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Abstract: Heavy metals such as cadmium (Cd) pollute the environment. Heavy metal pollution
endangers the Nile River since it serves as an irrigation and freshwater source for the cities and farms
that line its banks. Water and sediment samples from the Nile River were tested for Cd content. In
addition, a sequential experiment analytical method was performed to determine the metal’s relative
mobility. According to the data, there is an average of 0.16 mg kg−1 of Cd in sediments. The BeniSuef
water treatment plant and brick factory, the iron and steel factory of Helwan, the oil and detergent
factory of Sohag, and the discharge of the cement factory in Samalut had the greatest concentration
of Cd in their vicinity. According to the risk assessment code, there are four categories of Cd: residual
(57.91%), acid-soluble (27.11%), reducible (11.84%), and oxidizable (3.14%). Bioavailable and mobile
Cd levels in sediment and water were found in Beni Suef, Aswan; Helwan; Samalut; Sohag; and
Helwan. Because the other metal is highly bioavailable, its concentration is not a risk factor at the
Samalut station. Cd’s toxicity and bioaccumulation make it an extra hazard to aquatic animals and
human life. There should be a deterministic approach to monitoring Cd near industrial sources.

Keywords: Nile river-Egypt; heavy metals; water pollution; cadmium; sediments; fractionation

1. Introduction

Once heavy metals are discharged into the environment (air, soil, water, and sedi-
ments), they don’t disappear; sediments, soil, and biota absorb them. As a result, sediments,
water, and biota play a key role in determining the extent of environmental toxicity of
dangerous compounds [1–3]. It is widely accepted that certain elements are essential for
life on earth, such as iron, copper, zinc, and manganese. Heavy metals like mercury, lead,
cadmium, and others are not necessary for life, but they can be harmful even at deficient
levels [4]. Human health can be negatively impacted regardless of exposure to high or low
levels of these pollutants through the air, water, or food (plants and animals). Sediment
geochemical studies can understand Cd pollution’s properties, distribution, and causes.
Cadmium is a transition metal with a density of 8.642 g cm−1 and a molecular weight
of 112.40 g mol−1. It is found as a minor constituent in mineral sulfides, especially zinc
sulfides such as Sphalerite and Wurtzite; hence, its natural sources from the earth’s crust
include volcanic eruptions and the weathering of rocks containing Cd [5,6]. Volcanoes,
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airborne soil particles, biogenic materials, sea spray, and forest fires all contribute to the
release of cd into the atmosphere. Cd sources include cement manufacturing, mining,
and manufacture of non-ferrous metals, iron and steel production, coal combustion, waste
incineration, municipal wastes, and the application of mineral fertilizers. Sediment from
rivers and lakes contains Cd concentrations of up to 5 mg/kg, whereas marine sediments
include concentrations of between 0.03 and 1 mg kg−1 of metal [7].

According to the Environmental Protection Agency (EPA) study, the Cd average
ranges from 5 to 20 ng L−1 in open seawater [8]. Acetate, chloride, and sulfate are the
most water-soluble inorganic cadmium-based compounds; nevertheless, insoluble oxides,
carbonates, and sulfides are impossible to remove from the environment (e.g., soil) [9,10].
The Cd levels in European agricultural soils ranged from 0.06 to 0.6 mg kg−1 [11]. The
kidneys of cattle, poultry, and pigs contained Cd concentrations ranging from 0.01 to
0.50 mg kg−1 [12]. Paintbrushes washed under the tap can spread roughly 110 kg of Cd to
agricultural soil each year [13]. The typical human consumption of Cd is 1.5 g kg−1 of body
weight (1.8 g for vegetarians), which can be calculated based on the Cd content of specific
foods [14]. The daily intake of Cd is increased by 2 to 4 g by smoking one package of
cigarettes [15]. Cd poisoning can lead to high doses of hypercalciuria, kidney stones, lung
cancer, and prostate cancer [8]. Metal content in sediments is crucial in regulating metal
bioavailability to river organisms [16]. Cd is a hazardous heavy metal with long-term health
and environmental consequences even at low exposure levels. The two states of cadmium
oxidation are metallic (rare; insoluble in water) and divalent (Cd+2) (predominant and
soluble in water). The Free Cd+2 ion is the main toxic form of Cd; however other forms of
cadmium, for example, those bound to various ligands, may also cause adverse effects. The
toxicity, bio-accumulative potential, and non-biodegradability of cadmium-based content
were monitored in Egypt’s Nile River to determine the consequences on aquatic, animal,
and human health. This study aimed to analyze the current concentrations of Cd in Nile
waters and sediments, illustrating its distribution and potential sources, determining the
degree of contamination, and how much Cd is bioavailable. As a result, this study will help
better understand the current state of the environmental impact of heavy metals along the
Nile River.

