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ABSTRACT

A high affinity RNA aptamer (APT58, 58 nt long)
against mammalian initiation factor 4A (elF4A)
requires nearly its entire nucleotide sequence for
efficient binding. Since splitting either APT58 or
elF4A into two domains diminishes the affinity for
each other, it is suggested that multiple interactions
or a global interaction between the two molecules
accounts for the high affinity. To understand the
structural basis of APT58’s global recognition of
elF4A, we determined the solution structure of two
essential nucleotide loops (AUCGCA and ACAUAGA)
within the aptamer using NMR spectroscopy. The
AUCGCA loop is stabilized by a U-turn motif and con-
tains a non-canonical A:A base pair (the single hydro-
gen bond mismatch: Hoogsteen/Sugar-edge). On
the other hand, the ACAUAGA loop is stabilized by
an AUA tri-nucleotide loop motif and contains the
other type of A:A base pair (single hydrogen bond
mismatch: Watson—Crick/Watson—Crick). Consider-
ing the known structural and functional properties
of APT58, we propose that the AUCGCA loop is
directly involved in the interaction with elF4A, while
the flexibility of the ACAUAGA loop is important to
support this interaction. The Watson-Crick edges
of C7and C9inthe AUCGCA loop may directly interact
with elF4A.

INTRODUCTION

High affinity molecules selected against ligands or proteins are
called aptamers. Nucleic acid (i.e. RNA or DNA) aptamers can
be selected from combinatorial libraries by in vitro selection

(referred to as SELEX for systematic evolution of ligands
by exponential enrichment) of RNA or DNA molecules that
bind to targets (1-3). Two important properties of aptamers
are their high affinity and high specificity. Occasionally, apta-
mers acquire the potential to inhibit the biological function of
their target molecules and therefore therapeutic or diagnostic
applications of aptamers have been proposed (4). Some of
these DNA or RNA aptamers have been examined for their
3D structures by X-ray crystallography or NMR spectroscopy
(3). These structural analyses have been useful to generalize
two types of aptamers. High affinity aptamers generated
against proteins that are potentially nucleic acid-binding pro-
teins are short-length. These aptamers bind to targets by the
specific recognition of a limited number of contact sites, such
as RRM, KH domain or dsRBDs, through precise stacking of
flat moieties, hydrogen bonding and molecular shape comple-
mentation. On the other hand, aptamers that are selected to
proteins of potentially no or weak affinity to nucleic acids are
often large molecules necessary to achieve strong binding to
targets (5,6). Structural information of aptamers will enhance
our understanding of protein—RNA interaction at the atomic
level in general, and facilitate effective design and improve-
ment of RNA aptamers for therapeutic applications.
Mammalian translation initiation is a complex and highly
regulated process involving multiple initiation factors (elFs)
(7-9). The initial association of mRNA with the small (40S)
ribosomal subunit requires the participation of at least three
initiation factors, eIF4A, elF4B and elF4F. elF4F consists of
three subunits (eIF4E, eIF4A and elF4G), and binds to the cap
structure [m’GpppN, where N is any nucleotide (10)], which is
present at the 5’ end of all cellular mRNAs, via the cap-binding
protein subunit, e[F4E. eIF4E is the least abundant factor of all
elFs (11) and the recognition of the mRNA cap by eIF4E is the
rate-limiting step of eukaryotic translation initiation. eIF4A is
an RNA-dependent ATPase that unwinds the secondary struc-
ture present in the 5" untranslated region of mRNAs (12,13).
elF4A is a prototype member of the DEAD-box RNA helicase
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protein family. DEAD-box (and related DEXH-box) proteins
contain several highly conserved amino acid sequence motifs
(12-15) and are involved in a variety of biological processes
involving RNA unwinding and/or rearrangement (16-18).
elF4A has a ‘dumbbell’-like structure consisting of two com-
pact domains connected by an extended, 11-residue (~18 A
long) linker (19-21). It is suggested that the inter-domain
movement between the N- and C-terminal domains of
elF4A is either necessary for or coupled with ATP hydrolysis
and the helicase action (21,22). This, along with changes in
proteolytic digestion patterns (22,23), suggests that elF4A
undergoes a series of ligand-dependent conformational
changes as it binds its substrates (RNA and ATP), hydrolyzes
ATP and releases products.

