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Abstract Aging has become one of the fastest-growing
research topics in biology. However, exactly how the
aging process occurs remains unknown. Epigenetics
plays a significant role, and several epigenetic interven-
tions canmodulate lifespan. This reviewwill explore the
interplay between epigenetics and aging, and how epi-
genetic reprogramming can be harnessed for age rever-
sal. In vivo partial reprogramming holds great promise
as a possible therapy, but several limitations remain.
Rejuvenation by reprogramming is a young but rapidly
expanding subfield in the biology of aging.
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Introduction

For decades, aging has been the single best predictor of
human mortality in developed countries [1]. It is the
major risk factor for several of the top causes of death,
such as cardiovascular disease and cancer [2–4]. Organ-
ismal aging also greatly enhances the susceptibility to

chronic diseases, such as diabetes, neurodegeneration,
and metabolic syndromes [5]. As a complex, multi-
factorial biological process, it has been typically defined
by the presence of specific hallmarks [6]. Those include
loss of proteostasis, mitochondrial dysfunction, geno-
mic instability, and epigenetic alterations. Nevertheless,
multiple theories have been proposed to explain the
mechanism behind the convoluted aging process, many
relying on only one factor. The “cross-linkage theory of
aging” explains the loss of proteostasis as being due to
increased hazardous crosslinking between cellular pro-
teins [7]. The “free radical theory of aging” posited that
elevated reactive oxygen species (ROS) and the resul-
tant accumulation of cellular damage are responsible for
the aging phenotype [8, 9]. Somatic DNA damage and
epigenetic modifications have also been at the core of
other aging theories. The “information theory of aging,”
proposed by David Sinclair in 2019, suggests that loss
of epigenetic information through time, like a scratched
vinyl disc, is the basis for age-associated cellular dete-
rioration [10]. Even though no theory has been proved
beyond doubt, mounting evidence indicates that specific
modifications in epigenetic marks are responsible for
cellular and organismal aging.

According to the NIH Epigenomics Roadmap Project,
“epigenetics refers to both heritable changes in gene
activity and expression (in the progeny of cells or indi-
viduals) and also stable, long-term alterations in the
transcriptional potential of a cell that are not necessarily
heritable” [11]. Changes in histone variants, histone post-
translational modifications (PTMs), DNA methylation
(DNAm), among others affect gene expression and
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packing of chromatin, the DNA-protein complex, and
fall under the field of epigenetics. These alterations are
mediated by several enzymes that act as readers and
modifiers, particularly histone methyltransferases
(HMTs), demethylases (HDMTs), acetyltransferases
(HATs), and deacetylases (HDACs). The cellular epige-
netic state is a dynamic interplay of all these components
and changes over time and with environmental stimuli.

Isogenic studies across species demonstrate the con-
tributory role of epigenetics in aging. In budding yeast
(Saccharomyces cerevisiae), early stochastic epigenetic
changes markedly determine single-cell replicative
lifespan [12]. Worker and queen bees possess the same
genetic information, yet display strikingly different phe-
notypes and lifespan [13, 14]. In mice, a precocious
aging phenotype can be induced by chemicals that dis-
rupt epigenetic marks during development [15]. In
humans, a similar divergence is observed with twin
studies. Herskind et al. estimated that only about 25%
of the variance in longevity could be attributed to the
identical genetic makeup of monozygotic twins [16].
Epigenetic marks early in life are virtually identical,
whereas they differ later on through so-called epigenetic
drift [17]. Divergent epigenetic signatures can thus ex-
plain phenotypic differences between isogenic twins
[18]. This epigenetic drift can be observed early in yeast.
After an initial stochastic period, one of two epigenetic
aging routes is committed to under the same genetic
background and environment, resulting in a 50% repli-
cative lifespan difference [12]. Overall, epigenetic var-
iations are ubiquitous regulators of the aging process in
various of organisms across several kingdoms.

The irreversibility of aging was assumed as recently
as the end of the twentieth century [19], partly because
DNA double-strand breaks and mutations, thought to be
one of the causes of aging, accumulate with time
[20–24]. However, genetic damage is not always corre-
lated with aging [25]. Around that time, epigenetic
modifiers such as yeast Sir2 were known to be impli-
cated in aging, and their overexpression extended
lifespan [26]. Most interventions, such as calorie restric-
tion, slowed aging. With the discovery that aged, differ-
entiated cells can be reversed to phenotypically young,
embryonic-like stem cells [27], developmental reversal
was shown to be attainable. This procedure is referred to
as “epigenetic reprogramming.” Recent studies have
begun to explore its use in inducing age reversal by
modifying the epigenome [28, 29]. Nowadays, it is

known that aging can be slowed, paused [30, 31], and
even reversed.

Recurrent imagery often used in developmental biol-
ogy is the “epigenetic landscape” (Fig. 1 [32]), which
facilitates the understanding of the aging process. After
coining the term epigenetics as the “science concerned
with the causal analysis of development,” Waddington
created the landscape analogy in the middle of the
twentieth century [32, 33]. It originally served to repre-
sent the initial stochasticity and later determinism of cell
differentiation in organismal development with a marble
rolling down a landscape with several valleys. The
marble faces several branching points on the landscape,
i.e., the choices for cell fate determination. The original
epigenetic landscape is useful to visualize simple devel-
opmental pathways but limited since the topography is
static. Hence, throughout this article, a modified land-
scape based on the malleable free-energy diagram will
be used to explore the epigenetic modifications associ-
ated with aging and epigenetic reprogramming (Fig. 2).
There are several local maxima and minima, with the
height representing epigenetic instability and the loca-
tion, a single epigenetic state. Going down the landscape
can be imagined as losing epigenetic plasticity potential.

Here, this article will briefly review the findings of
age-related epigenetic changes from recent studies (for
more information, see Kane et al. [34]). Then, epigenetic
modifications driven by reprogramming will be
discussed, alongside the potential to revert aging and
its limitations. Finally, reprogramming will be explored
alongside other well-established life-extension
interventions.

