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Alternative splicing (AS), an important post-transcriptional reg-
ulatory mechanism that regulates the translation of mRNA iso-
forms and generates protein diversity, has been widely demon-
strated to be associated with oncogenic processes. In this
study, we systematically analyzed genome-wide AS patterns to
explore the prognostic implications of AS in endometrial cancer
(EC). A total of 2,324 AS events were identified as being associ-
ated with the overall survival of EC patients, and eleven of these
events were further selected using a random forest algorithm.
With the implementation of a generalized, boosted regression
model, a prognostic AS model that aggregated these eleven
markers was ultimately established with high performance for
risk stratification in EC patients. Functional analysis of these
eleven ASmarkers revealed various potential signaling pathways
implicated in the progression of EC. Splicing network analysis
demonstrated the notable correlation between the expression
of splicing factors and ASmarkers in EC and further determined
eight candidate splicing factors that could be therapeutic targets
for EC. Taken together, the results of this study present the util-
ity of AS profiling in identifying biomarkers for the prognosis of
EC and provide comprehensive insight into themolecular mech-
anisms involved in EC processes.
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INTRODUCTION
Despite improvements in screening, diagnosis, curative resection, and
preventive strategies, endometrial cancer (EC) is still themost common
gynecologic malignancy in developed countries,1 and the incidence of
EC is rising because of increasing obesity of the female population.2

Multiple other risk factors have been identified, including long-lasting
endogenous or exogenous hyperestrogenism (polycystic ovary, tamox-
ifen therapy, anovulation, nulliparity), hypertension, and diabetes mel-
litus.3 Most cases of EC are diagnosed in early stages, since abnormal
uterine bleeding is the presenting symptom in 90% of cases, and the
final histopathological subtyping and grading based on the hysterec-
tomy specimen are considered the gold standards for correct risk clas-
sification of patients for metastatic spread and recurrent disease.4 To
the best of our knowledge, EC generally has a favorable prognosis,
with a 5-year overall survival (OS) reaching 80%, mainly because
most women are diagnosed at an early stage and are managed by sur-
gery alone with a low risk of recurrence.5 However, the 5-year survival
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rate of patients with stage III and IV disease is dramatically decreased,
ranging from 42% to 79%.6 Therefore, although relatively few women
with EC experience recurrence, it accounts for most EC-related deaths.
This high incidence and poor prognosis have led tumor markers of EC
to become a developing area of research that may help to predict treat-
ment response and patient prognosis.

Developments in high-throughput genomic technologies have
opened a new era in cancer genomic research. With the application
of RNA sequencing in recent years, gene expression and genomic
profiling of EC have been sufficiently evaluated.7 Alternative splicing
(AS) is an important post-transcriptional regulatory mechanism that
regulates the translation of mRNA isoforms and generates protein di-
versity. Over 95% of human genes undergo AS and encode splice
variants in normal physiological processes.8 Therefore, dysregulation
of AS can affect essential biological processes and thus drive disease-
associated pathophysiology.9 Emerging data demonstrated that aber-
rant AS events were closely associated with cancer progression,
metastasis, therapeutic resistance, and other oncogenic processes.10

Thus, cancer-specific splice variants may be used as diagnostic, prog-
nostic, and predictive biomarkers, as well as therapeutic targets.

Due to technical limitations, the effect or functions of AS events in EC
have been individually studied in only a small number of cases. A
previous study identified the exon 6-skipping mRNA splicing isoform
of YT521 as a potential independent prognostic factor for patients
with EC.11 In another study, whereas estrogen receptor alpha (ERa/
ESR1) expression is regulated by AS, among which ERaD7 is a
dominant negative variant, it was determined experimentally that
increased expression of ERaD7 was characterized as a prognosticator
toward an improved clinical outcome.12 Additionally, Ouyang et al.13
: Nucleic Acids Vol. 18 December 2019 ª 2019 The Author(s). 1039
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Figure 1. Identification of thePrognostic ASMarkers

in the Training Cohort

(A) Survival-associated AS events in EC. Number of

positively survival-associated (HR < 1) and negatively

survival-associated (HR > 1) AS events in EC. (B) UpSet

plot of intersections and aggregates among diverse types

of survival-associated AS events in EC. One gene may

havemore than one type of AS event to be associated with

patient survival. (C) Forest plot of HRs of the eleven AS

markers. (*p < 0.05, **p < 0.01, ***p < 0.001). (D) ROC

curves for the eleven AS markers in the testing cohort. (E)