The accurate control of translation initiation is important for
cell growth. Increasing reports show a close relationship
between aberrant expression or deregulation of initiation
factors and malignant transformation of mammalian cells.
For example, overexpression of eIF4E leads to deregulated
cell growth (24) and malignant transformation of rodent
and human cells (25). Deregulated phosphorylation of
elF4E or 4E-BP1 in Akt signaling leads to tumorigenesis
by the activation of eIF4F complex (26-28). Moreover, the
cellular level of elFs, such as e[F4A and eIF4E, is a prognostic
indicator of the clinical outcome of a variety of human cancers
including breast cancer, head and neck squamous cell carcin-
oma (29,30) and melanoma (31). Consistent with these
findings, antisense RNA against eIF4A has been shown to
be effective, at least in part, to suppress proliferation of
human melanoma cell lines (32). Therefore, a therapeutic
approach that targets elF4A and other elFs might have
potential for novel cancer therapy.

RNA aptamers that have been selected against e[F4A by
SELEX are a useful molecular tool to facilitate the study of
elF4A helicase action and exhibit potential as a novel cancer
therapeutic agent (5). One selected RNA aptamer, no. 21, was
87 nt long and was shown to efficiently inhibit ATP hydrolysis
of eIF4A and cap-dependent in vitro translation. Aptamer no.
21 showed highest binding affinity to elF4A among the
selected aptamers, thus we chose no. 21 for NMR study.
Surface plasmon resonance analysis suggests that the disso-
ciation constant between aptamer no. 21 and eIF4A is 50 pM
or less, one or two orders of magnitude lower (i.e. higher
affinity) than that of an antibody (A. Oguro, T. Ohtsu and
Y. Nakamura, unpublished data). Aptamer no. 21 consists
of a 5'-domain and a 3’-domain connected by a short linker.
Site-directed mutation and truncation experiments revealed
that a 58 nt core structure of this aptamer is required for
efficient recognition of eIF4A (5). Furthermore, the aptamer
binds only to an intact eI[F4A, and not to either domain when
split at the linker of the ‘dumbbell’ structure (5). Therefore, the
aptamer was suggested to ’staple’ together the two domains of
elF4A, leading to inhibition of the inter-domain movement
coupled to ATP hydrolysis and helicase action.

In this study, we examined the solution structure of APTS58
(58 nt long), a variant of the aptamer no. 21 core structure that
sustained 4 nt substitutions (G3—A, C6—U, G10—A and
C12—U) for NMR analysis optimization while still retaining
high affinity to eIF4A (Figure 1). Here, we present two NMR
structures of a 15mer RNA (APT15) containing a hexa-
nucleotide loop and a 16mer RNA (APT16) containing a
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Figure 1. The secondary structure of APT58. Two hairpin derivatives used for
NMR analysis, APT15 and APT16, are outlined. The four substituted residues
are indicated by open circles: G3—A, C6—U, G10—A and C12—U.

hepta-nucleotide loop found in APT58 (see Figure 1). Muta-
tional analysis has indicated that each loop of the aptamer is
crucial for high affinity to eI[F4A. By comparing the NMR
spectra of the isolated hairpin with the 58mer aptamer, the
structural similarity of isolated hairpin loops to the hairpin
loops in the aptamer context was confirmed. Thus, the deter-
mination of the structures of these localized regions, APT15
and APT16, will enhance our understanding of the interaction
between the aptamer and elF4A.