Fig. 1 Drawing of the original epigenetic landscape proposed by
Waddignton. Figure from [32]
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Sliding down the epigenetic landscape: age-related
epigenetic modifications

During mammalian development, the zygote is the first
step in a series of preprogrammed events that result in a
fully fledged adult. This single cell lies at the epigenetic
landscape’s central and highest peak (Fig. 2). As time
progresses, the zygote-marble descends the mountain
through a succession of ever deeper valleys, ensuring
cell fate stability. As the marble continues along its
trajectory, several epigenetic modifications occur as it
distances the center. Those include chromatin remodel-
ing, differential histone PTMs, accumulation of histone
variants, and regional hyper and hypo DNAm [3, 35].

Reduced global heterochromatin

A gradual, net loss of heterochromatin with advancing
age, observed across organisms from yeast to mammals,
has been the focus of the “heterochromatin loss model
of aging” [36]. It proposes that a reduction in densely
packed DNA is the culprit for age-related phenotypes.
The chromatin’s elemental structural unit is the nucleo-
some, an octamer composed of histone proteins (canon-
ically H2A, H2B, H3, and H4) with DNA wrapped
around [37, 38]. It is the basis of a significant portion
of epigenetic regulation.

Supranucleosomal chromatin organization plays a
key role in gene expression [39]. Transcription is affect-
ed by distinct DNA accessibility due to specific local
crowding conditions in the DNA microenvironment.
Loss of heterochromatin has been associated with global
transcription increase [40], but packing-density also
controls the genomic information space, being positive-
ly correlated with intercellular transcriptional

heterogeneity [39, 41]. Elevated chromatin scaling is
characteristic of cancer cells [41]. These modelling
studies highlight the importance of maintaining appro-
priate genome topology since several diseases, includ-
ing aging, are connected to reduced heterochromatin
[42, 43]. Increased differential transcription steadily
appears in eukaryotes with aging, from yeast to humans
[36, 44–47]. In fact, the anti-inflammatory drug
Celecoxib, also an adjuvant that modifies chromatin
scaling [39], has been shown to extend lifespan in C.
elegans [48]. The study presents evidence that the ex-
tension was achieved through PDK-1 activity modula-
tion, but another explanation is a differential expression
of the protein based on macrogenomic chromatin
regulation.

Several molecular events are responsible for less
dense genome topology. Across the genome, H1 linker
histones compact chromatin by binding to short DNA
segments in between nucleosomes, effectively folding
the DNA-protein complex [49]. Reversible phosphory-
lation of serine and threonine residues at the C-terminal
tail of H1 histones are responsible for regulating H1
packing behavior [50]. Individuals with a deletion
encompassing these residues in one of the multiple
copies of the gene display phenotypic attributes of pre-
mature aging [50]. Overall, their fibroblasts show more
nucleoid relaxation, less condensed chromosomes, and
higher nucleolar instability than controls [50]. Loss of
silencing of nucleolar ribosomal DNA (rDNA) is also
known to promote aging in budding yeast [26, 51, 52]. It
is partly caused by core histone protein reduction since
roughly half is lost in yeast replicative aging [53, 54]. A
similar decline has been detected in the worm
Caenorhabditis elegans [55], fruit fly Drosophila
melanogaster [46], human fibroblasts [56], and senes-
cent human cells [57]. Overexpression of histone pro-
teins increases chromatin compaction and organismal
lifespan across species [54, 58]. Paradoxically, histone
transcripts increase with aging due to heterochromatin
reduction, but functional protein synthesis is further
reduced, leading to a net loss of nucleosome occupancy
[40]. The consequences range from DNA damage and
chromosomal translocations to integration of hazardous
nucleic acids into the nuclear genome, such as mito-
chondrial DNA (mtDNA) and transposons [40]. Never-
theless, more open chromatin is not always detrimental.
A slight reduction of 15% in histones H2A and H2B
expression decreases chromatin packing but extends
replicative lifespan in yeast [59]. A cellular response

neurons

myocytes

osteoclasts

erythrocytes

zygote

Fig. 2 Schematic of the malleable epigenetic landscape, with
height denoting epigenetic instability and each location, a specific
epigenetic state
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mediates such alterations through TOR, an important
nutrient-sensing pathway that regulates aging. Even
though chromatin density is an important epigenetic
factor, numerous other epigenetic factors are corre-
spondingly influential during organismal aging.

Histone post-translational modifications

A wide range of chemical alterations occurs on histones,
most notably acetylation and methylation [60]. Over
1000 different modifications can occur in the histone
tails and histone globular domains [61]. This network of
histone changes is highly complex and mediates the
precise regulation of gene expression. Some factors that
affect the distinct behavior of the modifications include
the histone residue’s location, the histone’s gene posi-
tion, and the composite contribution of multiple
alterations.

In general, histone acetylation has been thought to
facilitate gene expression and be more prevalent during
aging because of elevated global transcription. Levels of
histone H4 lysine 16 acetylation (H4K16ac) increase
with aging in yeast and interventions that lower its
abundance increase lifespan [53]. For instance, deletion
of a component of the H4 HAT NuA4 promotes repli-
cative longevity in yeast [62]. Deleting SAS2, another
HAT that acetylates H4K16, extends yeast replicative
lifespan [53]. Sir2, an HDAC known to promote lon-
gevity, deacetylates H4K16Ac and increases yeast
lifespan [53]. As another example, H3K27ac is elevated
in aged human skeletal muscle [63]. Targeting the trans-
lation of HAT p300 with short hairpin RNA extends
replicative lifespan in human fibroblasts; overexpres-
sion of p300 shortens it [64]. However, hypoacetylation
is not always beneficial. Loss of function of the H3
deacetylase complex Rpd3 delays aging in yeast [65]
and in the fruit fly [66]. Moreover, global loss of
H3K27ac is observed during aging in human and mouse
brains, and in human hematopoietic cells [67, 68]. Age-
upregulated genes lose H3K27ac at both promoters and
gene bodies, whereas in age-downregulated genes only
in the promoter, suggesting a suppressive effect of gene-
body H3K27ac [67] . Sodium butyra te and
suberanilohydroxamic acid, HDAC inhibitors that in-
crease global H3K27ac, downregulated age-upregulated
genes and upregulated age-downregulated genes, restor-
ing homeostasis in the mouse brain. For some modifi-
cations, a precise level of histone acetylation is neces-
sary for optimal longevity. For instance, H3K56Ac