2. Materials and Methods
2.1. Study Area

A total of 11 African countries, including Egypt, share borders with the Nile River,
which covers a distance of 6650 km and flows into the Mediterranean Sea. For decades,
this river has been a vital primary source of fresh water for humans and animals and a
source of irrigation for the dry country around it. Today, the river still provides irrigation
and serves as a vital transit and trading route. At the same time, toxic substances are
being discharged into the river. The White, Blue, and Atbara Nile Rivers entered the main
Nile. Arabian–Nubian Shield Basement rocks, Phanerozoic sedimentary cover, Ethiopian
Highlands (basalt), and aeolian sources from the highlands of the Red Sea of Egypt supply
sediments to the Nile’s trunk [17–19]. The Nile River provides 80 to 85% of water for the
agricultural sector and 65% of the water needed for industrial purposes, and it receives
over 57% of the effluents generated [20]. The Nile receives massive amounts of agricultural
effluent, which contains a variety of chemical contaminants related to the common use
of fertilizers and pesticides. Significant Cd pollution in the Nile River bottom sediments
between Aswan and Esna, near the phosphate shipping harbors [21]. The Nile River and
its tributaries are pretentious by various human-caused activities, including the disposal of
sewage sludge and wastewater, agricultural activities, industrial processes, and the use of
phosphate fertilizer [2,22–24]. According to Egypt’s Nile River studies [25–30], hazardous
metals such as Cd, Pb, and Fe have been found in important economic fish species, aquatic
plants, and water. Increasing pollution and dwindling Nile water levels are Egypt’s most
pressing issues, especially regarding the completion of the new dam construction project.



Toxics 2022, 10, 221 3 of 19

2.2. Sampling and Geochemical Analysis

In September 2019, 23 representative sediment and water samples (from two banks
and the middle) were carefully selected from Aswan to Cairo (Figure 1) to evaluate Cd
concentration and fractionation in the bottom sediments and determine the anthropogenic
sources of pollution along the river. A grab sampler (Ekman type) was used to capture the
sediments rinsed between sites with distilled water. In an oven at 70 ◦C, the sediments were
dried for around 26 h before being kept for chemical testing. A GPS tracker was utilized
to locate the sampling locations’ latitude and longitude and their elevations. This method
of analyzing the total Cd content in sediments uses a chemical reaction involving the
digestion and addition of HCl, HNO3, and 2 mL HF to 0.25 g of dry sediment. Finally, the
digested solutions were subjected to inductively coupled plasma mass spectrometry (ICP-
MS) (Agilent 7900, USA) and inductively coupled plasma atomic emission spectroscopy
(ICP-AES) (Agilent 5110, Santa Clara, CA, USA) analysis at ALS CEMEX (Guangzhou,
China) Co., Ltd-China, respectively. To monitor the state of the equipment and ensure
quality, a reference solution was measured after every five samples were analyzed. Every
chemical reagent utilized was of analytical grade.
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Figure 1. The location map of studied samples along Nile River, Egypt.

Using a waterproof (PH/EC/TDS) and portable temperature meter, the pH, temper-
ature, and total dissolved solids (TDS) of water samples were evaluated simultaneously
with the collection of water samples using a portable meter of (HI98129.HI98130, HANNA,
Rhode Island, WA, USA). Before the experiment, the PH meters were calibrated with stan-
dard solutions. A professional waterproof portable PH/ORP Meter (HI98190, HANNA,
Rhode Island, WA, USA) was used to determine the oxidation-reduction potential (ORP).
All samples were acidified with ultrapure HNO3 acid in a 30 mL LDPE bottle washed
with ultrapure water and 10% HNO3 acid. Both the acid and the water used were of the
highest quality. Temperature-controlled storage was employed for storing water samples
at a temperature (4 ◦C) before analysis, as per standard procedures [31]. ICP-MS was used
to determine the amount of Cd in the water samples.
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The laser diffraction method was used for grain size analysis on representative samples
of sediments prepared [32]. Laser diffraction became the standard method for sediment
particle size measurement [33–35]. Analysis was performed with an alight scattering
apparatus (Winner 2308A, Jinan, China) equipped with a >3 mW Helium-Neon laser with
a wavelength of 632.8 nm. The beam wavelength of 2.4 mm operates from 0.1 to 2000 µm
(Table 1).

Table 1. The concentration of Cd (mgkg−1), calculated Pollution indices (CF, Er, Igeo, and EF), and
fractions distributions (%) of Nile River sediments.