MATERIALS AND METHODS
RNA synthesis and purification

APT15 was synthesized by in vitro transcription reaction using
T7 RNA polymerase. APT16 was chemically synthesized by a
phosphoramidite method, using an automatic DNA/RNA syn-
thesizer, Expedite Model 8909 (PerSeptive Biosystem, Inc.).
Ammonia and tetra-n-butylammonium fluoride deprotection,
PAGE purification under denaturing conditions and extensive
desalting by ultrafiltration (Centricon YM-3, Millipore Inc.)
were carried out. A 20 residue RNA, APT?20, that consists of
APT16 and additional two G:C base pairs for in vitro tran-
scription reaction using T7 RNA polymerase was designed for
the heteronuclear NMR experiments. 13C, I5N-double-labeled
APT?20 was purchased from Nippon Sanso Corporation. The
unlabeled APT15 was dissolved in 10 mM sodium phosphate
buffer (pH 6.5). The unlabeled APT16 and the "°C,
"N-labeled APT20 were dissolved in 20 mM sodium phos-
phate buffer (pH 6.5) containing 50 mM NaCl. Sample
concentrations were 0.5 mM for unlabeled APT15/APT16,
and 1 mM for the 'C, '°N-labeled APT20, respectively.
Finally, the samples were annealed by heating at 90°C for
5 min and snap-cooling on ice. To confirm the hairpin struc-
ture, the samples were subjected to native PAGE analysis
before and after NMR experiments.

Analysis of NMR spectra

NMR spectra were measured on Bruker DRX-600 and
DRX-500 spectrometers. Spectra were recorded at 7-15°C
and NMR data at 10°C were used for structure calculation.



Resonance assignments of APT16 followed the well-
established procedures including heteronuclear NMR experi-
ments (33). 2D HNN-COSY experiments were employed
to establish base-pairing schemes (34). HCCH-COSY and
HCCH-TOCSY experiments were used to assign sugar spin
systems (35), while through-backbone assignments were made
with 2D HP-COSY (36) and HCP experiments (37). H2
protons of adenosines were assigned using HCCH-TOCSY
and 2D HSQC experiments (38). Resonance assignments of
APT15 followed the NOE-based procedures not including
heteronuclear NMR experiments. NOE distance restraints
from non-exchangeable protons were obtained from 2D
NOESY experiments (50, 100 and 400 ms of mixing times)
in D,O (39). Exchangeable proton NOEs were determined
by 2D NOESY in H,O with mixing time of 150 ms using
the jump-and-return scheme and the gradient pulses for
water suppression. Dihedral restraints were obtained from
2D TOCSY (40), 2D DQF-COSY (41), 2D HP-COSY and
HCP experiments, as described below.

NOE intensities from exchangeable protons were inter-
preted as distances of strong (0-3.5 A) or weak (0-6 A),
while NOE intensities from non-exchangeable protons were
interpreted as distances of strong (0-3 A), medium (04 A),
weak (0=5 A) or very weak (0-7 A). In order to estimate the &
(C5'—C4'—C3'-03') dihedral angle, sugar pucker was analyzed
using 2D TOCSY and 2D DQF-COSY spectra. A large
I coupling constant and a small 3 Ty coupling con-
stant indicate the C2'-endo conformation (8 = 160° £ 30°),
whereas a small 3JH1/,H2/ coupling constant and a large
3 Ty coupling constant correspond to the C3'-endo
conformation (8 = 85° + 30°). Restraints for the C3'-endo
conformation were used for G2-A5 and C11-C14, and no &
angle restraint was used for other nucleotides for APTIS5.
Restraints for the C3’-endo conformation were used for
G31-C35 and U41-G44, a restraint for the C2'-endo con-
formation was used for U37 and no & angle restraint was
used for other nucleotides for APT16. Hydrogen bonding
restraints for Watson—Crick base pairs were introduced as
distance restraints between protons and heavy atoms
(1.8-2.5 A).