levels reduce with aging in yeast but increasing or
decreasing H3K56Ac by deleting HATs (Hst3, Hst4)
and HDACs (Rtt109) shortens lifespan and disrupts
genomic stability in yeast [53, 54, 69]. It is worth
highlighting how some of the age-related histone chang-
es are species- and cell-type-dependent.

Histone methylation can cause both gene activation
and silencing, with the former typically increasing and
the latter decreasing with age [44]. Reduction of global
H3K4 trimethylation (H3K4me3) marks, an indicator of
transcriptional activation, through knockdown of HMTs
prolongs lifespan, whereas knockdown of H3K4me3
HDMTs accelerates aging in C. elegans [70]. In old
flies, H3K4me3 levels are altered [46]. On the other
hand, silencing histone methylation marks, such as
H3K36me3, H3K27me3, and H3K9me3, generally
leads to age-related decline in organisms. H3K36me3
levels lower due to replicative aging in yeast [71] and
H3K27me3 is depleted with aging in C. elegans and
human cells [72]. An abrupt surge in the levels of
H3K27me3 demethylase UTX-1 is highly associated
with mortality in C. elegans [72]. Decreased
H3K9me3 is observed in old flies compared to young
flies [46], and a similar reduction occurs in mouse and
human bone marrow stromal cells [73]. However, in fly
heads specifically, the opposite is true [74]. In fact, a
progeroid mouse model displayed increased levels of
H3K9me3 and defective DNA repair within dense chro-
matin, and lowering H3K9me3 levels partly reversed
the precocious aging phenotype [75]. The above studies
highlight how different cell types display distinct age-
related epigenetic modifications. Similarly to Cheng
et al. [67], perhaps the location of the histone PTM
within a gene might determine activating or repressive
behavior that could explain the tissue variations. Further
studies are necessary to elucidate the role of histone
methylation marks in various positions across the
genome.

Several other poorly understood histone marks dis-
play altered levels with aging. Formylation is the second
most abundant histone lysine acylation in mice livers,
only behind acetylation [76]. It more than doubles with
aging [76]. Aliphatic acylations and advanced glycation
end products (AGEs) in general increase by approxi-
mately 50%. AGEs disrupt chromatin organization, but
the role of each modification in aging has not been well-
documented [77]. Permanent oxidative stress markers
skyrocket, particularly with the oxidation of methionine
sulfoxide to methionine sulfone increasing by 5–10 fold
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[76]. Citrullination, believed to be involved in DNA
repair, increases by approximately 50% [76]. Further
research is required to understand the composite role
of all these different histone modifications in gene reg-
ulation. Accumulated DNA damage might drive some
of these changes [78], but it is unknown how histone
PTM epigenetic information is lost.

Chromatin modifier changes

Highly sophisticated interactions among histone pro-
teins, nucleosome remodeling complexes (NRCs), his-
tone modifiers (methylases, acetylases, etc.), and tran-
scription factors alter during aging. Variants of the ca-
nonical histone proteins regulate chromatin dynamics,
from assisting packing to DNA repair [79, 80]. Histone
variant H3.3, initially thought to have no functional
significance, accumulates in mouse brains over time
[81, 82] and appears to drive cellular senescence [83].
MacroH2A, a variant associated with both transcription-
al activation [84] and repression [85], increases in mice,
primates, and human fibroblasts with aging [86]. Nucle-
osome remodeling complexes also play a role. Nucleo-
some remodeling deacetylase (NuRD) malfunctions in
aging [87]. Isw2 and Chd1, ATP-dependent NRCs, are
detrimental to yeast replicative lifespan [62]. RNA in-
terference of the NRC SWI/SNF abolishes longevity
extension in some cases in C. elegans [88]. Chromatin
modifiers, such as HATs, HDACs, HMTs, and HDMTs,
also modulate aging [53, 54, 62, 64–66, 72]. Another
component is a change in transcription factors, which
play key roles in DNA accessibility and modification
[89, 90]. For example, loss of the transcription factor
Slug in mice causes an aged phenotype in vivo [91].

DNA methylation

Several dynamic modifications are present in the DNA of
most eukaryotes and are relevant to aging. Among them,
5’-cytosine methylation (5mC) is the most frequent, typi-
cally occurring at locations of a cytosine followed by a
guanine (CpG sites) [92]. Other unfamiliar cytosine addi-
tions also exist, such as hydroxymethylation (hmC),
formylation (fC), carboxylation (caC), and 4’ methylation
[93, 94]. Even 6’-adenine methylation has been observed
[92, 94, 95]. 5mC has been assumed to dampen gene
expression through steric hindrance of transcription fac-
tors, but it might be involved in nuanced raised expression
depending on the position in the genome [96–101]. For the

most part, 5mC methylation dwindles during mammalian
aging [102–108], although some studies using modern
techniques do not corroborate such global findings [109,
110]. Some specific, apparently important CpG sites are,
in contrast, hypermethylated [111–114]. During develop-
ment and aging, there is a methylation peak, since embry-
onic stem cells and old cells are hypomethylated. Accord-
ingly, a surge in CpG 5mChas been shown in infants from
6 to 52 weeks of age [100]. Most importantly, age-related
5mC hyper- and hypomethylation is localized at particular
genomic loci [111, 115, 116].

