed to analyze the data. For Figure 1D, Log transformation was applied and one way ANOVA method was
performed to analyze the data. Results represented as means 6 S.D.
doi:10.1371/journal.pone.0024217.g001
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[4,5,33,34]. When the GBM neurospheres were established from

the above 5 samples, both CD44high GBM and CD44low GBM

formed neurospheres with no significant differences in their

growth rate (data not shown). Immunocytochemical staining

revealed that GBM107, 177, 1600 and 30 neurospheres expressed

pan-CD44, whereas GBM157 neurospheres were negative for

pan-CD44 (Fig. 2B and Figure S1). Thus, these neurospheres

samples were found to retain a similar expression pattern of pan-

CD44 to the parental tumors.

CD44 plays a role in the growth of a subset of BTSC
CD44 is known to play a key role in the self-renewal of cancer

stem cells in several cancer types including breast cancer,

pancreatic cancer, and acute myeloid leukemia [25,27,35]. In

addition, two recent studies demonstrated the presence of pan-

CD44 in GBM and their BTSC as well as its positive role in their

growth [14,36]. Similar to these observations, cell sorting

experiments demonstrated that only pan-CD44-positive GBM

cells were capable of forming neurospheres in the CD44high GBM

samples (GBM107 and 1600) (Figure S 2, left panel), whereas no

significant difference in neurosphere-forming potential was

exhibited between equal numbers of pan-CD44-positive and -

negative cells seeded in serum-free media from the CD44low GBM

sample (GBM157) (Figure S2, right panel). Further, treatment of

dissociated GBM cells with a monoclonal antibody for pan-CD44

(clone IM7; ABcam), which is widely used to block the pan-CD44

signals in vitro [37,38] resulted in abraded neurosphere formation

in the CD44high samples (GBM107 and 1600) (Figure S. 3A, left

panel). To exclude non-specific effect caused by incubation with

this antibody, we confirmed no significant inhibitory effect on the

CD44low sample (GBM157) (Figure S3A, right panel).

To discriminate the effect on either arrest of cell proliferation,

induced cell death, and/or differentiation, we analyzed cell growth

(Fig. S3B), apoptosis (Fig. S3C) and differentiation (Fig. S3D).

Treatment of GBM1600 cells in neurospheres with the CD44-

blocking antibody inhibited cell growth (Fig. S3B) without

increasing propidium iodide (PI)/AnnexinV positive apoptotic

cells (Figure S 3C) or decreasing the proportion of CD133 positive

undifferentiated cells (Figure S3D). Taken together, these results

suggest that CD44 plays a role in the growth of BTSC in CD44high

GBM.

Presence of CD44v6 in neurospheres derived from
CD44high GBM

CD44 has multiple isoforms; the standard form and the variant

forms. In human cancer, splice variants of CD44 were frequently

identified in advanced stages of tumorigenesis [15,17,18]. To

determine if any variant forms of CD44 are expressed in BTSC,

we performed RT-PCR with a primer set that amplified the

standard form (CD44s) and the variant form (CD44v) as different

sizes (Fig. 2C, upper panel). GBM neurospheres, but not normal

human astrocytes (NHA), yielded only two detectable PCR

products, and DNA sequencing demonstrated that the amplified

PCR products are CD44s (Fig. 2C, lower left panel, arrow) and

CD44v6 (Fig. 2C, lower left panel, arrowhead). Further, by

designing a specific primer set to amplify CD44v6 (Fig. 2C, upper

panel), we confirmed that neurospheres derived from CD44high

GBM, but not from CD44low GBM, expressed CD44v6 (Fig. 2C,

lower right panel). We then examined both pan-CD44 and

CD44v6 expression in our five GBM neurosphere samples with

flow cytometry. All four CD44high GBM neurospheres (GBM107,

177, 1600, and 30) contained a subpopulation of tumor cells

expressing CD44v6 (Fig. 2D). In contrast, the CD44low GBM

sample (GBM157) exhibited no detectable level of CD44v6-

positive cells (Fig. 2D).