Relative influence of the selected AS markers calculated

by GBM.
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demonstrated the potential clinical significance of the interaction of
two splicing regulators, hnRNP G and hTra2-b1, in EC patients,
opening a door for pharmaceutical targeting options of splicing in
future cancer treatment strategies.

Currently, machine learning approaches are increasingly applied in
the screening of molecular biomarkers and the construction of pre-
diction classifiers.14,15 With the combination of system biology, the
prognostic model can recognize specific patterns of diseases and
distinguish patients with different survival risks. Furthermore, ma-
chine learning can identify candidate biomarkers without bias and
effectively improve the sensitivity and specificity of the model.16

With the rapid accumulation of gene expression data, the public da-
tabases provide a rich source for the investigation of AS patterns in
EC. Thus, in this study, we systematically analyzed the genome-
wide AS patterns and combined them with machine learning to
explore the potential prognostic implications of AS in EC.

RESULTS
Identification of Survival-Associated AS Events in EC

After the preprocessing procedure, the mRNA splicing data of the
entire EC cohort from The Cancer Genome Atlas (TCGA) SpliceSeq
database (https://bioinformatics.mdanderson.org),17 which was
enrolled in this study, contains 7,614 AS events in 3,261 genes. Alter-
nate terminator (AT) was the most frequent splice type among the
seven AS types, followed by exon skip (ES) and retained intron
(RI). Specifically, there were 5,251 ATs in 2,301 genes, 941 ESs in
673 genes, 507 RIs in 414 genes, 368 alternate promoters (APs) in
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144 genes, 301 alternate acceptor (AA) sites in
257 genes, 235 alternate donor (AD) sites in
173 genes, and 11 mutually exclusive exons
(MEs) in 11 genes.

To explore the prognostic utility of an AS signa-
ture in EC, AS events associated with OS were
identified by fitting univariate Cox proportional
hazard regression models in the training cohort.
Consequently, 2,324 AS events in 1,290 genes
were determined with p values < 0.05 (Fig-
ure 1A), including 1,255 negatively survival-
associated AS events (hazard ratio [HR] > 1) and 1,069 positively sur-
vival-associated AS events (HR < 1). The UpSet plot was generated to
visualize the intersecting sets between different genes and AS events
(Figure 1B), indicating that one gene might have more than one sur-
vival-associated AS event. It is noteworthy that six types of AS in
RPS9, including AA, AD, AP, AT, ES, and RI, were all associated
with OS in EC patients.

Variable Selection and Prognostic Model Construction for EC

A total of 532 potential prognostic AS events (with area under the
curve [AUC] values > 0.6), assessed by receiver operating character-
istic (ROC) analysis in the training cohort, were retained for further
variable selection. By conducting the random forest variable hunting
(RFVH) algorithm, a panel of eleven AS events was finally selected as
prognostic AS markers (Figure 1C; Table 1). The ability of each AS
marker in the OS prediction of EC patients was then demonstrated
by ROC curve (Figures 1D and S1) and Kaplan-Meier curve (Figures
S2 and S3) analyses.