This differential hyper- and hypomethylation across
the genome can be used to accurately predict age and
mortality [101, 111, 117–119]. Machine learning
methods allied with CpG epigenetic data were
harnessed to create the so-called epigenetic clocks (see
Horvath et al [120]). 353 CpG sites in Horvath’s clock
and 71 in Hannum’s clock precisely calculate a person’s
age with a median error of less than four years [101,
111]. Horvath’s clock is so accurate that embryonic
stem cells, which are only present before birth, possess
slightly negative age [111, 121]. Even the epigenetic
drift can be quantified given the higher variance of
DNAm age later in life [101]. DNA methylation is
intrinsically related to aging, and its genome pattern is
universal across eukaryotes [94]. Even then, age-related
differential DNA methylation is not solely responsible
for the aging phenotype. Some species such as the fruit
fly virtually lack 5mC [122].

Non-coding RNAs

Non-coding RNAs (ncRNAs), long believed to arise
from transcriptional errors, are key players in epigenetic
regulation [123]. They finely modulate messenger RNA
(mRNA) transcription, splicing, and degradation [124]
and assist in the maintenance of proper genome topolo-
gy [125]. They are ubiquitous in the human tran-
scriptome. More than half of the human genome is
transcribed [126, 127], giving rise to a multitude of
transcripts. ncRNAs are both positively and negatively
correlated with aging. Micro RNAs (miRNAs), a class
of small ncRNAs, are generally downregulated in old
compared to young eukaryotes [128–130], but some
delay or accelerate the aging phenotype across species
[52, 131–134]. Long ncRNAs can also be detrimental or
beneficial for the aging phenotype. High Gas5 expres-
sion, a type of long ncRNA, is related to impaired
learning in mice [135] . At the same t ime,
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overexpression of Sarrah, another ncRNA, improves
cardiac function in mice [136]. Overall, increased tran-
scription of most long ncRNAs is damaging because of
elevated R-loop formation, a three-stranded nucleic acid
structure [69, 137]. It is more prone to DNA damage and
leads to cellular senescence. Some long ncRNAs can
even form a DNA-DNA-RNA triple helix [136]. The
role of ncRNAs in aging is becoming clearer with recent
studies, but their role in epigenetic modulation is cer-
tainly crucial for the aging process.

Transposition

The “transposon theory of aging” posits that transpos-
able elements (TEs), dubbed “jumping genes” for their
excision and reintegration potentials, cause cellular de-
generation and aging [138]. They are usually silenced
during youth, but as heterochromatin is lost, they be-
come activated. Chromatin packing deregulation direct-
ly elicits expression of transposable elements with age in
fruit flies [58] and mice [139]. The transcript levels
increase as the cellular mechanisms that suppress inte-
gration become insufficient to prevent it. Overexpres-
sion of genes that stabilize heterochromatin and
lamivudine (a drug that targets the TE machinery com-
ponent reverse transcriptase) restrains TEs and extends
lifespan [58]. As expected, specific TEs are both si-
lenced and expressed differentially [140]. Almost all
have biased de novo insertions in the genome, but long
interspaced repeat element 1 (LINE1), the most abun-
dant human TE [141], is not generally affected by the
presence of heterochromatin [142]. LINE1 activation
contributes to age-related inflammation and cellular se-
nescence [139]. Stavudine, a LINE1 reverse-
transcriptase inhibitor, rescues the young inflammation
profile in mice [143] and lamivudine partly inhibits the
cellular senescence phenotype [139]. The stavudine-
treated group had approximately a 30% lower DNAm
age [143]. These results suggest that transposition is not
merely correlated with age but one of the causes of
aging.

Climbing back up the epigenetic landscape:
reversing epigenetic modifications
by reprogramming

The first notable experiment that showed that a differ-
entiated somatic cell still contains all the necessary

genetic information to produce an entirely new organ-
ismwas somatic cell nuclear transfer (SCNT) [144]. The
process of completely modifying a cell phenotype was
named reprogramming. More recently, in 2006, it was
shown that exogenous expression of the four factors
Oct3/4, Sox2, Klf4, and c-Myc (OSKM) is sufficient
to transform fibroblasts into induced pluripotent stem
cells (iPSCs) [27]. Forced expression of the
pluripotency factors modifies the landscape by effec-
tively flipping the topography (Fig. 3). The central peak
where the marble initially dwelled becomes an abyss. It
pulls the marble towards the center again to reduce
epigenetic instability, representing the loss of somatic
identity and gain of pluripotency.

In order for reprogramming to work correctly, effi-
cient activation of the pluripotency network is the only
requirement. Although the original OSKM combination
is still used today, the complete cocktail of factors is not
essential. Earlier, removing any of the factors did not
elicit reprogramming [27]. With advances in the culture
medium, three out of the four was enough, albeit with a
lower efficiency [145]. SK alone could reprogram high-
ly proliferative differentiated cells [145].With the use of
the clustered regularly interspaced short palindromic
repeats (CRISPR) system, sole Oct4 or Sox2 overex-
pression lead to activation of the pluripotency circuitry
[146]. There is an initial stochastic phase followed by a
hierarchical, deterministic activation of certain genes,
with Sox2 appearing to be a central node [147]. Any
combination of factors that induces the network and
produces the correct levels of pluripotency proteins
can successfully reprogram [27, 148, 149].

As will be explored below, several epigenetic marks
are effectively reversed during reprogramming. This
remarkable process is being studied as a potential ther-
apy against aging. Nevertheless, it has several limita-
tions. Low efficiency, formation of teratomas (an ex-
tremely aggressive form of cancer), and persistence of
certain epigenetic marks are some of the barriers to be
overcome.