Inhibition of neurosphere formation from CD44high BTSC
by targeting CD44v6

To determine the specific role of CD44v6 in CD44high BTSC,

we designed two siRNA constructs that target CD44v6, and

Table 1. Characteristics of GBM samples used for the first TMA analysis.

1. Characteristics of GBM samples for TMA analysis

Staining Pattern Initial Diagnosis
Age of Onset
(average years)

Overall Survival
(years) Therapy

Cell Surface CD44 (+)

Cell Surface AA [1], GBM [14] 43.7616.9 (5.4–66.3) 1.862.1 R,C,S [9];
R,S [5];
C,S [1]

Cell Surface CD44 (2)

Process LA [2], AA [2], GBM [14] 57.7617.1 (17.2–84.8) 2.562.5 R,C,S [11];
R,S [2];
R [1]; S [1]; none [3]

Negative LA [1], AA [2], GBM [1] 41.2611.1 (28.8–54.8) 7.865.4 R,C,S [3];
R,S [1];

[ ]: number of patients; LA: low grade astrocytoma; AA: anaplastic astrocytoma; R: radiation; C: chemotherapy; S: surgery.
\There is no significant difference in the age of onset between the CD44+ and CD442 groups, whereas the overall prognosis for the CD44+ group is significantly poorer.
doi:10.1371/journal.pone.0024217.t001

Table 2. Characteristics of GBM samples used for in vitro
assays.

2. Characteristics of GBM samples for in vitro assay

Patient Age Sex Histology Location

GBM107 63 Years Male GBM Right Frontal

GBM 1600 34 Years Male GBM Right frontal temporal

GBM 30 65 Years Male GBM Left frontal

GBM 177 47 Years Male GBM Left frontal

GBM 177 54 Years Female GBM Right frontal

doi:10.1371/journal.pone.0024217.t002
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verified their effects on three different GBM cell samples;

neurospheres derived from CD44high GBM1600 and CD44low

GBM157, and serum-propagated cells derived from GBM1600.

The phenotypic difference between neurospheres and serum-

propagated cells was highlighted by their tumorigenic capacity in

the xenograft model. When implanted into immunodeficient mice

brains, GBM neurospheres from CD44high GBM were capable of

forming GBM-like tumors (Fig. 3A, left panel, tumor formation

incidence: 3/3). On the other hand, GBM cells from the same

tumor that were propagated in serum-containing medium did not

possess tumorigenic potential (Fig. 3A, middle panel, tumor

formation incidence: 0/3), implying a loss of tumor initiating cells

under this condition, in consistence with previous observations

[39,40]. The CD44v6 specific siRNA, when transfected into these

two GBM spheres and serum-propagated cells, reduced CD44v6

expression levels, while CD44s expression was not affected in

either condition (Fig. 3B, left and middle panels). Knockdown of

CD44v6 in CD44high GBM neurospheres resulted in a subsequent

reduction in neurosphere formation (Fig. 3C, left panel), whereas

growth of the serum-propagated cells was not significantly affected

(Fig. 3C, middle panel). As expected, the expression of CD44v6

was undetectable by RT-PCR in the CD44low GBM cells (Fig. 3B,

right panel), and siRNA treatment did not affect their neurosphere

formation (Fig. 3C, right panel).

A CD44v6 ligand, osteopontin, activates AKT pathway in
a subset of GBM

To further gain insight into their signaling pathway, we sought

to identify their downstream targets and to characterize the

distinct mechanism of CD44v6 in BTSC growth. OPN is a ligand

for CD44v6, and, in some hematopoietic malignancies, activation

of CD44v6 by OPN contributes to tumor cell survival via the

PI3K/AKT pathway [41]. Therefore, we investigated whether

OPN triggers AKT activity in neurospheres derived from GBM30

and GBM1600 (both CD44high), as well as GBM157 (CD44low)

(Fig. 4A, upper left panel). Incubation with OPN resulted in an

appreciable increase in phosphorylated AKT in spheres derived

from both GBM30 and GBM1600 spheres but not in the

GBM157 spheres (Fig. 4A, upper left panel). As expected, OPN

treatment also activated S6R, a downstream target of AKT, in

both GBM30 and GBM1600 spheres (Fig. 4A, upper left panel).