Subsequently, the percent spliced in (PSI) level of these eleven AS
markers in the training cohort was used to construct the prognostic
models by implementing the generalized boosted regression model
(GBM), least absolute shrinkage and selection operator (LASSO),
and multivariate Cox regression algorithms. Based on the PSI levels
of these markers, the survival risk scores for each patient were calcu-
lated from these models. ROC curve analyses demonstrated that
all three models performed well in both cohorts (all AUC > 0.75)
(Figures 2A and 2B). Notably, the GBM had the highest AUC value
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Table 1. Eleven AS Markers Included in the Prognostic Model of EC

AS ID Splice Type Exons Gene Symbol PSI Level Association with Poor Prognosis Candidate Splicing Factor

89639 AP 2 RPL36A high RAE1

65392 AT 23.2 SLMAP high POM121

88927 RI 3.4 TIMP1 high NUP153

74777 AT 9 PDLIM7 high RAE1

63359 AA 10.1 SEC13 high LSM7

49232 ES 3.2:4:5:6.1:6.2:6.3:7:8:9.1 RBM42 low RAE1

1340 AT 10 FAM76A low CCDC12

16186 AT 4 TMEM138 low RBM39

22010 ES 2:3 PFDN5 high CSTF1

21496 AT 7.2 FKBP11 high LSM7

19197 ES 8.2:9:10.1 HSPA8 low PRPF18
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(0.889, 95% confidence interval [CI]: 0.833–0.945) (Figure 2A)
compared with the other two models in the training cohort. There-
fore, the GBM that aggregated eleven AS markers was chosen as
the optimal prognostic model in this study, and the relative influence
of each marker was calculated in the meantime, which indicated their
variable importance in the GBM (Figure 1E).

The eleven AS prognostic model was further validated in the testing
cohort with an AUC of 0.802 (95% CI: 0.695–0.901) (Figure 2B).
Additionally, the patients in the training cohort were divided into
two risk groups based on the optimal cut-off point value (�3.319)
(Figure 2C) that was determined by the survminer package. As shown
in Figure 2D, a significant difference between the OS for patients in
these two risk groups was observed by plotting Kaplan-Meier curves
(HR = 13.18, p < 0.001). An analogous situation was observed in
the testing cohort as expected (HR = 4.37, p < 0.001) (Figure 2E).
Moreover, in comparison with single AS marker, this combination
model exhibited an improvement in predictive performance from
the ROC curve (Figures 1D and S1) and Kaplan-Meier curve (Figures
S2 and S3) analyses. These findings demonstrated that this eleven AS
model might be used to predict the prognoses of EC patients.
Performance Evaluation of the Prognostic AS Model

Several clinical variables potentially associated with the prognosis of
EC, including age, International Federation of Gynecology and Ob-
stetrics (FIGO) stage, histological grade, and histological type,
together with the AS model, were included in univariate and multi-
variate Cox regression analyses using testing and entire EC cohorts.
The results indicated the relatively high prognostic significance
of the AS model, as well as the FIGO stage (all p < 0.05) (Table 2).
To evaluate the effectiveness of the AS model among patients in
different FIGO stages, survival analysis was further performed in
subsets of patients stratified by FIGO stage. Strikingly, EC patients
could be successfully separate into high-risk and low-risk subgroups
in both the early (FIGO I/II stage) (Figure 3A) and advanced (FIGO
III/IV stage) (Figure 3B) stages by applying this model.
Next, the discrimination of the AS model and FIGO stage in survival
analysis was further assessed by multiple methods. The time-depen-
dent AUCs were plotted to demonstrate the 1- to 10-year OS predic-
tion of the FIGO stage, AS model, and combined model comprised
of the AS model and FIGO stage (Figure 3C). The AS model showed
better predictive ability than the FIGO stage in either integrated
AUC (IAUC) (Figure 3D) or concordance index (C-index) (Fig-
ure 3E) analyses. Remarkably, the combined model had a larger
AUC than the FIGO stage and AS model alone, according to the
IAUC analysis (Figure 3D), suggesting that the AS model might
also be used to assist the FIGO stage in prognosis predictions for
EC patients.