Fractions at Sediments %

Sample Location Cd CF Er Igeo EF Sand% Silt% Clay% (F1) (F2) (F3) (F4)

Giza 0.14 1.56 46.67 0.05 2.17 85.6 12.1 2.3 32.14 3.73 2.37 61.76
Cairo 0.18 2.00 60.00 0.42 2.76 85.6 13.2 1.2 24.52 10.59 4.80 60.09

Helwan 0.23 2.56 76.67 0.77 3.78 53.4 41.1 5.5 33.20 14.20 3.88 48.72
Naser 0.13 1.44 43.33 −0.05 1.96 96.4 3.3 0.3 37.51 11.85 2.65 47.99

Beni Suef 0.38 4.22 126.67 1.49 5.88 67.9 28.9 3.2 44.96 12.95 3.34 38.74
Biba 0.09 1.00 30.00 −0.58 1.44 94.4 5.3 0.3 9.78 6.86 1.65 81.72

Minya 0.12 1.33 40.00 −0.17 1.88 81.8 15.7 2.5 30.75 15.56 1.92 51.77
Bni Mazar 0.18 2.00 60.00 0.42 2.48 51.6 45.2 3.2 37.37 17.90 4.37 40.36
Samalut 0.20 2.22 66.67 0.57 4.17 95.9 3.8 0.3 13.41 8.97 1.60 76.02
Asyut 0.13 1.44 43.33 −0.05 2.18 85.1 13.1 1.8 17.36 12.04 2.08 68.52

Abu Tij 0.14 1.56 46.67 0.05 2.04 95.8 3.8 0.4 19.50 12.13 2.44 65.94
Sidaf 0.13 1.44 43.33 −0.05 1.71 40.1 51.7 8.2 32.51 22.37 9.96 35.15
Girga 0.16 1.78 53.33 0.25 2.11 68.5 28.3 3.2 27.12 13.23 3.02 56.64
Sohag 0.19 2.11 63.33 0.49 2.75 74.7 21.9 3.4 28.41 13.79 3.85 53.95
Tahta 0.11 1.22 36.67 −0.30 1.78 71.5 25.3 3.2 16.04 5.97 3.68 74.31

Nagaa Hammadi 0.11 1.22 36.67 −0.30 1.87 83.3 14.6 2.1 32.49 11.49 1.32 54.70
Qena 0.10 1.11 33.33 −0.43 1.54 98.1 1.6 0.3 13.77 6.17 1.60 78.46
Luxor 0.13 1.44 43.33 −0.05 1.96 90.6 7.8 1.6 49.60 15.36 5.15 29.89

Armant 0.11 1.22 36.67 −0.30 1.68 88.6 8.8 2.6 16.40 8.82 6.01 68.78
Esna 0.17 1.89 56.67 0.33 2.22 98.7 1.1 0.2 32.59 17.40 0.21 49.80
Edfu 0.11 1.22 36.67 −0.30 2.43 89.6 1.3 9.1 17.87 5.70 1.74 74.69

KomUmbu 0.09 1.00 30.00 −0.58 1.25 93.3 6.1 0.6 20.74 9.92 1.14 68.19
Aswan 0.27 3.00 90.00 1.00 4.47 85 13.6 1.4 35.51 15.28 3.39 45.82

Average 0.16 1.74 52.17 0.12 2.46 81.54 15.98 2.47 27.11 11.84 3.14 57.91
Maximum 0.38 4.22 126.67 1.49 5.88 98.70 51.70 9.10 49.60 22.37 9.96 81.72
Minimum 0.09 1.00 30.00 −0.58 1.25 40.10 1.10 0.20 9.78 3.73 0.21 29.89

CF: Contamination factor; Er: Ecological potential risk, Igeo: Geo-accumulation inde, and EF: Enrichment factor;
F1: Acid soluble; F2: Reducible; F3: Oxidizable fraction; F4: Residual.

2.3. Sequential Extraction Fraction Method

In soils and sediments, single extractions are utilized to rapidly evaluate the ex-
changeable metal fraction [36–38]. However, there are a variety of trace element speciation
procedures that have environmental implications in soils and sediments [39–41]. For the
chemical separation of Cd in sediments, the European Community Bureau of Reference
(BCR) sequential extraction procedure was recommended [42,43]. BCR procedure has been
widely used to detect specific chemical forms of heavy metals in various environmental
mediums, including sediments. The BCR-701 sediment certified reference material was
used to validate it, which included certified and indicated extractable amounts of Cd, Ni,
Cu, Pb, Cr, and Zn [44]. Many specialists used and approved this method [45–51]. Before
the BCR process, the sediments were utterly dried in an oven at 40 ◦C for around 48 h. A
shaker was used to mix the sediments at room temperature for 16 h. To get the fractions,
each step’s fraction extraction was centrifuged at 3000 rpm for 20 min and then placed in a
polyethylene centrifuge tube. A 20-min centrifuge was performed, followed by a 15-min
automated shaker wash at 3000 rpm for the residue. The supernatant was decanted, leaving
a residue. This separation took place in the geochemical laboratory of the China University
of Geo-science, Beijing. Each sample was cleaned with 10 mL of ultrapure water before and
after extracting the data. After soaking in dilute HNO3 overnight, all polypropylene and
glassware were washed with ultrapure water before use [51]. The sample’s residues were
digested with a mixture of acids (HNO3 + HF + HClO4) [52]. There was no question about
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the quality of the reagents and the standard solutions utilized in this experiment. Every
fraction’s metal content was measured using ICP-MS. A schematic representation of the
extraction procedure is provided in a flowchart (Figure 2).
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2.4. The Pollution Level Estimation