To elucidate the signaling pathways in CD44v6-expressing GBM

cells, we knocked down CD44v6 with siRNA in GBM1600 cells

(Fig. 4A, lower right panel). Untreated cells showed activation of

the AKT and S6R pathway without ligand stimulation (Fig. 4A,

upper right panel). With CD44v6 knockdown, both phosphory-

lated AKT and S6R were under detectable level and OPN failed

to activate AKT and S6R, while EGF substantially increased both

molecules (Fig. 4A, upper right panel). These observations

prompted the question of whether sensitivity to the PI3K/AKT

inhibitors is different between CD44v6-expressing BTSC and

CD44v6-negativeBTSC. To address this question, we performed

neurosphere-forming assay using 3 GBM samples (Fig. 4B). For

inhibition of the PI3K/AKT pathway, we used five different small

molecules. In both GBM177 cells and GBM1600 cells, a dose-

dependent inhibition for neurosphere formation was observed for

all five inhibitors (Fig. 4B, upper left and right panels). In contrast,

GBM157 cells were relatively resistant to the treatment (Fig. 4B,

lower left panel).

We also addressed an assumption that if AKT is the major

downstream target of CD44v6, the phenotype of CD44v6

knockdown in GBM cells should be masked by inhibition of

AKT. Therefore, we combined transfection of siRNA for CD44v6

and AKT inhibitor X treatment in GBM 1600 cells (Fig. 4C).

AKT inhibitor X-treated GBM1600 cells did not yield significant

difference in the number of neurospheres with or without

knockdown of CD44v6. These data suggest that a subset of BTSC

in GBM may depend on CD44v6 and the action of CD44v6 is

mediated through AKT.