Characterization and Functional Analysis of the Eleven AS

Markers

To investigate the effectiveness of AS markers in risk prediction of
EC, a comparison of the PSI levels of these eleven AS markers be-
tween low- and high-risk EC groups was performed using the entire
EC cohort. The PSI level distribution of each AS maker is signifi-
cantly different between two risk groups (Figure 4A). The changes
of three AS events were shown as examples in both SpliceSeq views
and Integrative Genomics Viewer (IGV) plots (Figure S4).
Regarding the characteristics of these AS markers (Table 1), higher
PSI levels of seven markers were associated with shorter OS (HR > 1
in Figure 1A), whereas higher PSI levels of the remaining four
markers were related to longer OS (HR < 1 in Figure 1A). Notably,
although our study focused on ASmarkers associated with prognosis
of EC, the PSI levels of eight AS markers of them showed significant
differences between EC tissues and normal uterine tissues (Fig-
ure S5). These findings indicate that these eight markers may be
not only related to prognosis of EC but also involved in the tumor-
igenesis of EC.

To investigate further the underlying biological roles of these
eleven AS markers, we determined the corresponding eleven AS
marker genes and predicted their interacting genes by performing
gene-interaction analysis. A gene-interaction network was further
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 1041
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Figure 2. Construction and Validation of the

Prognostic AS Model

(A) Optimal model selection based on ROC curves in the

training cohort. ROC curves for the GBM, LASSO, and

multivariate Coxmodels were generated for the 5-year OS

predictions of EC. (B) ROC curve for the GBM was

generated for the 5-year OS predictions of EC in the

testing cohort. (C) The risk score analyses of EC patients in

the training cohort were performed based on the GBM.

Shown are distribution diagram of survival risk score of EC

patients (top), survival status of EC patients (middle), and

clustering heatmap of the PSI levels of eleven AS markers

(bottom). The horizontal axis indicates the patients in order

of risk score from low to high. The optimal cut-off point

value (�3.319), shown as the gray straight line, was ob-

tained from the training cohort to divide the patients into

low- and high-risk groups both in the training and testing

cohorts. (D and E) Kaplan-Meier curves for these two risk

groups were then plotted to analyze the correlations

between this model and the OS in the training (D) and

testing (E) cohorts.

Molecular Therapy: Nucleic Acids
constructed based on the high confidence (interaction score > 0.7),
and a total of 1,174 genes interacted with at least one of the eleven
genes (Figure 4B). Subsequently, Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses for these interacting genes
were conducted (Table S2), which indicated that these genes were
significantly associated with several cancer pathways, including
pathways of colorectal cancer, prostate cancer, bladder cancer,
pancreatic cancer, and renal cell carcinoma (all p values < 0.05)
(Figure 4C). Moreover, a series of signaling pathways involved in
cancer, such as the phosphatidylinositol 3-kinase (PI3K)-Akt
signaling pathway, Hippo signaling pathway, FoxO signaling
pathway, and p53 signaling pathway, were also observed (all p
values < 0.05) (Figure 4C). In addition, we performed gene set
enrichment analysis (GSEA) to elucidate the biological functions
of the AS model (Table S3), which revealed that genes highly ex-
pressed in the high-risk group showed significant enrichment in
multiple biological pathways, such as the ErbB signaling pathway,
mismatch repair, and extracellular matrix (ECM)-receptor interac-
tion, whereas the low-risk-related genes were associated with the
pathway-related gene set, including chemokine signaling pathway,
T cell receptor signaling pathway, and cell adhesion molecules
(Figure 4D).
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Correlation Analysis of the Eleven AS

Marker Genes and Splicing Factors

To determine the splicing factors associated
with these eleven AS markers in EC, AS-splicing
factor correlation analysis was conducted using
the entire EC cohort. The AS-splicing regulation
network was further constructed based on the
correlation coefficient calculated from Spear-
man’s test, and the expression of 68 splicing
factors was highly correlated with that of at least
one of the eleven AS markers. Similarly, one AS event might also be
regulated by multiple splicing factors (Figure 5A). The top correlation
between AS PSI level and splicing factor expression was significantly
negative for FKBP11-LSM7 (p = 2.44E�38), TMEM138-RBM39 (p =
2.79E�37), RBM42-RAE1 (p = 4.95E�24), HSPA8-PRPF18 (p =
2.62E�16), and SEC13-LSM7 (p = 2.51E�15) and significantly posi-
tive for RPL36A-RAE1 (p = 2.83E�15), SLMAP-POM121 (p =
3.48E�14), FAM76A-CCDC12 (p = 1.91E�13), TIMP1-NUP153
(p = 5.00E�13), PDLIM7-RAE1 (p = 2.15E�23), and PFDN5-
CSTF1 (p = 4.39E�16). For instance, the correlation between splicing
factor LSM7 and AT of FKBP11 is shown in Figure 5B, and the low
expression of LSM7 was associated with poor survival of patients by
performing Kaplan-Meier survival analysis (p = 2.04E�04)
(Figure 5C).