Epigenetic changes during reprogramming

Given the high degree of similarity between embryonic
stem cells (ESCs) and iPSCs [27, 150–152], it is expect-
ed that some changes that occur during reprogramming
might be a simple reversal of age-related epigenetic
modifications. A few alterations, such as global hypo-
methylation and heterochromatin loss, get exacerbated
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during reprogramming, whereas others, such as telo-
mere attrition, are rewound.

A recent longitudinal analysis of the transcriptome of
the reprogramming intermediates of mouse embryonic
fibroblasts (MEFs) identified key steps in the process
[153]. Principal-component analysis highlighted five
stages. 5mC DNA methylation declined markedly in
the first step and then steadily dropped by half until
the final stage when, intriguingly, it increased, but not
enough to reach pre-reprogramming levels. These re-
sults suggest a first wave of demethylation to erase the
differentiated cell program that primarily targets pro-
moters, enhancers, and upstream regulatory elements.
It is accompanied by a second, more gradual demethyl-
ation wave, which mainly affects gene bodies. Finally, a
rapid surge in methylation, which may surpass
progenitor-level global methylation [154], most likely
determines the pluripotency program in the last step.
The most important demethylation targets are
pluripotency genes and their respective regulatory re-
gions [27, 155]. Some types of transposons are
demethylated, such as LINEs, others remainmethylated,
such as intracisternal A particle elements, and active
retroviruses are silenced [145, 153, 156]. All these
methylation changes contribute to the slightly negative
age of iPSCs in Horvath’s epigenetic clock [111, 121].

When it comes to 5hmC, there is a global increase
when comparing iPSCs to human fibroblasts [157].
TET1, the main enzyme responsible for regulating
hydroxymethylation, is activated early during
reprogramming [153] and is present in higher levels in
iPSCs [157]. It is required for proper erasure of the
previous cellular program during reprogramming [153].
Roughly 85% of the differentially hydroxymethylated
regions are hyper hydroxymethylated, mostly concentrat-
ed near telomeres [157]. Gene expression is inversely

correlated to 5hmC in transcriptional start sites [157]. A
consequence is both hypomethylation and hypo
hydroxymethylation in the regulatory elements of
pluripotency factors [157]. Nevertheless, 5mhC is not a
mere consequence of the oxidation of previously 5mC
DNA, as increased hydroxymethylation is found in re-
gions of both hyper and hypomethylation [157]. These
observations suggest that 5hmC plays a role in regulating
the pluripotency circuitry.

Another age-related epigenetic change that becomes
exacerbated in reprogramming is the loss of heterochro-
matin. In OSKM reprogramming, OSK are the pioneer
factors to induce global opening of chromatin [147].
Such chromatin unpacking has been observed even with
in vivo reprogramming in mice, as DAPI, a DNA stain-
ing compound, elicits a weaker, more delocalized signal
[158]. Heterochromatin protein 1β (HP1β), involved in
gene expression regulation and DNA repair, is much
more mobile in iPSCs than human fibroblasts [159].
HP1β mobility can even be used as a proxy to track
reprogramming progress [159]. Recent advances in 5C
and high-throughput sequencing have allowed a finer
look at genome architecture modifications [151]. Topo-
logically associating domains (TADs) show striking
differences before and after reprogramming [151, 160].
Sliding back down to the center of the epigenetic land-
scape involves breaking and reforming cell-type-
specific patterns of 3D interactions, albeit not all of them
[151]. The more iPSCs are passaged, the more they
acquire ESCs-specific higher-order chromatin connec-
tivity [160]. However, a finer resolution in TAD map-
ping shows that iPSCs subdomain connectivity is not
completely ESC-like [151], even though bigger do-
mains become virtually indistinguishable.

There are also several changes observed with histone
proteins and histone PTMs. In the Oct4 and Nanog

before reprogramming during reprogramming

proper culture medium

pluripotency factors

Fig. 3 Transition of the epigenetic landscape during reprogramming. The peaks become grooves, pulling the marble towards the center
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promoters, H3K9 methylation remained constant, but H3
acetylation was much higher, indicating activation of
pluripotency factors [27]. H3K9me3 and H4K20me3,
silencing marks, decline globally but particularly at
pericentric repeats and telomeres [156, 158]. H3K4me3
and H3K27me3, activating and repressive marks, respec-
tively, change in two waves [155]. Initially, H3K4me3
relocates to other regions and H3K27me3 increases glob-
ally, particularly in differentiated cell-type-specific genes.
Later, H3K4me3 levels surge and H3K27me3 moves to
other areas [155]. These changes are concomitant to the
first 5mC demethylation wave and the second 5mCmeth-
ylation increase, indicating the activation and suppression
of different genes across time in reprogramming [153]. In
addition to histone PTMs, all the canonical histones are
upregulated [161]. Even histone variants are likely to be
repositioned through nucleosome remodeling, as H3.3
shifts downstream from promoters [162, 163].

Reprogramming does not always completely erase the
previous cellular program, with some epigenetic rem-
nants maintained after the process. The first induction
of iPSCs already demonstrated that epigenetic marks,
such as 5mC DNA methylation and H3K9me3, are not
fully reversed on the promoters of pluripotency genes to
levels seen in ESCs [27]. Moreover, genome-wide
hydroxymethylation analysis of iPSCs derived from hu-
man fibroblasts highlights the presence of 20 large-scale
regions with enduring 5hmC [157]. Tissue-specific re-
sidual 5mC methylation remains in iPSCs and these
methylation foci might interfere with differentiation into
some cell types [154, 164]. Moreover, some age-related
methylation marks remain in iPSCs derived from aged
donors. Based on Horvath’s epigenetic clock, there is a
correlation, although weak, of the progenitor cells’ age
and the epigenetic age of iPSCs [121]. Reprogramming
of old cells result in a 5% global methylation increase
[121]. These studies suggest iPSCs are primed to return
to their original state more easily, as the trail traced on the
epigenetic landscape is always a two-way pathway. Nev-
ertheless, this epigenetic memory in reprogramming is
generally assumed to be insignificant [165].