The distribution of metal concentrations in sediments and comparison with non-
polluted backgrounds are necessary to determine the mechanisms of geochemical distri-
bution and accumulation of heavy metals and provide essential information for assessing
environmental health risks in aquatic systems. Assessing the quantity of Cd in the envi-
ronment and the potential for ecological risk requires the use of environmental pollution
indices such as the Enrichment factor (EF), Contamination factor (CF), Geo-accumulation
index (Igeo), and Ecological potential risk (Er) [53,54]. The contribution of anthropogenic
sources normalized to the metal concentration background value of the upper continental
crust [55] is as follows:

2.4.1. Enrichment Factor (EF)

To determine the contribution of anthropogenic sources to the natural levels of heavy
metals in the Nile River sediments, enrichment factors for heavy metals in sediments are
determined. The comparable upper continental crust values [55] were employed as a
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background in our scenario. The Enrichment Factor (EF) of Cd was calculated using the
formula below.

EF =
Ci/Cr

Bi/Br
(1)

where Ci and Cr are the concentrations of the metal and the reference metal in the sample
(Al), while Bi and Br are the background concentrations of the metal and the reference
(Immobile elements such as Al have been used as the background metals [56] for EF
calculation in this study. According to Pereira et al., EF can be classified as follows:

EF < 2 indicates no or minimal enrichment, EF between 2 and 5 indicates moderate
enrichment, EF between 5 and 20 indicates significant enrichment, EF between 20 and
40 indicates very high enrichment, and EF > 40 indicates extreme enrichment [57,58].

2.4.2. Contamination Factor (CF)

CF can represent the level of contamination; it is a useful tool for monitoring contami-
nation in sediments over time. It is calculated using the following formula:

CF =
Cmetal

Cbackground
(2)

Cmetal is the metal concentration, and Cbackground is the background value of UCC [55].
The contamination degrees are categorized according to their values as follows CF < 1 = low
contamination, CF = (1 − 3) is moderate contamination, CF = (3 − 6) is considerable
contamination, and CF > 6 = very high contamination [59].

2.4.3. Index of Geo-Accumulation (Igeo)

An indicator called geo-accumulation index was initially defined by Müller [60],
the first to use the term Igeo. To measure the extent to which anthropogenic pollution,
geochemical background value, and natural diagenesis enrichment. To determine the Igeo,
the following equation was used:

Igeo = log2

(
Cn

1.5 Bn

)
(3)

where Cn is the measured content of an element a (n), Bn is the geochemical background
of element n [55], and a constant of 1.5 is used due to metal fluctuations in the soil as
well as some minimal anthropogenic influences [59]. Igeo values are classified as follows:
Igeo < 0 unpolluted, Igeo (0–1) unpolluted to moderately Igeo (1–2), moderately polluted
Igeo (2–3), moderately to heavy polluted Igeo (3–4), heavy polluted Igeo (4–5), heavy to
extreme polluted and Igeo > 5, is extremely polluted [60].

2.4.4. Ecological Risk Index (Er)

This index assesses the potential risk to the ecology of one or more constituents [61].
When the prospective ecological risk factor and the toxicity response coefficient were taken
into account, Er reflected the sensitivity of the biological community. The Er is calculated
as follows:

Er = Ci
f ∗ Ti

r (4)

where Ci
f is the contamination factor, Ti

r is the toxicity response coefficient of each element
(Cd = 30) [61,62] and Er is the ecological risk factor of each element [63]. Er values were
categorized as follows Er <40 is low pollution, 40 < Er < 80 moderate potential risk,
80 < Er < 160 high potential risk, 160 < Er < 320 very high potential risk, and Er > 320
dangerous [57].
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3. Results
3.1. Cd Distribution in Sediments