DISCUSSION
This study focused on the identification of prognostic AS markers to
explore the utilization of AS signatures in predicting the prognosis of
EC patients. In variable screening procedures, the machine learning
method was applied, which can identify candidate biomarkers
without bias instead of simply selecting the most significant variables.
As a result, eleven AS events were selected as prognostic AS markers



Table 2. Univariable and Multivariable Cox Regression Analyses of Potential Prognostic Variables for EC Patients

Variables

Test EC Cohort Entire EC Cohort

HR (95% CI) p Value HR (95% CI) p Value

Univariable Analysis

Age >60 versus %60 1.99 (0.90–4.36) 0.087 2.11 (1.26–3.53) 4.70E�03

FIGO stage advanced stage versus early stage 5.43 (2.66–11.11) 3.58E�06 3.96 (2.61–6.01) 8.61E�11

Histologic grade high grade versus low grade 3.54 (1.47–8.52) 4.73E�03 3.42 (1.99–5.87) 8.20E�06

Histological type MSE versus EEA 3.96 (1.32–11.92) 1.42E�02 2.86 (1.22–6.69) 1.56E�02

SEA versus EEA 3.54 (1.76–7.13) 3.94E�04 2.88 (1.87–4.43) 1.69E�06

AS model high risk versus low risk 4.81 (2.41–9.64) 9.10E�06 8.93 (5.76–13.87) <2E�16

Multivariable Analysis

Age >60 versus %60 – – 1.18 (0.68–2.05) 0.56

FIGO stage advanced stage versus early stage 3.75 (1.74–8.05) 7.08E�04 3.03 (1.93–4.75) 1.46E�06

Histologic grade high grade versus low grade 1.54 (0.55–4.26) 0.41 1.55 (0.84–2.86) 0.16

Histological type MSE versus EEA 2.24 (0.69–7.32) 0.18 1.26 (0.52–3.08) 0.61

SEA versus EEA 1.39 (0.60–3.24) 0.44 0.74 (0.44–1.25) 0.26

AS model high risk versus low risk 2.70 (1.23–5.94) 0.013 7.31 (4.42–12.09) 9.99E�15

Advanced stage, I/II stage; early stage, III/IV stage; high grade, G3; low grade, G1/G2; EEA, endometrioid endometrial adenocarcinoma; MSE, mixed serous and endometrioid; SEA,
serous endometrial adenocarcinoma.
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that might be used to predict the survival of EC patients. Correspond-
ing to these AS markers, we further obtained eleven AS-marker genes
that included RPL36A, SLMAP, TIMP1, PDLIM7, SEC13, RBM42,
FAM76A, TMEM138, PFDN5, FKBP11, and HSPA8. Although the
implication of most genes in EC progression is unclear, several genes
have been reported to be associated with cancer processes in previous
studies. For instance, RPL36A, representing an overexpression in he-
patocellular carcinoma, has been reported to be related to tumor cell
proliferation and may be a potential target for anticancer therapy.18

