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Traumatic brain injury (TBI) is a leading cause of injury-induced disability in young

children worldwide, and social behavior impairments in this population are a significant

challenge for affected patients and their families. The protracted trajectory of secondary

injury processes triggered by a TBI during early life—alongside ongoing developmental

maturation—offers an extended time window when therapeutic interventions may yield

functional benefits. This mini-review explores the scarce but promising pre-clinical

literature to date demonstrating that social behavior impairments after early life

brain injuries can be modified by drug therapies. Compounds that provide broad

neuroprotection, such as those targeting neuroinflammation, oxidative stress, axonal

injury and/or myelination, may prevent social behavior impairments by reducing

secondary neuropathology. Alternatively, targeted treatments that promote affiliative

behaviors, exemplified by the neuropeptide oxytocin, may reduce the impact of

social dysfunction after pediatric TBI. Complementary literature from other early life

neurodevelopmental conditions such as hypoxic ischemic encephalopathy also provides

avenues for future research in neurotrauma. Knowledge gaps in this emerging field are

highlighted throughout, toward the goal of accelerating translational research to support

optimal social functioning after a TBI during early childhood.
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INTRODUCTION

Persistent social deficits are common after traumatic brain injury (TBI) during childhood, and
their impact on quality of life is increasingly recognized (1). Social cognition, or the ability to
perceive, interpret and act upon social information, underlies social interactions, communication
and adjustment. All of these components of social functioning may be affected by brain injuries
across a wide spectrum of severities in pediatric populations (2, 3). With TBI being a leading
cause of injury-induced disability in young children worldwide, social behavior impairments
in this population are a significant challenge for affected patients and their families. Alongside
neurocognitive deficits, post-TBI social problems contribute to the financial burden associated with
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TBI rehabilitation care; with health and rehabilitation costs
estimated to total around $1 million per injured person in the
United States across their lifetime (4–6).

While a TBI sustained at any age has the potential to
impair psychosocial function, the pediatric injured brain appears
to be particularly susceptible to social behavior deficits. This
vulnerability may be attributed to an immature state at the time
of injury, such that injury disrupts not only the developing
neural networks that underpin social cognition, but also the
acquisition of new social skills (7, 8). Social deficits may persist
and develop over time post-injury, and are often concomitant
with cognitive problems, executive function and attention deficits
(9). Longitudinal neuroimaging studies consistently show that
alterations in brain structure and function can persist for
an extended period of time after pediatric TBI, suggesting
a link between progressive neuropathology and functional
impairments over time (10). This protracted trajectory of
secondary injury, alongside ongoing developmental maturation,
offers a potential window of time during which external
factors such as rehabilitation or drug treatments may yield
functional benefit.

Rehabilitation for survivors of TBI is both multifaceted and
interdisciplinary, and broadly aims to facilitate neurocognitive
and functional recovery (11). Support for social cognition and
social competence is typically embedded in this context, striving
toward functional independence and reintegration into social
networks, school and the workplace. The early initiation of
rehabilitation therapies as well as an interdisciplinary model
of care is important to maximize recovery for children with
severe TBI (12, 13). However, few studies have examined the
effectiveness of interventions on social impairments specifically.
There is also considerable scope for complementary approaches
to enhance the success of both social and cognitive rehabilitation,
such as through pharmacological targeting. This may be
via the administration of compounds that provide broad
neuroprotection—for example, by targeting a range of secondary
injury mechanisms that underpin progressive neuropathology
and the development of social deficits. Alternatively, targeted
treatment with drugs known to promote affiliative behaviors
may be effective at reducing the impact of social dysfunction
after TBI.

This mini-review describes the current state-of-the-field in
the development of such therapies, with a focus on pre-clinical
modeling in pediatric TBI. Drugs and targets with demonstrated
potential in other early life neurodevelopmental disorders such as
hypoxic-ischemic (HI) injury are also described where relevant.
Knowledge gaps are highlighted throughout, and our goal is to
drive toward accelerated translational research to support the
optimal social functioning after pediatric TBI.