Structure calculation

A set of 100 structures was calculated using a simulated
annealing protocol with the Insightll/Discover package.
The amber force field was used. A total of 155 NOE distance
restraints, 45 dihedral restraints, 11 hydrogen bondings and 4
base planarity restraints were used for APT15. A total of 228
NOE distance restraints, 47 dihedral restraints, 13 hydrogen
bondings and 5 base planarity restraints were used for APT16.
The force constants were 50 kcal mol ™' A~? for distance
restraints and 120 kcal mol ™' rad~? for dihedral restraints.
The randomized structures were heated to 1000 K during
5 ps. Distance and dihedral restraints were gradually scaled
to full value during 15 ps of molecular dynamics, while
maintaining a low value for interatomic repulsion, which was
subsequently increased to full value during another 20 ps
of dynamics. Then, the temperature was gradually scaled to
300 K during 10 ps. A final minimization step was performed,
which included a Lennard-Jones potential, but no electrostatic
terms. The structures were further refined through a second
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simulated annealing protocol. After the structure was heated to
1000 K during 10 ps, all restraints and interatomic repulsion
energy term were rescaled to 1/10 of full value. All restraints
were gradually scaled to full value during 5 ps of molecular
dynamics, while maintaining low value for interatomic repul-
sion, which was subsequently increased to full value during
another 5 ps of dynamics. An additional 5 ps of dynamics were
performed at 1000 K and the temperature was gradually scaled
to 300 K during 10 ps. A final minimization step was per-
formed, which included a Lennard-Jones potential, but no
electrostatic terms. The 20 final structures that had the lowest
total energy were chosen.

RESULTS AND DISCUSSION
Structure determination of APT15 and APT16

NMR signals were assigned using the standard method
involving heteronuclear experiments (33). The assignment
of imino proton signals confirmed the formation of the
expected 4 bp in the stem including closing base pair,
G4:C11 for APT15 and A33:U41 for APTI16, respectively
(Figure 2A). Furthermore, the imino proton signal of G39
was observed owing to the slow-exchange of the imino proton
with solvent protons. NOE between amino protons of C35 and
imino proton of G39 indicates a Watson—Crick base pair
C35:G39. The signals at 10.68 and 11.18 p.p.m. in the spec-
trum of APT15 were assigned to G8 and U6, respectively. The
only signal at 10.68 p.p.m. was observed and the signal at
11.18 p.p.m. was not observed in the mutant substituting
the ACCGCA loop for the AUCGCA loop (data not
shown). Furthermore, intra-residue NOE between the imino
proton signal at 10.68 p.p.m. and amino protons suggested
that the signal was derived from G8 (data not shown).

For APTI15, all of the non-exchangeable base protons
(H2, H5, H6 and HS), H1’ and H2' as well as the H3’ and
H4' protons of G1-A10 (the loop residues) were assigned. For
APTI16, all of the non-exchangeable base protons, H1', H2'
and H3' as well as the H4' protons of A34-U41 (the loop
residues) were assigned. Because the length of APT15 was
short, overlapping of NMR signals was avoided, which res-
ulted in reliable assignments of the signals and sufficient
information for the structural determination. Although several
broadened signals (e.g. HS, H6 protons of C9 and C35 as well
as the H1’ proton of G39) indicate conformational flexibility in
the loop, NOE connectivity in the D,O NOESY spectrum
showed that the stem has the expected A-form geometry,
and the hexa-nucleotide loop and hepta-nucleotide loop
regions form well-defined structures (Figure 2B and C).
Several unusual protons were observed in the ACAUAGA
loop (A34-A40). The H1’ signal of G39 and the H5 signal
of C35 were observed at 5.13 and 4.67 p.p.m., respectively.
Sugar protons of U37 showed upfield chemical shifts
(3.96 p.p.m. for H2', 3.83 p.p.m. for H4 and 3.50 p.p.m.
for either H5' or H5”). U6-C7 and A34-C35 phosphate groups
have *'P signals that are shifted upfield (—0.12 and
—0.92 p.p.m., respectively) compared with the envelope of
A-form phosphorus chemical shifts.

The absence of crosspeaks between HI'-H2' in 2D TOCSY
and 2D DQF-COSY experiments implied that the nucleotides
in the stem, the A5 in the AUCGCA loop, as well as the A34
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Figure 2. NMR spectra of APT15 and APT16. (A) Spectra of exchangeable
protons at 10°C. Imino proton assignments are denoted with residue numbers.
(B)2D NOESY spectrum of the APT15 in D,O. (C) 2D NOESY spectrum of the
APT16 in D,0O. The NOESY spectra (mixing time =400 ms) were recorded at
10°C showing crosspeaks between aromatic H6 and H8 protons and ribose H1’
protons. Sequential connectivities are indicated by lines and intra-residue NOEs
are labeled by residues.