Overall, reprogramming takes a different route from a
simple sequential reversal of age-related epigenetic
changes. For instance, DNA methylation and global het-
erochromatin, which peak during youth, do not pass
through the same peak. Another detour is evidenced by
fibroblasts reprogrammed with OSKM taking a longer
route if Oct4 is present, potentially reacquiring fibroblast
features [145]. Oct4, in this case, leads to a loss of

imprinting, misregulation of polycomb targets, and epi-
genetic anomalies, meandering through valleys on the
epigenetic landscape. Different pathways to the center of
the landscape can be taken with distinct epigenetic
changes, as local minima become local maxima and vice
versa. For more information on epigenetic changes dur-
ing aging, see review by Papp and Plath [166].

Partial epigenetic reprogramming

In order for epigenetic reprogramming to be harnessed
for the treatment of aging, dedifferentiation must not
occur. The marble cannot return to the center, as com-
plete in vivo reprogramming is a dangerous process that
might lead to severe health problems or death. Hence,
partial reprogramming, i.e., reversing age-related epige-
netic changes without pluripotency acquisition, is the
only feasible use of this technique. It has already been
shown that reprogramming cells to increase “stemness”
without reaching pluripotency drastically reduces the
aged phenotype [167]. There is a steady, dramatic de-
crease in DNAm age during reprogramming [168]. The
literature on this topic is current but scant and is sum-
marized in Table 1.

Sarkar et al. published an analysis of transient ex-
pression of reprogramming factors in aged human fibro-
blasts and endothelial cells [29]. They transfected
OSKM plus Lin28 and Nanog (OSKMLN) mRNAs
for four days and performed several assays two days
later. Transcriptome analysis showed a clear similarity
between treated and young cells without activation of
the pluripotency network. Similar or higher levels of
heterochromatic H3K9me3 were found, which is in-
triguing given that full reprogramming depletes that
histone PTM [156, 158]. This same epigenetic change
was seen in partial reprogramming in mice fibroblasts
[28]. Protein levels of Sirt1, an enzyme that promotes
longevity [169], and HP1γ, an isoform of HP1β, in-
creased. β-galactosidase, a hallmark of senescence
[170], and proinflammatory senescence-associated se-
cretory phenotype decreased, as seen in [28] as well.
Strikingly, even Horvath’s epigenetic clock calculated
an age reduction on average of 3.4 years. These youthful
restorations mostly endured for the next 4 and 6 days
after the interruption, although more moderately. In
mice fibroblasts, the prior phenotype slowly restored
after 4 and 8 days of interruption [28].

Reik at al. recently conducted a similar experiment
using human fibroblasts from patients between 38 and
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53 years [171]. The researchers used lentiviral transduc-
tion to transport an OSKM cassette inducible by the
antibiotic doxycycline and started the reprogramming
process. After 10 to 17 days, doxycycline was removed
and the morphological changes observed upon
reprogramming were reversed. In the successfully par-
tially reprogrammed cells, a median drop of about 30
years in both the transcriptional clock and Horvath’s
DNAm clock was observed, a much sharper decrease
than observed by Sarkar et al. [29]. The youthful phe-
notype, characterized as a restoration in H3K9me3
levels and increase in collagen production, remained
for an unspecified amount of time. Notwithstanding
such encouraging results, the fibroblasts did momentar-
ily lose their morphology during the transient
reprogramming.

Sarkar and Reik’s reports indicate great promise in
partial reprogramming, but other studies reported more
cautious results. It is not surprising that transient
reprogramming results in transient rejuvenation.
OSKML reprogramming in senescent human fibroblasts
for 9 days—it takes 40 to reach pluripotency in this
case—did decrease β-galactosidase and increased
HP1β mobility [159]. However, at day 12, the previous
senescence phenotype returned [159]. Another study
analyzed reprogramming in human mesenchymal stro-
mal cells maintained in the same cell-specific medium
[172]. Compared to control cells, they entered replicative
senescence simultaneously and showed the same levels
of β-galactosidase and p16, another senescence-
associated marker [173]. Transient expression might lead
to cell-fate anomalies. Partial OSKM reprogramming in
mature lung epithelial cells over three weeks generated a
non-natural progenitor [174]. Differently from the ma-
ture lung epithelial cells, the generated cells were easily
expanded but did not display pluripotency markers
[174]. The novel cell type’s appearance might be ex-
plained by the passage through a local maximum on the
epigenetic landscape that represents a normally inacces-
sible epigenetic state; with the partial reprogramming, the
local maximum becomes a local minimum. These con-
trasting results might have occurred due to the use of
different reprogramming methods, cells, culture me-
diums, and lengths of expression.

To date, the most startling study showing the poten-
tial of partial reprogramming in tackling aging was
conducted by Ocampo et al. [28]. The researchers used
a progeroid mouse line that can express OSKM in vivo
when given doxycycline, in contrast to in vitro

conditions of all previously mentioned studies. Two
days of induction followed by five days of abstention
did not cause cancer or activation of pluripotency factors
besides OSKM. The treatment led to a striking lifespan
extension of approximately 50%. Several age-
associated phenotypes were reversed, including restora-
tion of normal H3K9me3 and H4K20me3 levels and
reduced senescence-associated β-galactosidase. Partial
in vivo reprogramming may also confer tissue regener-
ation capacity not even observed in young animals. It
appears that transient reprogramming greatly supports
tissue regeneration following injury [28, 175], as par-
tially reprogrammed cells can replenish tissues more
faithfully [29]. If the expression of pluripotency factors
is not immediate after the damage, broad regeneration
does not occur [175]. Since phenotypic plasticity is
correlated with greater chromatin scaling [39, 41], par-
tial reprogramming, by briefly opening chromatin [159],
promotes an epigenetic environment that is fruitful for
tissue regeneration. Tissue damage stimulates pheno-
typic plasticity and reprogramming as well [176].
In vivo reprogramming holds great promise for age
reversal and tissue regeneration.