The average particle size analysis for fine sand, silt, and clay was 81.54%; 15%; 2.47%,
respectively; this indicates that the High Dam effect and low weathering have resulted in
less clay concentration. From 0.09 to 0.38 mg kg−1, the Nile River bottom sediments contain
Cd, with an average value of 0.16 mgkg−1 (Table 1). Benisuef (0.38 mg kg−1), Aswan
(0.27 mg kg−1), Helwan (0.23 mg kg−1), Samalut (0.2 mg kg−1), and Sohag (0.19 mg kg−1)
had the most significant concentrations (Figure 3). In comparison, the average of Cd in
this investigation and the Rosetta branch (0.8 mg kg−1) [64] shows that the increase from
upstream to downstream (South to North) is related to the increase in industrial activities,
as quoted by Abou El-Anwar et al. (2021). On the other hand, the Cd average is higher than
that of Nile sediments in the Sohag governorate (0.004 mg kg−1) [65] and of the Cairo sector
(0.06 mg kg−1) [66], while less than that of the Assuit governorate (0.6 mg kg−1) [23] and
Nasser Lake (0.183 mg kg−1) [67]. Comparatively, with worldwide rivers and backgrounds,
the mean value of Cd in the current study is more than that of UCC [54] while less than
that of world rivers (1.4 mg kg−1) [68] and USEPA (0.61 mg kg−1) [69] (Table 2). There
is no significant correlation between Cd and (sand, silt, and clay percent) (Table 3). The
anthropogenic source is supported by the negative correlation of Cd with Zr (−0.15)
(Table 3) because Zr has been commonly employed in geochemical investigations of mineral
weathering as a conservative lithogenic element [70,71].

Table 2. Average Cd concentration in the current study (mg kg−1) compared to the average of
worldwide rivers in sediments (mg kg−1).

River Country Cd Reference

Present study Egypt 0.16 Present study
Yangtze River China 0.98 [72]

Buriganga River Bangladesh 0.8 [73]
Ipojuca River Brazil 0.16 [74]

Ghaghara River India 0.28 [75]
Nile River Egypt 0.06 [66]

World average 1.4 [68]
UCC 0.09 [54]

USEPA 0.61 [69]
UCC 0.5 [76]

Table 3. Results of the Pearson’s correlation analysis of Nile River sediments and water cadmium
concentration with water parameters, Zr, Cd fractions (%), and grain size (%).

Cd (mg kg−1) Cd (mg L−1) PH TDS ORP Temp F1 F2 F3 F4 Sand Silt Clay

Cd (mg kg−1) 1.00
Cd (mg L−1) 0.45 1.00

PH −0.16 −0.35 1.00
TDS 0.18 0.67 −0.62 1.00
ORP 0.39 0.13 −0.02 0.07 1.00

Temp. 0.04 0.69 −0.19 0.64 −0.13 1.00
(F1) 0.50 0.22 −0.08 0.08 0.13 0.22 1.00
(F2) 0.31 −0.19 0.06 −0.25 0.31 −0.25 0.60 1.00
(F3) 0.10 0.12 −0.10 0.09 −0.08 0.23 0.28 0.47 1.00
(F4) −0.47 −0.12 0.06 0.01 −0.18 −0.11 −0.95 −0.81 −0.49 1.00
Zr −0.15 −0.35 0.19 −0.18 0.39 −0.20 −0.05 0.12 0.07 −0.01

Sand −0.32 −0.07 0.07 −0.17 −0.36 −0.02 −0.36 −0.54 −0.67 0.52 1.00
Silt 0.34 0.08 −0.06 0.18 0.39 0.05 0.38 0.56 0.65 −0.54 −0.99 1.00

Clay 0.06 −0.04 −0.08 0.03 0.00 −0.14 0.12 0.20 0.51 −0.22 −0.67 0.57 1.00

ORP: Oxidation Reduction Potential (mV), TDS: Total dissolved (mg kg−1), Temp.: Temperature (◦C), F1: Acid
soluble; F2: Reducible; F3: Oxidizable fraction; F4: Residual fraction.
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3.2. Pollution Level

Heavy metal pollution has become incredibly critical [77]. All pollution indices were
calculated related to UCC [55] presented in Table 1. The mean value of the EF was 2.46,
with a range (1.25–5.88) indicating low to moderate enrichment. Furthermore, the CF
average of Cd is 1.74 with a range of 1–4.22, showing moderate to high contamination
(Table 1). Although, the Igeo average is 0.12 with a range of −0.58–1.49, depicting that
the Nile River sediment is unpolluted to moderately polluted with cadmium (Table 1 and
Figure 4). The ecological potential risk index ranged from 30 to 126.67, with an average of
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52.17, indicating a low to high risk of cadmium (Table 1). Beni Suef, followed by Aswan,
Helwan, Samalut, and Sohag samples, recorded the highest value of pollution degree. The
difference in cadmium concentration and pollution level along the river may be related
to the near and far from the anthropogenic source of Cd mobility and discharge points
(Figure 5). Cd is one of the banned elements regarded as the most toxic to aquatic life and
people; increased exposure produces both noncarcinogen and carcinogen dangers such as
renal illness, bone damage, and even cancer [78].
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factories, Beni Suef on Nile Bank.
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3.3. Sequential Extraction Fractions of Cadmium