and C35 in the ACAUAGA loop are in the C3'-endo con-
formations. For the ACAUAGA loop, U37 was found predom-
inantly in the C2'-endo conformation, A38 is in equilibrium
between the C2'-endo and C3’-endo conformations, as estim-
ated based on 3JH1r,H2r and 3JH3/,H4r as described previously
(42). Sugar puckers of U6, C7, G8, C9 and Al0 in the
AUCGCA loop as well as A36, G39 and A40 in the

ACAUAGA loop could not be estimated because of overlap-
ping crosspeaks between H3'-H4'. From HCP experiments, a
pattern of large 3J o p and weak *Jc, p was observed for A34
and U37, indicating € dihedral angle (C4-C3'-O3'-P) as
—gauche. The opposite pattern (weak “Jcr_p and large
3Jcy_p) was observed for other nucleotides, indicating €
trans. Moreover, a strong NOE between the H1’ and the H8
base proton of A38 indicates the A38 base has a syn conforma-
tion rather than the usual A-form anti conformation.

The structures of APT15 and APT16 were determined using
a standard methodology (33). For APT15, a total of 155 NOE
and 45 dihedral angle restraints were obtained from NMR
data. For APT16, 228 NOE and 46 dihedral angle restraints
were obtained. Structures were calculated using restrained
molecular dynamics in a simulated annealing protocol. A
total of 20 structures for each of APT15 and APT16 converged
to low total energy (Figure 3). The overall structures are well
defined by the NMR data with a heavy atom root-mean-square
deviation (r.m.s.d.) of 0.87 A for the 20 structures of both
APT15 and APT16. NMR restraints and structural statistics
are summarized in Table 1. The final minimizations, which
included electrostatic terms with a dielectric constant of 7,
were also performed in this study (43,44). The refined struc-
ture with electrostatic terms was similar to those without
electrostatic terms. The pairwise r.m.s.d. between the two
(with and without electrostatic terms) minimized averaged
structures were 0.88 for APT15 and 0.96 for APT16.

Structure of the AUCGCA loop

The local structure of the AUCGCA loop (G4-C11) is well
defined in the calculated structure of APTI15 (heavy atoms
r.m.s.d. was 0.52 A), which contains a non-canonical A:A
base pair and a U-turn (Figure 3B). The A5:A10 base pair
is categorized as a single hydrogen bond mismatch:
Hoogsteen/Sugar-edge [(45), nomenclature proposed by
N.B. Leontis and E. Westhof]. The N3 of A5 forms a hydrogen
bond with the N6 amino group of A10 (Figure 4A), which is
consistent with an NOE between H2 of A5 and H8 of A10.
This type of A:A base pair has been observed in 16S rRNA
(46,47), a group I intron (48), a hairpin ribozyme (49) and an
AGAA tetra-nucleotide loop, which is the recognition site of
Saccharomyces cerevisiae RNase III (Rntlp) (50).

Three nucleotides, G4-U6, are continuously stacked, and a
sharp turn in the phosphodiester backbone occurs between U6
and C7. The 5 nt, C7-C11, are continuously stacked. These
are consistent with the NOE connectivity for H8(G4)-H8(AS),
H8(AS5)-H6(U6), H6(C7)-H8(G8), H8(G8)-H6(C9), H6(CI)-
H8(A10) and H8(A10)-H6(C11). Furthermore, consistencies
with a U-turn motif include (i) an upfield *'P signal of the
U6-C7 linkage, (ii) non-sequential NOE between H1’ of U6
and H8 of G8 and (iii) non-sequential NOE between H1’ of U6
and HS of C9.