CD44v6 in normal stem cells and brain tumor stem cells
in the murine model

Recent studies have suggested that overlapping genes andsignal-

ing pathways regulate the proliferation of both tumor stem cells

and normal stem cells [42,43]. Targeting pathways that are

essential for proliferation of both tumor and normal stem cells may

result in the same outcome for both. To determine whether

CD44v6 might be a potential target in BTSC without affecting the

maintenance of proliferating normal stem cells, we used a mouse

model of brain tumor. Mice heterozygous for a mutation in

the gene encoding the sonic hedgehog receptor patched 1 (Ptc),

known to form spontaneous intracranial malignant tumors, were

bred with mice heterozygous for a tumor suppressor gene, p53

(Ptc+/2, p53+/2). Diamandis et al. [44] have demonstrated that

neurospheres derived from these mouse tumors are enriched with

multipotent self-renewing brain tumor stem cells. We, therefore,

used these mice to further characterize CD44v6 in BTSC and

their normal counterpart. To enrich for normal neural stem cells,

we cultured neurospheres from the subventricular zone cells using

the wild type mice at the gestation age of 11.5 (E11.5). RT-PCR

detected mouse CD44v6 in tumor neurospheres, but not in normal

mouse brain samples (Fig. 5A). Flow cytometry analysis exhibited

similar results (Fig. 5B and C). Although neurospheres derived

from the E11.5 cortices had 14.9% of the cells labeled with the

pan-CD44 antibody, these normal progenitors did not express

appreciable CD44v6 (0.3% compared to the negative control

samples) (Fig. 5B). In contrast, tumor specimens in the p53+/2,

Ptc+/2 mice had a much greater fraction of the CD44v6-

expressing cells (8.3%) (Fig. 5C, upper panel). Interestingly, when

these tumor cells were cultured in serum-free medium to form

neurospheres, the fraction of CD44v6-positive cells increased over

the period of one month (8.3% vs. 52.1%), suggesting the

preferential proliferation of CD44v6-positive cells in conditions

that enriched for BTSC (Fig. 5C middle and lower panels). This

result was consistent with the increased expression of stem cell-

associated proteins, including Nestin and Sox2 in these cultures

Figure 2. CD44v6 is upregulated in a subset of BTSC in GBM. A: Histopathology of parental tumor of established GBM neurospheres. All GBM
samples showed increased cellularity with marked nuclear atypia (upper left panel), magnification 640, increased mitotic activity (inset), necrosis
(upper middle panel),magnification 620, pseudopalisading (black arrowhead) and vascular proliferation (upper right panel), magnification 640.
GBM107 showed high immunoreactivity with CD44 antibody on process (lower left panel), magnification 640. GBM177 showed high
immunoreactivity with CD44 antibody on cell surface (lower middle panel, white arrowhead) as well as on process. Magnification 640. GBM157
showed minimal immunoreactivity on process (lower right panel). Magnification 640. B: GBM 1600 cells revealed CD44 immunostaining (green) (left
panel), however, GBM 157 cells were not stained (left panel). Nuclei were counterstained with Hoechst. Magnification640. C: A schematic diagram of
the CD44 gene with position of primers (upper panel). An expected size of CD44s (arrow) and a longer product (arrowhead) were amplified from
GBM107 (lower left panel). GBM107 exhibited CD44s and CD44v6 specific bands (lower right panel). D: Flow cytometry showing the ratio of CD44-
expressing cells or CD44v6-expressing cells in each GBM sphere sample.
doi:10.1371/journal.pone.0024217.g002
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(data not shown). We then investigated the function of CD44v6

and its ligand, OPN, in these mouse tumor spheres (Fig. 5D and

E). Both overexpressions of CD44v6 and OPN, but not the

dominant negative form of OPN, significantly increased sphere

formation derived from the tumor cells (Fig. 5E). These data

suggests that the OPN-CD44v6 axis plays a positive role in

proliferation of BTSC in a subset of GBM cases.

Discussion

An accumulating body of evidence suggests that tumor

heterogeneity exists in various types of cancers, including GBM

[4,6,12]. However, differential regulatory molecules and pathways

specific to each tumor type are poorly understood. In agreement

with a recent study by Anido et al. [14], we identified a

subpopulation of GBM in which CD44 expression was upregu-

lated (CD44high GBM). CD44high GBM demonstrated correlation

with poorer clinical prognosis. Xu et al. [13] showed combined

treatment of mouse intracranial tumors derived from a glioma cell

line with CD44 antagonist and the current first line chemotherapy,

temozolomide, prolonged survival of mice. Temozolomide is

known to preferentially kill non-stem GBM cells [14]. Collectively,

these data raise a possibility that CD44-expressing GBM cells are

relatively therapy resistant and likely a reasonable therapeutic

target, especially in recurrent GBM tumors that survived over the

current therapies. However, the case number of our comparison is

still limited and a definite conclusion should be drawn with more

accumulated data set in the future.

Figure 3. CD44v6 is required for the growth of BTSC in CD44high GBM. A: Brain sections with tumors originated from transplanted GBM
neurosphere/serum-propagated cells in mice brains. Neurospheres from CD44high GBM formed remarkable tumor (left panel, surrounded by white
dots), while serum-propagated cells formed tiny region (middle panel, surrounded by white dots). Neurospheres from CD44low GBM (GBM157)
formed a large tumor (right panel). Magnification 61. B: Treatment with siRNA decreased the expression of CD44v6 in both neurosphere (left panel)
and serum-propagated CD44high GBM (middle panel). C. The numbers of neurospheres (left panel, right panel) or total cells (middle panel) grown
after treatment with CD44v6-siRNA. Neurospheres propagated from CD44high GBM neurosphere cells showed statistically significant difference
between siRNA and siGFP treated groups (left panel). No statistical difference was seen in growth of serum-propagated cells (middle panel) and
neurospheres propagated from CD44low GBM neurosphere cells (right panel). All the experiments were performed in triplicates. *, p,0.05. For
neurospheres, Wilcoxon rank test was performed to analyze the data and Bonferroni adjustment was used for pairwise comparison. For serum-
propagated cells, Repeated Measurement ANOVA was performed to analyze the trends over time data and Tukey adjustment was used for pairwise
comparisons. Results represented as means 6 SEM.
doi:10.1371/journal.pone.0024217.g003
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Figure 4. Osteopontin activates AKT pathway in a subset of GBM. A: OPN (1 and 5 mg/ml, 30 minutes) stimulated the AKT pathway in
CD44high GBM (GBM1600 and 30) but not in CD44low GBM (GBM157) (upper left panel). In CD44high GBM, S6R was phosphorylated by OPN. GAPDH
was used as an internal control. RT-PCR showed treatment with siRNA decreased the expression of CD44v6 mRNA in serum-propagated CD44high