EXPERIMENTAL MODELS OF SOCIAL
BEHAVIOR IMPAIRMENTS AFTER TBI

Historically, the pre-clinical neurotrauma field has focused on
assessments of sensorimotor and cognitive outcomes (14). Over
the past decade, the negative impact of psychosocial impairments

on quality of life has spurred an increase in pre-clinical studies
incorporating measures of social behaviors. Several different
paradigms to assess social investigation, social recognition
and memory, and sociosexual interest are now established, as
described in detail elsewhere (3, 15, 16). Social impairments
typically manifest as a reduction in social investigation of a
novel, unfamiliar conspecific either in an open field arena, home
cage of the experimental animal, or the three-chamber social
approach test, with the latter paradigm also allowing for the
evaluation of social memory (reflecting social recognition) (17).
These tests have largely been developed in models of disorders of
neurodevelopment, such as autism spectrum disorders (ASD) of
both genetic and acquired origins (18–21).

Semple and Noble-Haeusslein in 2012 first employed such
methods to investigate social behavior changes in a model of
severe TBI in mice at postnatal day (p) 21. Male mice were
found to exhibit normal social behaviors at 2 weeks post-
injury, approximately adolescence—but showed aberrant social
interactions and social recognition memory by early adulthood
(around 8 weeks post-injury) (22). Similarly, severe TBI in p14
rats led to deficits in social interaction and social novelty in
adolescence (23). More recently, Runyan et al. reported that
a moderate TBI in the p11 rat resulted in deficits in social
recognition memory at adolescence and adulthood in both male
and female rats (24). A similar trajectory is commonly seen in
patients after childhood TBI, where deficits may emerge and
evolve with developmental maturation (25, 26). These findings
support the prevailing hypothesis that early life TBI interferes
with an individuals’ ability to acquire and/or consolidate age-
appropriate milestones in social cognition and social skills (27,
28). Thus, both pediatric mouse and rat models demonstrate
good face validity, or similar observations to what is observed in
the human condition.

Several pre-clinical neurotrauma studies have subsequently
incorporatedmeasures of social behavior into their study designs,
considering how social functioning may be altered after injuries
sustained across a lifespan (29–31). The three-chamber social
approach test, and/or the classical resident-intruder paradigm,
are the most commonly used and appear to be the most robust
for both mice and rats. A description of these tasks, and
findings in both pediatric and adult rodent models of TBI, are
reviewed in detail elsewhere (3). In addition to rodents, social
deficits have also been reproduced after experimental TBI in
flies (32) and zebrafish (33). Rodent TBI models have also been
tested for predictive validity; meaning that factors which are
known to influence social behavior in humans have also been
demonstrated to affect social deficits in experimental models. For
example, greater deficits are typically reported with increased
injury severity or repeated insults (34–36), as well as with
comorbidities such as acute colitis (37) or delayed hypoxemia
in adult TBI animals (38). These findings are in alignment
with clinical reports that both the extent of, and persistence of,
social behavior impairments are dependent upon injury severity;
although impaired social cognition may present even after mild
injuries (1, 2, 39, 40). Indeed, mild TBI in adolescent rats has been
reported to alter social play behaviors, in females in particular
(41); while other models of mild TBI (predominantly in adult
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rodents) have reported either subtle changes or normal social
behavior (34, 42).

With this expanding body of literature characterizing social
behavior changes after pediatric TBI, the field is poised to now
trial novel therapies for their potential to rescue or prevent such
deficits. Although the field remains in its infancy, this mini-
review will highlight the few studies conducted to date in this
context. Where appropriate, we have extended the scope to other
early life insults such as HI injuries, modeling encephalopathy
of pre-maturity or perinatal stroke depending on the nature
of the insult and timing (43, 44). Other childhood conditions
in which social behavior changes are a characteristic feature
(such as ASDs) also provide enticing insights into potential new
avenues for therapies. Therapeutic agents examined to date fall
roughly into three main categories: neuropeptides, hormones, or
modulators of neuroinflammation.

HYPOTHALAMIC NEUROPEPTIDES AS
MEDIATORS OF SOCIAL AFFILIATION

Oxytocin and vasopressin are evolutionarily conserved
neuropeptides with important roles in the control and regulation
of social behaviors (45). In mice, mutations in the oxytocin or
oxytocin receptor genes manifest in social recognition deficits
(46–48); whereas in humans, genetic variations in the oxytocin
receptor gene are associated with individual variability in social
behaviors (49). In contrast to these findings, moderate TBI in the
neonatal rat did not reduce expression of mRNA for oxytocin
in the paraventricular nucleus of the hypothalamus despite the
presence of deficits in social recognition behavior (24). However,
potential changes in protein levels of oxytocin after pediatric TBI
were not investigated.