Cd can harm human health and the environment, even at low doses. Air pollution,
tobacco smoke inhalation, and tainted food expose humans to Cd [79]. Exchangeable and
carbonate, Fe-Mn oxyhydroxide (reducible), organically bound (oxidizable), and residual
geochemical forms are important for determining the biological form of cadmium as well
as the solubility, mobility, and toxicity of metals bound to various sediment phases [80].
Metals attached to the metals bound to the exchangeable fraction are easily accessible, but
those in the carbonate phases are more mobile with increasing acidity [39,51]. The residual
fraction is considered to represent the unreactive phase. The cadmium fractions follow this
order: residual (57.91%) > Acid soluble (27.11%) > Reducible (11.84%) > oxidizable (3.14%)
(Figure 6 and Table 1). Cadmium was mostly concentrated in the residual fraction >74%
at Biba, Tahta, Samalut, Edfu, and Qena. In reducible, a portion of the Cd fraction may
form stable complexes with Fe and Mn oxides [81]. Cd positively correlated with F1
fraction (r = 0.5) (Table 3). The risk assessment code (RAC) was suggested for assessing
the availability and environmental risk of heavy metals [82,83]. RAC is applied to the
bioavailable speciation acid-soluble fraction in this investigation. If metal content in this
fraction (acid-soluble) is less than 1% of the total, it is deemed safer for the environment;
the range of 1–10% is low risk, 11–30 is medium risk, and 31–50 is a high risk, and 50–100%
is very high risk. So, the station’s samples are from medium to high risk, apart from Biba
being at the lowest risk. The high risk was recorded at (Luxor, Beni Suef, Nasser, Bni Mazar,
Aswan. Helwan, Esna, Sidaf, Nagaa Hammadi, and Cairo) were >31% (Figure 7), indicating
high bioavailability and mobility at these stations. In this investigation, all stations represent
the high risk, medium risk, and low risk represent (43%, 52%, and 5%, respectively). This
medium-high risk of Cd makes it easy to enter the food chain. The toxicity of Cd to aquatic
organisms is related to the availability of free ionic concentration. Animals and the human
body through the food chain are impacted by the high concentration of heavy metals [84].
In correlation with the bioavailability of worldwide rivers, the cadmium bioavailability in
this study is moderate and poses a risk to the environment (Table 4).
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Table 4. Correlation between the bioavailability fraction of Cd (F1 %) in this study with Worldwide rivers.

River Country Cd Fraction (%) Fraction Method Reference

Ergen River Turkey 25% Acid soluble BCR modification [85]
Yamuna India (>70%) Exchangeable + Carbonate Tiesser et al., 1979 [86]

Xijing River China 44.80% Acid soluble BCR modification [87]
Gomti River India (17–28)% Exchangeable + Carbonate Tiesser et al., 1979 [88]
Odra River Germany/poland (23–39)% Exchangeable + Carbonate Tiesser et al., 1979 [89]
Odiel River Spain (15–70)% Acid soluble BCR modification [90]

Present study Egypt 27.11% Acid soluble BCR

3.4. Multivariate Statistical Analysis (Cluster Analysis)

Cd metal contamination in ecosystems needs to be identified and evaluated while
considering both natural and artificial influences. Cd concentrations in sediments and
water with a RAC were used as variables in a cluster analysis throughout the Nile River’s
mainstream. The cluster analysis (Figure 8) shows three sources of Cd at all stations:
Beni Suef is the only sampling site in Cluster 1 that is located near agricultural discharge
and industrial activities (water treatment plant, brick factory). Cluster 2 comprises two
sampling sites (Helwan and Aswan) close to manufacturing activities (iron and steel mills
and a sugar refinery). Cluster 3 consists of 20 sampling sites (Cairo, Sohag, Bni Mazar,
Girga, Esna, Samalut, Giza, Naser, Sidaf, Luxor, Asyut, AbuTij, Biba, KomUmbu, Qena,
Minya, Nagaa Hammadi, Tahta, Armant, and Edfu) near bridges, dams, water treatment
plants, sugar production plants [51], and agricultural expulsion facilities are the most
common locations.