SLMAP encodes tail-anchored protein, and isoforms of SLMAP,
derived from AS, are targeted to cell membrane, mitochondria, and
the microtubule organization center.19 SLMAP has been reported to
be an implication in mitosis and cell growth and may be important
for normal cell growth and to promote proliferation of giant cell tu-
mor stromal cells.20,21 The tumor inhibitor of metalloproteinase, en-
coded by TIMP1, is involved in the process of tumor cell invasion
through the ECM.22 Previous studies have demonstrated an associa-
tion between the relatively high TIMP1 expression and the poor prog-
nosis of various types of cancer, including non-small cell lung cancer,
breast cancer, colon cancer, and pancreatic cancer.22–25 Interestingly,
a retrospective study on a large cohort of primary breast cancer pa-
tients provided evidence that the combined expression of full-length
TIMP1mRNA and its splice variant lacking exon 2 is associated with
good prognosis, which is contrary to the findings of other previous
studies.24 The TIMP1 splicing variant identified in our study is
affected in exon 3 and associated with poor prognosis in EC patients,
which may indicate that different AS markers play different roles in
cancer. An alternative PFDN5 variant, representing a significant
overexpression in malignant thyroid tissues, has been demonstrated
to be associated with thyroid tumorigenesis.26 To date, FKBP11 has
not been reported to be linked to cancer, but another FKBP family
gene (named FKBP7) was highly expressed in melanoma tissue and
significantly associated with poor survival, which indicated that
FKBP members may have strong potential as new therapeutic targets
or diagnostic markers in melanoma.27 HSPA8 has been reported in
several types of cancers, such as pancreatic cancer, breast cancer,
and EC.28–30 It is noteworthy that HSPA8 was significantly upregu-
lated in EC cells, as confirmed by immunoblot analysis, indicating
that HSPA8 plays a vital role in the development of EC and might
be a candidate biomarker for EC.29

To understand further the functional mechanisms behind the prog-
nostic values of these markers, we determined that 1,174 genes inter-
acted strongly with these eleven AS-marker genes by performing
gene-interaction analysis. These interacting genes were significantly
enriched in several cancer pathways, as well as other signaling path-
ways involved in cancer in enrichment analysis, such as the PI3K-Akt
signaling pathway, Hippo signaling pathway, FoxO signaling path-
ways, p53 signaling pathway, and transforming growth factor b

(TGF-b) signaling pathway. The PI3K signaling pathway, one of
the most frequently altered pathways in human cancer, plays a critical
role in tumor initiation and progression and has been demonstrated
to be activated in the majority of EC cases.31,32 Moreover, inhibition
of the PI3K/Akt pathway could reverse progestin resistance in EC,
which is the main obstacle to successful conservative therapy in EC
patients, indicating that the PI3K/Akt signaling pathway may shed
new light on the potential treatment and prognosis of EC.33 A previ-
ous study revealed that the FoxO pathway is involved in breast cancer
initiation;34 however, little is known about the role of the FoxO
signaling pathway in EC. The Hippo pathway is crucial in human
cancer, and the degradation of the Hippo pathway has been reported
to occur in a broad range of cancers, including lung cancer, prostate
Molecular Therapy: Nucleic Acids Vol. 18 December 2019 1043
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Figure 3. Comparison of Survival Prediction Power