GBM (lower right panel). In serum-propagated CD44high GBM cells, AKT and S6R pathway was activated without ligands stimulation (upper right
panel). In CD44v6 knocked-down cells, phosphorylation of AKT and S6R was decreased and OPN stimulation (5 mg/ml, 30 minutes) failed to activate
both molecules. EGF (10 ng/ml, 15 minutes) caused phosphorylation of AKT and S6R in the absence of CD44v6. ‘‘NT’’ indicates ‘‘no ligand treatment’’.
B: The effect of various AKT inhibitors on neurosphere formation derived from CD44high GBM (upper left panel, GBM177 and upper right panel,
GBM1600) and CD44low GBM (lower left panel, GBM157). ‘‘ND’’ in (lower left panel) indicates ‘‘not determined’’. C: Neurosphere numbers were
significantly decreased with siRNA for CD44v6 in DMSO-treated, but not in AKT inhibitor X-treated GBM 1600 cells00. All the experiments were
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Here, we provide the first evidence for the presence of CD44v6 in

BTSC derived from CD44high GBM. Khan et al. [20] suggested

that CD44v6 regulates the aggressiveness of breast cancer cells. We

found that both CD44v6 overexpression and OPN overexpression

increased sphere forming ability of mouse intracranial tumor cells.

In turn, knockdown of CD44v6 resulted in reduced growth of

human BTSC derived from CD44high GBM but not from CD44low

GBM in vitro. On the other hand, the effect on serum-propagated

cells from the matched CD44high GBM was less prominent and not

statistically significant. However, these data need to be carefully

interpreted, as serum-propagated human GBM cells do express

CD44v6 (Fig. 5B). It is possible that targeting CD44v6 may reduce

the growth of both BTSC and non-stem GBM cells with different

potency. Future study is needed to address this question.

Interestingly, CD44v6 was not detected in normal mouse brains

or neural progenitors (Fig. 5A and B). The clear difference of

CD44v6 expression between normal neural cells and glioma cells

may indicate a potential therapeutic target molecule in GBM. The

data in this study suggest that, in a subset of GBM, CD44v6 may

preferentially target BTSC in GBM and such a treatment may not

significantly affect the normal cells in the brain.

Several studies have demonstrated that elevated AKT expres-

sion in GBM correlates with poor clinical prognosis [45,46,47].

Recently, Gallia et al. [48] exhibited some data suggesting that

inhibition of the AKT pathway eliminates the growth of GBM and

GBM stem-like cells, implicating a role for AKT in BTSC survival

and proliferation. Additionally, Eyler et al. [49] provided evidence

that treatment of BTSC with AKT inhibitors induces apoptosis,

decreases motility and invasiveness of BTSC in vitro, and inhibits

tumor growth in vivo in a xenograft model. In colon cancers, action

of CD44v6 is likely mediated through the AKT pathway [17].