3.5. Analysis of Cadmium Concentrations in Water

Agricultural, industrial, household, and touristic activities along the Nile’s banks
affect the river’s water quality upstream to downstream [91]. Water pollution is caused
by population increase, urbanization, and industrialization, where waste from industrial,
agricultural, and residential activities is discharged into rivers worldwide [92,93]. Aquatic
and terrestrial organisms bioaccumulate cadmium, but it is toxic to aquatic organisms at
low concentrations [94]. In this paper, the median Cd concentration in water is 4 µg/L
(0.004 mg/L) (Table 5). The high cadmium concentration in water was recorded at Cairo,
Giza, Helwan, Beni Suef, Sohag, Qena, and Samalut with values (0.009, 0.01, 0.008, 0.007,
0.007, 0.006, and 0.006 mg/L, respectively) more than standard limits [95]. Unpolluted
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natural waters are usually below1 µg/L [96]. Furthermore, the Cd average in water
according to EPA is 3 µg/L [97], WHO is 5 µg/L [95], and CCME is 0.18 µg/L [98]. In
comparison, the current study Cd average is more than recorded from Aswan to Beni
Suef (1 µg/L) and (3.5 µg/L) [99] and [25], respectively, while it less than from Aswan to
Delta was (5.9 µg/L) [100] because of significant pollution at Delta. The solubility toxicity
of chemicals and heavy metals can be affected by the PH of the Water; the solubility of
heavy metals occurs at low PH [101]. Most marine animals favor a pH range of 6.5–9.0.
As hydrogen ions rise, metal cations such as lead, aluminum, cadmium, and copper
are released into the water rather than absorbed by the sediment, causing heavy metal
concentrations to rise and their toxicity to increase. So, cadmium is negatively correlated
with PH (−0.35) (Table 3). Recorded PH ranged from 7.9–9 with a median (8.4); however,
PH according to EPA is 6.5–8.5 [97] and WHO is 6.5–8 [95], and Egyptian regulation is
7–8.5. PH 9 is the highest recorded value at Qena. According to Niyogi et al., low PH
may protect fish against acute Cd toxicity. Oxidation-reduction potential (ORP) determines
a substance’s capability to either oxidize or reduce another substance and denotes how
sanitized or contaminated water is based on its oxidation and reduction properties [102].
ORP is negative when your sample is at quite a low redox level but positive at the oxidic
level. The ORP average (345.87 mV) is lower than the WHO limit value (700 mV) [95]. The
average temperature was (28.42 ◦C), and the average TDS was 158.39 mg kg−1, lower than
the Egyptian regulatory and EPA [97] (500 mg kg−1) limits.
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Table 5. Cadmium concentration in water (mg L−1) and water parameters of Nile River sediments
(PH, TDS, ORP, Temp.).

Sample Location Cd (mg/L) PH TDS ORP Temp (◦C)

Giza 0.01 8 188 313 31.3
Cairo 0.009 7.96 186 352 30

Helwan 0.008 7.9 181 372 29.8
Naser 0.005 8.28 162 362 28.6

Beni Suef 0.007 8.61 157 372 28.7
Biba 0.002 8.44 149 352 28.5

Minya 0.003 8.54 151 435 28
Bni Mazar 0.005 8.66 158 441 28
Samalut 0.006 8.7 162 356 27.8
Asyut 0.005 8.43 153 331 27

Abu Tij 0.003 8.4 156 322 27.7
Sidaf 0.002 8.5 154 328 27.3
Girga 0.002 8.6 154 330 27.1
Sohag 0.007 8.43 150 391 27.5
Tahta 0.002 8.41 166 342 27.4

Nagaa Hammadi 0.001 8.65 158 352 28
Qena 0.006 9 152 335 29
Luxor 0.005 8.68 148 239 30

Armant 0.004 8.36 155 300 29.5◦

Esna 0.002 8.37 157 340 26.5◦

Edfu 0.003 8.43 151 308 26.1◦

KomUmbu 0.001 8.3 146 290 26◦

Aswan 0.004 8.1 149 392 26◦

Average 0.004 8.42 158.39 345.87 8.42
Maximum 0.01 9 188 441 9
Minimum 0.001 7.90 146 239 7.9

ORP: Oxidation Reduction Potential (mV), TDS: Total dissolved solids (mg kg−1), Temp.: Temperature (◦C).

4. Discussion

Earthworms, poultry, horses, cattle, and animals have been found to have high
amounts of cadmium bioaccumulation [94]. Cd is a non-essential metal progressively
absorbed by humans and more mobile than most heavy metals in aquatic environments.
Algae and suspension feeders absorb dissolved cadmium in the aquatic environment; fish
are more likely to absorb cadmium in freshwater [94]. Cadmium concentration differences
along the river with average from Aswan to Cairo is (0.16 mg kg−1) and is recorded high
concentration and pollution degree near the water treatment plant and brick factory of
BeniSuef, the iron and steel factory of Helwan, the oil and detergent factory of Sohag, and
discharge of cement factory in Samalut (Table 1). A negative correlation with Zr has shown
its anthropogenic source (Table 3). Due to the increase in population growth, urbanization,
and industrialization along the river, the Cd was higher than in previous studies conducted
on Egypt’s Nile River. Corresponding to the risk assessment code [103], Cd is high risk at
Luxor, Beni Suef, Nasser, BniMazar, and Aswan.