Modulation of both the vasopressin and oxytocin signaling
pathways has generated promising findings to date as a means
to improve social deficits in human conditions in which aberrant
social behaviors are a feature, such as ASD (50, 51). For example,
postnatal systemic administration of arginine-vasopressin in the
valproic acid rat model of ASD alleviates social preference deficits
in the three-chamber test, alongside a reduction in stereotyped
behaviors (21). More abundant literature pertains to exogenous
oxytocin administration, which consistently promotes pro-social,
affiliative behaviors in rodent models of ASD [e.g., (52, 53)].
Therapeutic use of both vasopressin and oxytocin in this context
has progressed into clinical trials, with promising reports that
intranasal treatment can reduce social deficits and enhance
adaptive behaviors in both children and adults with ASD (50, 51,
54).

Targeting oxytocin or its receptor has also demonstrated broad
neuroprotection in the context of acquired prenatal and perinatal
brain insults, including models of pre-maturity, fetal asphyxia,
and fetal growth restriction (55–57). However, to the best of
our knowledge, no studies to date have incorporated measures
of social behavior outcomes. As such, the potential for oxytocin
modulation to ameliorate social impairments in this context
remains unknown. Instead, a reduction in brain damage in these
models has been attributed to the modulation of microglia by

oxytocin signaling (56), effects on the hypothalamic-pituitary-
adrenal axis (58), and the enhancement of inhibitory postsynaptic
currents in hippocampal neurons (57).

In pediatric TBI, Runyan et al. have recently investigated the
potential of oxytocin treatment to ameliorate social behavior
deficits following moderate TBI in p11 rats (24). Intranasal
administration of oxytocin reduced deficits in social recognition
in a dose-dependent manner at 4–5 weeks after injury (equivalent
to adolescence); brain-injured animals receiving 60 µg of
oxytocin at 30–45min prior to behavior testing exhibited social
recognition behavior similar to sham-injured rats. Interestingly,
the same dose of oxytocin had minimal effects in sham-injured
animals, suggesting that brain injury may alter the sensitivity of
the oxytocin receptor. The observed deficits in social recognition
memory were accompanied by a decrease in the frequency of
spontaneous inhibitory currents within the medial prefrontal
cortex and oxytocin was able to reverse this decrease, providing
insight into mechanisms underlying these deficits.

EXOGENOUS HORMONES TO NORMALIZE
ABERRANT SOCIAL BEHAVIOR

A wide range of social behaviors including parental care,
social interactions, play, aggression, and sexual behaviors,
are influenced by gonadal hormones, including testosterone,
estradiol and progesterone (59). Neuroendocrine dysfunction
is a common long-term symptom following TBI, particularly
in pediatric populations (60–62). Greco et al. first reported
both acute and chronic deficits in testosterone after repeated
mild TBI in adolescent male rats, which were associated with
dysfunctional sociosexual behaviors (63, 64). However, much
more research is needed to clarify the relationship between
hormones and behavioral changes after early life injuries; which
may subsequently pave the way for novel treatment targets (65).

Fundamental differences between sexes remain to be fully
elucidated, with only one study in the p21 mouse reporting
sex-specific phenotypes in social and sociosexual behaviors after
severe TBI, as well as neuronal morphology in the prefrontal
cortex and hippocampus, two brain regions with known roles
in social functioning (66). As our appreciation grows for the
many complex and varied ways that sex influences TBI outcomes
(67), future pre-clinical studies should incorporate both males
and females to more thoroughly delineate potential sex-based
differences in social outcomes.

The potential for hormonal manipulation to modulate social
dysfunction after brain injury can be gleaned from models of
HI injury in the rodent. The p10 rat exhibits a reduction in
same-sex social play behaviors in both male and female injured
rats at 4–5 weeks post-injury (68). However, early post-injury
administration of estradiol to increase circulating hormonal
levels was found to restore normal play behaviors. This benefit
is likely to be consequential to a broad range of mechanistic
effects of estradiol in the injured brain, following reports in other
studies that it can reduce histopathology in perinatal HI models
by decreasing cell death, promoting cell genesis and enhancing
neurotrophic and anti-inflammatory responses (69).
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Finally, the steroid hormone progesterone has been
extensively studied in models of adult TBI for its multiple
mechanisms of purported neuroprotection (70, 71). Progesterone
was found to reduce cognitive deficits and aberrant network
hyperexcitability after TBI in the neonatal rat (72). In other
models of TBI using juvenile rats or mice, progesterone is
reported to ameliorate mitochondrial dysfunction, oxidative
stress and spatial learning and locomotor deficits, the latter in
a sex-specific manner, and with mixed effects on the extent of
tissue loss (73–75). However, the potential effects of progesterone
treatment on social behavior deficits after pediatric TBI have not
yet been explored.