The U-turn is a common structural motif observed in several
RNA structures and is primarily involved in the interaction
with protein or RNA. Salient features of the U-turn motif
include reversal of the phosphodiester backbone following
the pivotal U-residue and two specific cross-loop hydrogen
bonds. The calculated structure shows that the sharp foldback
of the phosphodiester backbone is stabilized by the U-turn, in
which the N3 of U6 forms a hydrogen bond with the phosphate
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Figure 3. Tertiary structures of APT15 and APT16 solved by NMR. (A) A superposition of the final 20 structures of APT15. (B) Stereo view of the minimized
average structure of APT15. (C) A superposition of the final 20 structures of APT16. (D) Stereo view of the minimized average structure of the APT16. G, A, Uand C

residues are colored in blue, red, green and yellow, respectively.

between G8 and C9, and the 2’ OH of U6 forms a hydrogen
bond with the N7 of G8. The U-turn motif was first observed in
the anticodon loop of tRNAP™ and functions to stabilize the
stacked conformation of the anticodon (51), although the loop
is a hepta-nucleotide loop and therefore different in length
from the AUCGCA. The U-turn structures of the stem—loop
ITa in yeast U2 snRNA (GUAACA loop) (52) and the A-rich
loop in HIV-1 RNA (GUAAAA loop) (43) were determined
previously. Although those folds form a U-turn and contain a
sheared G:A pair (Trans Hoogsteen/Sugar-edge) instead of
the A:A base pair of the AUCGCA loop, the overall folds
are the same (Figure 5). Although the A:A base pair is unstable
compared with a G:A pair and should destabilize the U-turn
conformation, the U-turn structure is preserved in the
AUCGCA loop. Since both the non-canonical base pairs
belong to the Hoogsteen/Sugar-edge type and have the
same geometry, it is expected that replacement of the G:A
base pair with the A:A base pair would maintain the overall
fold of U-turn motif.

Structure of the ACAUAGA loop

The local structure of the ACAUAGA loop (A33-U41) is well
defined in the calculated structure of APT16 (heavy atoms
r.m.s.d. was 0.88 10\), which contains a non-canonical A:A
base pair, a Watson—Crick G:C base pair and an AUA
tri-nucleotide loop (Figure 3D). The A34:A40 base pair is
categorized to be a single hydrogen bond mismatch:
Watson—Crick/Watson—Crick (Figure 4B). The N6 amino
group of A34 forms a hydrogen bond with the N1 of A40,
which is consistent with an NOE between the H2 of A34 and
the H2 of A40. This type of A:A base pair has been observed in
rRNA (46,47,53). The hepta-nucleotide loop domain is com-
pact, in which the A38 base is inside the loop, while the A36
base is pushed out in solution. The A40, G39, A38 and U37
nucleotides are partially stacked in a consecutive fashion. The
structure qualitatively explains the unusual chemical shifts
observed in the loop. The H5 and H6 signals of C35 are shifted
upfield slightly by the ring current of the adenosine base in
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A36 while the H1' signal of G39 is shifted upfield slightly by
the ring current of the adenosine base in A40. The ribose ring
of U37 is located on top of the A38 base. This is consistent
with the observation that the sugar proton signals of U37 were
shifted upfield.

The structure of the AUA in the ACAUAGA loop is similar
to the AUA tri-nucleotide loop structure found in the stem—
loop C of brome mosaic virus (BMV) RNA, which is recog-
nized by the viral replicase (54-56) (Figure 6). As in the case
with the BMV RNA, a strong NOE between the H1’ and the H8
base proton of the third adenosine residue in the AUA tri-
nucleotide loop (A38 in APT16) was observed. Similar to
the case of the BMV RNA, the calculated structure shows
that the AUA tri-nucleotide loop is stabilized by the forma-
tion of a hydrogen bond between the N6 amino group of A36
and the phosphate between A34 and C35. Thus, APTI16 is

Table 1. NMR restraints and structural statistics

APTI15 APTI16
Number of experimental
restraints
Distance restraints 155 228
Dihedral restraints 45 46
Hydrogen bonding 11 13
distance restraints
Base planarity restrains 4 5
r.m.s.d from restraints®
Distance restraints (A) 0.002 £ 0.001 0.012 £ 0.002
Dihedral restraints (°) 0.2 +0.1 0.5+0.1

r.m.s.d. from idealized

geometry
Bonds (A) 0.0026 + 0.0002 0.0032 + 0.0001
Angle (°) 0.58 + 0.01 0.62 + 0.01
Impropers (°) 0.443 + 0.003 0.436 + 0.002

Heavy-atoms r.m.s.d from

mean structure (A)
All 0.87 0.87
Loop (G4-C11) 0.52
Loop (A33-U41) 0.88

“The converged structures did not contain experimental distance violation of
>0.2 A or dihedral violation >5°.