Consistent with these findings, our data suggest that downstream

targets of the CD44v6 action in BTSC include the AKT-mediated

signaling pathway (Fig. 4A). Knockdown of CD44v6 eliminated in

vitro growth of BTSC in CD44high GBM (Fig. 3C). In addition, a

ligand for CD44v6, OPN, phosphorylated AKT in these cells

(Fig. 4A). These data may indicate that the activity of the AKT-

mediated pathway may, at least in part, depend on the OPN-

Figure 5. The OPN-CD44v6 axis plays a positive role in growth of stem-like tumor cells in p53/Ptc double heterozygous mice. A: RT-
PCR detection of CD44v6 in indicated samples. B: Flow cytometry using CD44v6 antibody with E11 cortical progenitors. C: Flow cytometry using
CD44v6 antibody with tumor cells in p53/Ptc double heterozygous mouse brains. D: Bands represent CD44v6, as detected by RT-PCR. E: Graphs
indicate the effect of overexpression of CD44v6 or OPN on tumor neurosphere formation. All the experiments were performed in triplicates. *,
P,0.05, ANOVA followed by post-hoc t test. Results represented as means +/2 SEM. Abbreviations: DN-OPN: Dominant negative form of OPN, ptc:
sonic hedgehog receptor patched, E11.5: Gestation age of 11.5.
doi:10.1371/journal.pone.0024217.g005

performed in triplicates. ‘‘n.s’’ indicates ‘‘not significant’’. *, p,0.05. Two sample t-test with bonferroni adjustment was performed to compare the
groups. Results represented as means 6 SEM.
doi:10.1371/journal.pone.0024217.g004
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CD44v6 status. The experiments using PI3K/AKT inhibitors

exhibited that various inhibition of AKT affected the neurosphere

formation in CD44high GBM cells, while CD44low GBM cells

appeared to be relatively less dependent on the AKT pathway

(Fig. 4B). Collectively, these results prompted a speculation that

CD44v6-mediated AKT pathway plays a role in proliferation,

specifically in CD44high BTSC.

Another question still remains open. Both CD44high and

CD44low GBM cells formed neurospheres without significant

difference in their growth rate. Neurospheres derived from

GBM157 (CD44low) had similar tumorigenic potential in compar-

ison to CD44high neurosphere samples. These data suggest that

CD44 and CD44v6 are not universally expressed by sphere-

forming tumorigenic stem-like GBM cells. To determine what

extent of GBMs are dependent on the CD44v6/AKT pathway

and the mechanisms underlying the interaction between CD44v6

and AKT, future studies with larger numbers of GBM specimens

and other ligands of CD44v6 will be required.

In conclusion, we identified that CD44high GBM relied on their

variant form 6 for proliferation and conferred a shorter survival

period on the patients. Our data suggested that the mechanism of

the CD44v6 action on BTSC proliferation is mediated, at least in

part, through its interactions with OPN and the subsequent

activation of the AKT pathway. Collectively, targeting the

CD44v6 pathway through inhibition of CD44v6 itself or its

ligands appears to be a promising strategy for future therapeutic

development for patients with CD44high GBM.

Supporting Information

Figure S1 CD44 is expressed by a subset of patient-
derived GBM sphere samples. Immunocytochemistry indi-

cates CD44 signals (green) in GBM samples. Hoechst is used for

nuclear staining.

(TIF)

Figure S2 CD44-expressing GBM cells have higher
sphere-forming ability in a subset of GBM samples.
CD44-positive cells sorted from CD44high GBM sphere showed

statistically significant increase of sphere formation than CD44-

negative cells (lower left panel). Cells from CD44low GBM sphere

showed no statistical difference (lower right panel). All the

experiments were performed in triplicates. *, p,0.05, one way

analysis of variance followed by post-hoc t test. Results represented

as means 6 SEM.

(TIF)

Figure S3 CD44 plays a key role in the growth of a
subset of BTSC. A: Inhibition of CD44 by anti-CD44

neutralizing antibody. Neutralized GBM sphere cells from

CD44high GBM decreased the sphere formation (upper left panel).

Cells from CD44low GBM showed no difference (upper right

panel). B: Neutralized cells from CD44high GBM decreased the cell

growth. C, D: Neutralized cells from CD44high GBM did not show

the shift of Propidium Iodide (PI)/AnnexinV staining pattern (C)

and CD133-positive undifferentiated cell ratio (D). All the

experiments were performed in triplicates. *, p,0.05, one way

analysis of variance followed by post-hoc t test. Results represented

as means 6 SEM.

(TIF)
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