MODULATING SECONDARY INJURY
PROCESSES: NEUROINFLAMMATION
AND OXIDATIVE STRESS

The neuroinflammatory response induced by a TBI has long
been considered integral to functional and neuropathological
outcomes (76, 77). While no therapies have yet been successfully
translated into the clinic, a large number of pre-clinical studies
have investigated whether modulation of neuroinflammation can
promote improved neurobehavioral and functional outcomes
after TBI [see review (78)].

In the pediatric injured brain, inflammation is similarly
implicated in outcomes; however, several reports have
demonstrated age-specific differences in the innate immune
response in the immature injured brain (79–81). For example, the
infiltration of neutrophils into the mouse brain after TBI at p21 is
exacerbated compared to the adult, both in magnitude and time
course (80). Neutrophil elastase (NE) is a destructive proteolytic
enzyme released by infiltrating neutrophils upon activation,
which promotes oxidative stress, cell death, extracellular matrix
degradation, and perpetuation of neuroinflammation (82).
Semple et al. (83) reasoned that NE may be a key determinant of
secondary pathogenesis after TBI in the p21 mouse, and found
that NE deficiency or inhibition attenuated vasogenic edema,
neutrophil infiltration, oxidative stress and acute hippocampal
cell death, which was associated with improvements in spatial
memory retention and injury-induced hyperactivity. However,
while deficits in sociability and social memory were observed in
TBI mice, targeting NE was unable to rescue this phenotype (83).

Another promising therapeutic with widely touted
neuroprotective and anti-inflammatory properties is
erythropoietin (EPO). With a primary role in erythroid
development and maturation during hematopoiesis, EPO is now
well-known for additional effects on the central nervous system,
ranging from stimulation of neurogenesis through to prevention
of oxidative stress, inflammation and cell death (84, 85). Recent
meta-analyses of EPO in clinical trials have reported that
EPO may prevent mortality after TBI; however, whether EPO
treatment can improve neurological and functional outcomes
remains unclear (86–88). To our knowledge, no pre-clinical
studies have considered the effect of EPO administration on
social behavior outcomes after TBI. However, two studies of
perinatal brain injury induced by uterine artery occlusion at

embryonic day 18 in pregnant rats have tested early postnatal
EPO treatment, either alone or in combination with melatonin.
This insult caused hyperactivity and impaired social interactions
in young rats (89). Postnatal EPO mitigated the social behavior
abnormalities, alongside changes in neuroimaging suggestive of
improved structural integrity and recovery of myelin (89); while
EPO combined with melatonin normalized social interactions to
sham levels (90).

Other potential therapeutic targets to alleviate social deficits
have been revealed in models of perinatal or early postnatal
brain insults. Adapting the well-established Rice-Vannucci model
of HI injury in mice at either p5 or p10 (representing pre-
term and term infants, respectively), Dupré et al. found that
p5 injuries resulted in pronounced hyperactivity by adulthood,
whereas injuries at p10 resulted in reduced social investigation
(91). In contrast, mice deficient in tissue plasminogen activator
(tPA) did not show such behavioral changes. The brains of
tPA KO mice revealed a reduction in protease activity, IgG
leakage and microglial activation, suggesting that dampening of
inflammation may underlie the preservation of social function
(91). Finally, components of the mammalian target of rapamycin
(mTOR) pathway have been implicated in social behavior
deficits after HI injury in neonatal rats (92). Activated by
the phosphoinositide 3-kinase (PI3K) intracellular signaling
pathway, mTOR and its downsteam targets are upregulated after
unilateral carotid ligand and HI injury in p6 rats. The three-
chamber test at p35 (adolescence) revealed HI-induced deficits
in social novelty preference, alongside hyperactivity, with these
abnormal behaviors being attenuated by post-injury treatment
with the mTOR inhibitor everolimus (92).