of the AS Prognostic Model with FIGO Stage

(A and B) Stratification analysis of the AS model by FIGO

stage. EC patients with early (FIGO I/II stage) and

advanced stages (FIGO III/IV stage) were divided into low-

and high-risk groups using the ASmodel, respectively. By

plotting Kaplan-Meier curves, the prognostic capability for

EC patients with early (A) and advanced (B) stages was

evaluated individually. (C) The time-dependent AUCs for

1- to 10-year OS prediction of FIGO stage, AS model, and

combined model. (D) Comparison of the integrated AUC

of FIGO stage, ASmodel, and combined model. The entry

values of the figure represent the p values calculated from

the Wilcoxon rank sum test for the comparison between

larger IAUC and smaller IAUC. (E) Forest plot of C-index

values of FIGO stage, AS model, and combined model

(*p < 0.05, **p < 0.01, ***p < 0.001).
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cancer, and EC, and is often correlated with poor patient prog-
nosis.6,35,36 The p53 pathway is a common oncogenic pathway in
EC and many other tumor types, and it has been demonstrated that
several markers of the p53 pathway could improve stratification
and prognosis of EC.37 The TGF-b signaling pathway is a key network
in cell signaling that controls vital processes, including apoptosis
and tumorigenesis, and the abnormal regulation of the TGF-b
pathway can contribute to a broad range of cancers.38 Given that
EC patients were divided into two risk groups by our AS model in
the entire cohort, functional investigation of differentially expressed
genes between them would be useful to explore specific pathways
involved in EC development processes. GSEA identified several
molecular pathways associated with cancer, including the ErbB
signaling pathway, chemokine signaling pathway, and ECM-receptor
interaction. These findings could facilitate our further understanding
of the metabolic pathways involved in EC and contribute to the devel-
opment of new targeted anti-cancer therapies of EC. Nevertheless, the
relationships between these pathways and EC require experimental
verification.

To the best of our knowledge, it has been determined that the process
of splicing is regulated precisely by splicing factors through binding to
1044 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
splicing regulatory elements of specific genes.39

Therefore, we constructed an AS-splicing regu-
lation network to explore the correlation of
eleven AS markers and splicing factors. A total
of 68 highly correlated splicing factors were
identified to be associated with survival in EC,
indicating that they may influence oncogenic
processes by regulating the AS of several down-
stream target genes at the same time. Further-
more, we determined eight candidate splicing
factors, including LSM7, RAE1, POM121,
NUP153, CCDC12, RBM39, CSTF1, and
PRPF18, which significantly affect these AS
markers and that could provide potential thera-
peutic targets for the treatment of EC. These findings will also help
elucidate the underlying mechanisms of AS in the development of EC.

Beyond that, we attempted to construct an optimal prognostic model
that could be used to predict prognosis in EC patients. Although each
of the eleven AS markers showed a certain prognostic value, the AS-
combined model, aggregating multiple markers, outperformed the
single AS marker alone, which is consistent with the results of
numerous previous studies.40,41 In this study, the model construction
was carried out by the application of several machine learning and
statistics algorithms. Although the multivariate Cox model and
LASSO were widely used for model construction in most previous
studies, especially on AS,15,42 the GBM in this study performed better
than other algorithms and was chosen as the final prognostic model.
We conclude that it is necessary to implement multiple algorithms for
model construction, which may contribute to obtaining the ideal
model with optimal performance.

More importantly, the possibility of overfitting of the model has been
considered in this study and was mainly controlled in three aspects.
First, for variable selection, a univariate prescreening procedure and
machine learning-based RFVH method were applied for dimension



Figure 4. Functional Analysis of AS-Marker Genes

(A) The PSI levels of eleven AS markers in 421 low-risk

patients and 117 high-risk patients. The distributions of

the PSI level data are represented by violin plots, and the

dashed lines indicate the quartiles. p values were calcu-

lated byMann–Whitney U test (*p < 0.05, **p < 0.01, ***p <

0.001). (B) Visualization of the interaction between the

eleven AS-marker genes and 1,174 genes. The red

circle indicates the AS-marker genes, and the blue circle

represents the other interacting genes. (C) KEGG

functional enrichment of these interacting genes in EC.

Ten significant pathways involved in cancer are

displayed. (D) GSEA delineates biological pathways

correlated with risk scores. Several enrichment results

with significant associations between high- and low-risk

groups are shown.
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reduction, so as to make the model more capable of generalization and
combat overfitting. Second, for model construction, the CV was em-
ployed to estimate the optimal number of iterations in the GBM algo-
rithm, which could reduce the possibility of the overfitting inmodel se-
lection. Last but not least, the testing or validation cohort used for
model validation was often absent in several previous studies on AS,
which may lead to overfitting of the model and not guarantee the
validity of the model in other samples. Understandably, it is difficult
to obtain additional large-scale samples; thus, we set up the testing
cohort by splitting the entire cohort randomly for validation and eval-
uation. Prior to our studies, Gao et al.42 has proposed a new AS-based
prediction model for EC, which achieved good prognostic perfor-
mance (AUC = 0.758). In the study of Gao et al.,42 the AUC value
Molecular Therapy
was derived from a validation cohort of 506 EC
patients from TCGA database, which was also
used for variable selection and model construc-
tion. Therefore, a cohort, independent of both
studies, would be a better way to compare the
performance of these two models. Nevertheless,
by contrast, our AS model exhibited increased
AUC values (AUC > 0.8 in both training and
testing cohorts).