Limitations

Evenwith state-of-the-art techniques, several limitations
hinder the applicability of reprogramming to confront
aging. Besides the pharmacological difficulties of deliv-
ering a system capable of expressing the pluripotency
factors, low efficacy, high heterogeneity, and severe
side effects are pressing problems.

Reprogramming outcomes vary widely based on the
reprogramming method, tissue source, progenitor cell
age, and the cellular environment. An analysis of mul-
tiple reprogramming methods revealed drastic differ-
ences upon expression of the same set of pluripotency
factors [177]. There was nomethylation variation across
methods, but retroviral-derived iPSCs were 13.5% an-
euploid while mRNA-derived iPSCs were only 2.3%.
Clustering of transcriptomes based on reprogramming
techniques showed that, in general, similar procedures
group together [152]. Tissue source may prime iPSCs to
differentiate into their progenitor cells [154, 164]. The
age of the progenitor cells also leads to heterogeneous
reprogramming. There is evidence that donor age does
not influence efficiency (typically 0.01–0.1%) even
though it alters the number of successful cultures, lead-
ing to an overall lower yield [121, 164, 178]. Donor age
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also affects chromosomal abnormalities, DNA damage
response, and apoptosis [179]. Culture medium affects
variability and efficiency as well. Exchanging the cul-
ture medium between good and bad cultures narrows the
difference in efficiency by 60% [178]. The ratio of
inflammatory cytokines in the environment is partly
responsible for the variability [176, 178], and might
explain the increased heterogeneity in cultures of old
progenitor cells. NF-κ B, a protein involved in cytokine
production, and interferon-gamma, a cytokine, are likely
reprogramming barriers [180]. Another reason for high
heterogeneity in reprogramming is the differential epi-
genetic signature in pluripotency loci [181]. Precise
placement of epigenetic modifiers where transcription
is needed can greatly improve reprogramming [181,
182], as a valley is carved on the epigenetic landscape
leading straight to the center (Fig. 4). Nevertheless, low
efficiency and high heterogeneity can be solved with an
improved cocktail of reprogramming factors and
miRNAs. Efficiency of over 800% has been achieved
since iPSC generation efficiency is calculated as the
number of colonies generated per progenitor cells
[183]. In single-cell experiments, 90.7% were success-
ful. These results highlight the difficulty in generating
reprogrammed cells, even though current protocols are
close to converting 100% of the cells to iPSCs.

Full in vivo reprogramming is severely detrimental
to health, leading to death or cancer development in a
matter of days. Continuous expression of OSKM in
mice results in death in a week caused by generalized
abnormal tissue growth [28, 184, 185]. Reduced con-
tinuous expression still leads to death due to teratoma
formation within weeks [184–187]. Nevertheless, the
oncogenic potential of in vivo reprogramming does
not likely arise from new mutations, as reprogramming
does not appear significantly mutagenic [179, 188].
Shorter OSKM or OSK induction (fewer than five

days) does not seem to result in cancer, even though
temporary abnormal tissue growth and development is
observed [185, 186]. These results suggest that a loss
of cell-specific phenotype precedes cancer develop-
ment. Transient OSKM or OSK expression also in-
creases, for instance, colon cancer metastases [189]. A
possible reason for the increased metastatic potential is
the reshaping of the epigenetic landscape, with loss of
tissue-specific transcription observed in multiple met-
astatic cancers [190]. Interestingly, several tumor sup-
pressor genes function as barriers to reprogramming.
p53, a protein in which mutations cause several types
of cancer, decreases reprogramming efficiency [156,
176, 186, 191]. The tumor suppressor locus Ink4a/Arf
codes for proteins that hinder reprogramming in vitro
[192], even though it seems to be necessary for proper
in vivo reprogramming [176]. Another complication of
using reprogramming to tackle aging is that it triggers
and is stimulated by cellular senescence, one of the
hallmarks of aging [6]. In regions where in vivo
reprogramming is successful, there is an increase in
the number of β-galactosidase positive cells and the
microenvironment is filled with cytokines and other
senescence-associated molecules [176, 186]. Interest-
ingly, reprogramming leads to both cancer cells, which
have an epigenetic age much higher than the organism
[111], and iPSCs, which are much younger, evidence
indicating the flattening of the epigenetic landscape.
All these results indicate that reprogramming indeed
flattens and flips the epigenetic landscape, making it
easier for the marble to take other pathways, including
senescence and tumorigenesis. It is difficult—if not
impossible—to control the boundaries precisely, as
tissue type, age, and the cellular microenvironment
affect reprogramming. It is worth noting, however, that
a reduction in senescent cells was seen with cyclic
partial reprogramming [28].

precise epigenetic editing

Fig. 4 How epigenetic editing of, for instance, promoters of pluripotency genes can increase the likelihood that the marble will take a quick
route towards the center by the carving of a valley
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Another limitation in reprogramming to tackle aging
is what can be described as the age-reversal-age-
extension (Arae) paradox. In the epigenetic landscape,
several lifespan-extending interventions that promote ge-
nomic stability make the valleys deeper. However,
reprogramming flattens the landscape so that the marble
can move back towards the center, making them intrin-
sically incompatible (Figs. 5 and 6). It has been shown
that heterochromatin pathways act as barriers to
reprogramming [193, 194]. The naked mole-rat (NMR)
is an extremely long-lived murine, mainly because of its
remarkable genomic stability. Reprogramming of NMR
fibroblasts requires a special culture medium that quite
easily reprograms mouse fibroblasts [195]. Three of the
most well-known longevity pathways are AMPK,
mTOR, and SIRT1. Metformin, thought to be an AMPK
activator, increases lifespan across species [196–199]. In
human cells, a therapeutic concentration of 100 μ M
[200] was sufficient to alleviate several aging markers
[201]. Only 10 μ M already significantly reduced
reprogramming efficiency, and this inhibition increased
with concentration [202]. Rapamycin, an inhibitor of
mTOR, slows aging [203–205]. The drug appears to
increase reprogramming potential at low doses with a