It is noteworthy that several of these studies to date have
detected social behavior deficits and hyperactivity concurrently
in the same animals after injuries to the pre-term, term,
pediatric or adult brain (83, 89, 91, 92). These phenotypes may
correspond to the clinical setting where children after brain
injuries often present with both attention-deficit hyperactivity
disorder and social behavior problems (93, 94). Recent studies
have suggested that aberrant social behaviors may be attributed,
at least in part, to deficits in sustained attention and attentional
control (95). As such the relationship between social functioning
and attention in pediatric TBI warrants further investigation,
with potential implications for novel therapeutic targeting of
both comorbidities.

Broad neuroprotective agents with differing biological
mechanisms may also influence social outcomes via a range
of mechanisms, including neuroinflammation (Figure 1). In
addition to those mentioned above, several other drugs have
demonstrated promising neuroprotection in models of pediatric
TBI, although the focus to date has been on sensorimotor and
cognitive outcome measures. These include the calcineurin
inhibitor FK-506 to reduce axonal degeneration (96); the TrkB
agonist LM22A-4 to support myelination (97); minocycline
to reduce microglia reactivity (98); and antagonism of the
interleukin-1 receptor to reduce neuroinflammation and
epileptogenesis (99). In this context, the goal is to prevent social
behavior impairments from developing by reducing the extent of
secondary brain damage after pediatric TBI. Progress in this field
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FIGURE 1 | Proposed mechanisms underlying the manifestation of social behavior deficits after pediatric traumatic brain injury (TBI). Myelin damage, axonal injury,

neurodegeneration, synaptic changes, microglial activation and cytokine release all contribute to the dysfunction of neuronal circuitry underlying social cognition,

resulting in abnormal social interactions in rodent models of experimental TBI. Promising drug candidates to alleviated social behavior deficits are highlighted, targeting

different secondary injury processes in the pediatric injured brain. For example, FK506 and LM22A-4 have been shown to reduce demyelination and axonal injury;

progesterone (PROG) and erythropoietin (EPO) can prevent neurodegeneration and aberrant synaptic changes; and several compounds including PROG, minocycline

(Mino) and interleukin-1 receptor antagonist (IL-1Ra) can minimize microglial activation and cytokine release. Such therapeutic targeting may reduce the extent of

secondary injury after pediatric TBI to prevent the development of social behavior deficits. In contrast, treatments such as oxytocin and vasopressin may be

administered once the abnormal circuitry is already present, to promote pro-social behaviors. Created with Biorender.com.

requires incorporation of social behavior assays in an increased
proportion of pre-clinical TBI models going forward.

CONCLUSION

In summary, pediatric TBI results in pronounced impairments
in social interactions in rodent models, recapitulating a subset
of aberrant social outcomes that are commonly observed
after TBI in young children. Therapeutic targeting to improve

social outcomes in experimental models are very limited
to date. Findings regarding endogenous oxytocin treatment
in the immature injured rat brain are promising (24), and
several studies in models of early life HI provide avenues
for future research in neurotrauma. Ultimately, the goals

of such research should be two-fold: to both increase our
understanding of the fundamental neurobiology underlying
social impairments after pediatric TBI, and to identify novel
therapeutic strategies that can ameliorate or prevent social
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behavior deficits. The continued characterization of social
behavior impairments in pre-clinical models of pediatric TBI
alongside neuropathological assessments, neuroimaging, and
complementary neurobehavioral measures, is imperative for
generating increased knowledge about the mechanisms that drive
social deficits in this age group.

The combination of pharmacological targeting and
rehabilitation strategies also deserves consideration. Although
scarce, a few pre-clinical studies have evaluated the potential
benefit of rehabilitation-based strategies in the aftermath of
an early-life TBI; although social outcomes have not been
evaluated (100, 101). Further, Kline et al. have reported that
the combination of environmental enrichment and selected
pharmacotherapies may have benefit above and beyond that of
single therapies alone (102, 103). Thus, it is certainly feasible
that complementary pharmacological and rehabilitation-based
interventions may yield synergist benefits.

Altogether, the prospect of treating social behavior
impairments with novel therapeutics after pediatric TBI is
an exciting one, and we forecast significant advances in the field
in the coming decade. Even incremental or subtle improvements

in social functioning after pediatric TBI have the potential
to significantly improve quality of life for survivors, through
increased participation in society, peer friendships, family life,
school and work activities.
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