Moreover, water cadmium concentrations are higher than permissible limits in Cairo,
Giza, Helwan, Beni Suef, Sohag, Qena, and Samalut (Table 5). Cluster analysis reveals three
pollution sources: agriculture discharge, industrial activities, and (domestic and sewage
sludge). The Cd concentration is significant at Beni Suef, Aswan, Helwan, Samalut, and
Sohag in sediments and water with high bioavailability and mobility (Figure 9) related
to the vicinity of anthropogenic sources (Figure 5). At the same time, the others with low
content have high bioavailability, so the concentration is not the risk indicator of any metal.
Some stations along the Nile River have recorded high content of Cl− and SO4

2− [101],
so the probability of cadmium soluble compounds such as chloride and sulfate may be
formed. The toxicity increases, so the cadmium pollution in water and sediments in these
stations may affect fish and then humans. Contaminated food is the most toxic source of
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cadmium to humans. It is greatly enhanced in persons who regularly eat shellfish and fish
organ meats (liver and kidney) [94]. We recommended more research on aquatic organisms
and humans, especially in these locations. Environmental lawyers and legislators must
develop regulations to ensure water is managed correctly for the identified uses.

Toxics 2022, 10, x FOR PEER REVIEW 17 of 22 
 

 

discharge of cement factory in Samalut (Table 1). A negative correlation with Zr has 
shown its anthropogenic source (Table 3). Due to the increase in population growth, ur-
banization, and industrialization along the river, the Cd was higher than in previous stud-
ies conducted on Egypt’s Nile River. Corresponding to the risk assessment code [103], Cd 
is high risk at Luxor, Beni Suef, Nasser, BniMazar, and Aswan. 

Moreover, water cadmium concentrations are higher than permissible limits in Cairo, 
Giza, Helwan, Beni Suef, Sohag, Qena, and Samalut (Table 5). Cluster analysis reveals 
three pollution sources: agriculture discharge, industrial activities, and (domestic and 
sewage sludge). The Cd concentration is significant at Beni Suef, Aswan, Helwan, Sama-
lut, and Sohag in sediments and water with high bioavailability and mobility (Figure 9) 
related to the vicinity of anthropogenic sources (Figure 5). At the same time, the others 
with low content have high bioavailability, so the concentration is not the risk indicator 
of any metal. Some stations along the Nile River have recorded high content of Cl− and 
SO42− [101], so the probability of cadmium soluble compounds such as chloride and sulfate 
may be formed. The toxicity increases, so the cadmium pollution in water and sediments 
in these stations may affect fish and then humans. Contaminated food is the most toxic 
source of cadmium to humans. It is greatly enhanced in persons who regularly eat shell-
fish and fish organ meats (liver and kidney) [94]. We recommended more research on 
aquatic organisms and humans, especially in these locations. Environmental lawyers and 
legislators must develop regulations to ensure water is managed correctly for the identi-
fied uses. 

 
Figure 9. Relation between Concentration of Cd in sediments (mg kg−1) mg kg−1 and Water mg L−1 
with risk assessment code (RAC) (mg kg−1) of samples along Nile River- mainstream. 

5. Conclusions 
Heavy metal pollution endangers the Nile River since it serves as an irrigation and 

freshwater source for the cities and farms that line its banks. Cd pollutes the environment 
and is toxic at low concentrations. The cadmium average in sediments is (0.16 mg kg−1). 
The most significant concentrations were recorded at Benisuef (0.38 mg kg−1), Aswan (0.27 

Figure 9. Relation between Concentration of Cd in sediments (mg kg−1) mg kg−1 and Water mg L−1

with risk assessment code (RAC) (mg kg−1) of samples along Nile River- mainstream.

5. Conclusions

Heavy metal pollution endangers the Nile River since it serves as an irrigation and
freshwater source for the cities and farms that line its banks. Cd pollutes the environment
and is toxic at low concentrations. The cadmium average in sediments is (0.16 mg kg−1).
The most significant concentrations were recorded at Benisuef (0.38 mg kg−1), Aswan
(0.27 mg kg−1), Helwan (0.23 mg kg−1), Samalut (0.2 mg kg−1), and Sohag (0.19 mg kg−1).
The pollution level of cadmium in sediments is moderate to high at all sample stations
along the river. The concentration and distribution of Cd in rivers are affected by the
vicinity of anthropogenic sources such as household waste, sewage sludge, agricultural
runoff, and industrial activity. The Cd fractions follow this descending order: residual
(57.91%), acid-soluble (27.11%), reducible (11.84%), and oxidizable (3.14%). The high
cadmium concentration in water was recorded at Cairo, Giza, Helwan, Beni Suef, Sohag,
Qena, and Samalut with values (0.009, 0.01, 0.008, 0.007, 0.007, 0.006, and 0.006 mg L−1,
respectively) more than standard limits. Beni Suef, Aswan, Helwan, Samalut, and Sohag all
have significant bioavailability and mobility of Cd in sediment and high content in water.
Accordingly, the river’s contamination must be thoroughly investigated, particularly in
the vicinity of industrial points of origin in the areas stated. The primary effects of Cd on
the environment and human health can be summarized as ecosystem contamination and
exposure-related health issues. Egypt’s high Cd concentration could become a problem
if it is not carefully managed. We argue for continuing studies on aquatic organisms and
humans in these places.
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