peak at 0.3 nM [206], but decrease from 1 to 20 nM in a
dose-dependent manner [207]. Human physiological
concentrations range from 5 to 30 nM [208] and approx-
imately 50 nM was used in studies showing lifespan
extension [209, 210]. Resveratrol, involved in the SIRT1
pathway, ameliorates several age-associated phenotypes
[211]. Even though it enhances reprogramming at 0.2–5
μ M, the effect wanes at 10 μ M and efficiency is
drastically reduced at 20 μ M [212, 213]. Nevertheless,
concentrations of even 500 μ M extended lifespan in
yeast [214], and most of the health benefits of resveratrol
are conferred in the 10–25 μ M range in vitro [215]. On
the other hand, nicotinamide, a SIRT1 inhibitor, pro-
motes reprogramming at the same concentration it re-
duces yeast replicative lifespan [191, 216]. The general
enhancement of reprogramming efficiency at low doses
of longevity-promoting compounds might be driven by
increased epigenetic remodeling, since all the aforemen-
tioned drugs affect some epigenetic modifications. How-
ever, at higher doses that more optimally extend lifespan,
the elevated genomic stability might hinder
reprogramming. In summary, the essence of the Arae
paradox is that several interventions that slow aging can
be barriers to reprogramming.

genomic stability interventions

Fig. 5 Interventions that improve genomic stability create deeper valleys on the epigenetic landscape, making it harder to change the
epigenetic state

proper culture medium

pluripotency factors

Fig. 6 Interventions that improve genomic stability also hinder reprogramming by enhancing the barriers to reach the center in comparison
to Fig. 3
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Concluding remarks

Epigenetics and aging are intrinsically related. Epi-
genetic modifications predictably occur throughout
development and aging. Reduced global heterochro-
matin, altered histone PTMs, differential DNA
methylation, and others account for the bulk of
age-related changes. Targeting any one of these
changes ameliorates aging hallmarks and extends
lifespan. Epigenetic reprogramming reverses most
if not all of the age-related epigenetic modifica-
tions. Harnessing partial reprogramming seems the
most promising therapy to treat aging.

Even though the bulk of research concerning
reprogramming only occurred in the last decade, several
major strides have been made. Nowadays, we know
how physical cues may assist in the process [217]. We
can avoid heightened genome instability in iPSCs de-
rived from aged progenitors [179]. In vivo delivery of
pluripotency factors is vastly improving [187], as well
as tissue regeneration by reprogramming [175, 183].
Even the power of CRISPR is being used in
reprogramming [146, 149, 181, 182, 218].

There are still many limitations (Fig. 7). Whole or-
ganism delivery and homogeneous expression of

pluripotency factors are challenging, currently unsolved
tasks. Moreover, even though efficiency is greatly im-
proving [183], most of the studies on reprogramming
and aging still use only OSKM. Further research is also
required to clarify the fine line between cancer and
reprogramming. Lastly, the Arae paradox makes it un-
likely that current lifespan interventions would have an
additive effect alongside reprogramming.

A suggestion is an approach similar to the one shown
by Ocampo et al. [28], but with the inclusion of a
treatment that enhances genome stability during the
absence of pluripotency factor expression. Short expres-
sion of pluripotency factors followed by administration
of metformin, rapamycin, or even resveratrol would
slightly flip the epigenetic landscape followed by the
formation of deeper grooves. Perhaps this procedure
would both improve lifespan extension and hinder the
development of cancer and senescent cells. Further re-
search is needed to check the validity of this speculative
regimen.

Other combinations of reprogramming factors be-
sides OSKM might prove more useful in decoupling
age reversal from developmental reversal. It appears that
the steady decline in DNAm age occurs before full
reprogramming is achieved [168]. However, given the

Fig. 7 Illustration of some of the age-related epigenetic changes and the limitations and consequences of reprogramming for rejuvenation
(created with BioRender.com)
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nonhomogeneous environment in vivo, there is a high
risk that some cells will pass this threshold while others
will likely not even experience epigenetic rejuvenation.
Given the current knowledge of the pluripotency net-
work [147], perhaps a cocktail of early reprogramming
factors with late reprogramming inhibitors might re-
verse the aging phenotype without change of cell fate.
Other well-known reprogramming barriers, such as p53,
might be a barrier to full but not partial reprogramming.
Further research ought to elucidate how to partially
reprogram without cell dedifferentiation.

Other non-reprogramming strategies such as the use
of drugs and young blood plasma are also proving
promising for rejuvenation. A cocktail of metformin,
human growth hormone, and dehydroepiandrosterone,
rewound Horvath’s epigenetic clock by 2.5 years after
one year of treatment in humans [219]. Moreover, it is
known that parabiosis (the anatomical joining of two
individuals) of old and young rats improves organ func-
tion in the aged animals [220]. It has recently been
shown that administering young blood plasma to old
rats more than halves the DNAm epigenetic age [221].
Such treatments can indirectly result in epigenetic mod-
ifications, yet are safer and less invasive than direct
reprogramming. Non-reprogramming strategies might
influence epigenetic marks by affecting the complex
cellular regulatory networks downstream of gene ex-
pression. Because of their likely indirect effect, such
treatments may not be as effective in age reversal as
reprogramming; they might act as a stopgap before the
challenging limitations of safe, effective in vivo
reprogramming are resolved.

Aging reversal by epigenetic reprogramming is a new
field of research, and not much has been studied. Never-
theless, even with all the current limitations, the future of
reprogramming holds promise for the treatment of aging.
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