A

suggested to consist of an AUA tri-nucleotide loop and a
stem containing the A:A mismatch.

An RNA melting study showed that APT16 is thermody-
namically unstable (T, = 46°C) compared with the loop struc-
ture of the BMV RNA (13mer, GGUGCAUAGCACC,
T, = 76°C). The calculated structure revealed that A:A
base pair widens the inter-strand distance (the distance
between C4’ of A34 and that of A40 is 17.3 A) compared
with a Watson—Crick base pair in the A-form helical stem
(about 15 A). This distortion of the A-form helical structure
results in destabilization of the stem—loop structure in APT16.

Functional relevance of local structural information
of aptamer

This study solved the solution structure of two loops,
AUCGCA (residues 5-10) and ACAUAGA (residues
34-40) that are essential domains for high affinity aptamer
(APT58) to elF4A. The original selection scheme was per-
formed in the presence of 2.5 mM magnesium acetate, whereas
the structures were solved in the absence of Mg** ions.
Although the addition of Mg®" ions to APT16 causes broad-
ening of NMR signals, the chemical shift changes of the sig-
nals were scarcely observed (data not shown), suggesting that
the folding of APT16 was not changed appreciably upon the
addition of Mg®* ions. On the other hand, the addition of Mg?**
ions to APT15 caused extreme broadening of NMR signals,
and induced notable changes in C7 and G8 signals. These
changes are, at least in part, explained by assuming that the
addition of Mg®" ions induces a kissing-loop type dimer
conformation for APT15. Thus, the structures of APTI16
and APT15 were determined in the absence of Mg?" ions.
Substitution of guanosine residue for A36 did not diminish
the binding affinity to eIF4A (5). Thus, we analyzed NMR
spectra of the ACGUAGA loop variant, and confirmed that the
conformation of the variant is similar to that of APT16 (data
not shown). It is consistent with the fact that the conforma-
tion of the GUA tri-loop is very similar to the tri-loop con-
formation of the AUA tri-loop in BMV RNA (56). Either
the substitution of a G:C base pair for the A:A base pair in
the ACAUAGA loop (see Figure 6) or the substitution of the

Figure 4. A local superposition of the final 20 structures (A) and schematic representation (B) of non-canonical A:A base pairs in APT15. A local superposition
of the final 20 structures (C) and schematic representation (D) of non-canonical A:A base pairs in APT16.
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Figure 5. Structural comparison of the AUCGCA loop of APT15 and the stem—loop Ila in yeast U2 snRNA. (A) The AUCGCA loop structure in APT15. (B) The
GUAACA loop structure in loop ITa of U2 snRNA (38). Schematic representations of the (C) AUCGCA loop structure and (D) GUAACA loop structure are shown. In
the schematic representations, symbols are used as follows: black rectangle, anti base; open rectangle, syn base; red rectangle, stacking interaction; blue circle,
hydrogen bonding interaction; open circle, C3'-endo ribose; open square, C2'-endo ribose.

entire loop for the stable UUCG tetra-nucleotide loop, weakly
but significantly, diminished the binding affinity to elF4A
(data not shown). Therefore, we suggest that the flexible nature
of the ACAUAGA loop may be important for aptamer bind-
ing to e[F4A, although the loop may not be directly involved in
the interaction with eIlF4A.

The APTI5 was constructed for the NMR study by
replacing the 4 nt in the original 15mer hairpin RNA. Ini-
tially, we tried to determine the original 15mer RNA
(5'-GGGGACCGCGCCCCA-3') derived from the aptamer
no. 21. NMR and native PAGE analyses of the 15mer RNA
suggested that the ACCGCG loop forms a kissing-loop type
homodimer. To avoid difficulties in the structural determina-
tion due to multi-conformations of RNA molecule, we
replaced G10 of the 15mer RNA with adenosine. The non-
canonical A:A base pair was observed in APT15, whereas a
similar base pair cannot be formed in the original 15mer RNA.
Although the ACCGCG loop seems to be less stable due to a
lack of the A:A base pair, stacking interaction between G10
and the contiguous residues may stabilize the loop conforma-
tion. In the U-turn motif, the uridine residue is thought to be
important to stabilize the conformation. Thus, we tried to
analyze NMR spectra of the loop variant (ACCGCA),
which shows high affinity for eI[F4A. Although the structure

of the ACCGCA loop could not be determined due to over-
lapping and broadening of NMR signals, NOE connectivity for
H8(G8)-H6(C9), H6(C9)-H8(A10) and H8(A10)-H6(CI11)
indicated that 3 nt G8—C11 are continuously stacked in the
variant (data not shown). Non-sequential NOE between H1' of
C6 and H8 of G8 was observed in the variant as shown in
APT15. Furthermore, NOE signal between H2 of A5 and H8
of A10 indicated that the similar A:A base pair as APTIS5
is formed in the variant. Therefore, we assume that the
ACCGCA loop forms a similar conformation to U-turn
motif and that the U-turn like conformation could be important
for e[F4A binding.

The U-turn structure of the AUCGCA loop results in solvent
accessibility of the Watson—Crick edges of C7, G8 and C9,
which should allow base specific interaction with elF4A. In
fact, substitutions of A for C7 and U for C9 diminish elF4A
binding; however, substitution of A for G8 preserves most of
the binding affinity (5). Thus, the Watson—Crick edges of C7
and C9 are thought to be recognized by elF4A. Furthermore,
NMR analysis and native PAGE analysis of the loop variant
(AUCGCG) suggested that the AUCGCG loop forms a
kissing-loop type homodimer (data not shown) such that the
Watson—Crick edges of C7, G8, C9 and G10 may allow the
kissing loop—loop interaction. Similarly, the U-turn structure
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Figure 6. Structural comparison of the AUA tri-nucleotide loops in (A) APT16 and (B) loop C of BMV RNA (41). Schematic representation of the (C) ACAUAGA
loop structure and (D) the AUA loop structure are shown. Symbols used are the same as Figure 5.

of the stem-loop Ila in U2 snRNA has been proposed to
interact with a downstream sequence whose complementarity
to the loop sequence is phylogenetically conserved (52). The
U-turn structure of the A-rich loop was also suggested to form
base pairs with four uridines in the anticodon loop of tRNAgys
to assist in tRNA binding to viral RNA, which is required for
reverse transcription of viral RNA (43). Elucidation of detailed
interactions between U-turn motifs and proteins or RNAs will
enhance our understanding of the molecular and structural
basis of protein—RNA interactions.

Itis noteworthy that the minimum length of efficient aptamer
binding to eIF4A is at least 58 nt. Aptamers selected to other
initiation factors, such as elF4E (6), elF4G and elF1A
(A. Oguro, S. Miyakawa, T. Ohtsu and Y. Nakamura, manu-
script in preparation), were also large aptamers over 70 nt long,
with most of these nucleotides essential for high affinity bind-
ing to target proteins. Although these elFs play critical roles in
translation initiation, they do not contain any RNA-recognition
motifs and do not exhibit strong binding to RNA. Therefore, it
might be argued that selected aptamers to proteins possessing
only weak, if any, affinity to RNA require the ability to capture
the protein’s global conformation. This may be the reason why
RNA aptamers against these proteins are large. This is com-
pletely different from RNA aptamers against RNA recognition
motifs, which acquire pinpoint affinity. In a more general

context, this type of global recognition of target conformation
is in sharp contrast to specific epitope (<10 amino acids) recog-
nition by antibodies. The complete understanding of aptamer—
elF4A interactions requires structure determination of the
aptamer—eIF4A complex at atomic resolution. Nevertheless,
the present structural study of the local conformations of
two functionally essential loops in APT58 will provide us
with an important step toward the understanding of the global
conformation recognition by RNA.
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