Further evaluation procedures for this model
were performed using testing and entire co-
horts, and the prognostic model was demon-
strated to be an independent prognostic factor
for predicting OS in EC patients. Similar to pre-
vious studies,15,40 the FIGO staging system, one
of the most adopted classifications for the treat-
ment and prognosis for EC patients,43 also ex-
hibited high prognostic significance in this
study. Remarkably, this model is suitable for
prognosis prediction under different FIGO
stages and can further distinguish patients
with an elevated risk of mortality stratified by
the FIGO stage. In addition, the survival pre-
diction power of this AS model was further compared with the
FIGO stage, demonstrating that this model has higher accuracy
and might assist the FIGO stage in prognosis prediction for EC pa-
tients. However, the prognostic implication of this AS model for EC
clearly requires validation through further functional experiments
and clinical trials.

Overall, we identified eleven prognostic AS markers and constructed
a prognostic AS model that could efficiently facilitate survival
prediction for EC patients and guide the application of rational
therapy in clinical practice. This study also provided insight into
the underlying mechanisms involved in the development and pro-
gression of EC.
: Nucleic Acids Vol. 18 December 2019 1045
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Figure 5. Construction of the AS-Splicing Factor

Correlation Network

(A) Cytoscape visualization of the correlation of 11 AS

markers and 68 splicing factors (Spearman’s correlation

coefficient > 0.30, p < 0.05). AS markers and splicing

factors are represented with orange and green dots,

respectively. The positive/negative correlation between

the expression of splicing factors and PSI values of AS is

denoted with red/blue lines. (B) Dot plot of the correlation

between the expression of LSM7 and the AT PSI value of

FKBP11. (C) Low expression (blue line) of splicing factor

LSM7 was significantly associated with poor OS in EC.
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MATERIALS AND METHODS
Data Sources and Data Processing

mRNA splicing data of the EC cohort were obtained from TCGA
SpliceSeq database (https://bioinformatics.mdanderson.org), which
included seven common types of AS events: ES, ME, RI, AP, AT,
AD, and AA.17,44 The PSI value,45 a common, intuitive ratio for quan-
tifying splicing events from 0 to 1, was calculated for each sample and
every possible splice event. In detail, PSI is the ratio of normalized
read counts, indicating inclusion of a transcript element over the total
normalized reads for that event (both inclusion and exclusion
reads).46 The corresponding clinical parameters and expression pro-
file data (reads counting with HTSeq) were retrieved from TCGA
database (https://portal.gdc.cancer.gov/). Patients without complete
information (i.e., survival time, age, FIGO stage, histological grade,
and histological type) were removed, and a total of 538 EC patients
were finally included in this study (Table S1). To avoid the impact
of missing values on subsequent analysis, PSI values for any AS events
that did not exist across all 538 samples were also excluded. Splicing
factor genes in the mRNA splicing pathway were obtained from Re-
actome (https://reactome.org/) and PathCards database (https://
pathcards.genecards.org/). The entire cohort was randomly split
into training (n = 377) and testing cohorts (n = 161) at a 7:3 ratio (Ta-
ble S1). The training cohort was mainly used for variable/marker se-
lection and model construction, whereas the testing cohort was only
used for validation and evaluation of the model.
Identification of Prognostic AS Markers in EC

To remove excessive noise and accelerate the computational proced-
ure, a univariate prescreening procedure (univariate Cox regression)
was performed on the training cohort, which was generally conducted
prior to the application of any variable selection method.47 The
“surv_cutpoint” function (survminer package) is an outcome-ori-
ented method providing a value of a cut-point that corresponds to
the most significant relation with survival using the maximally
1046 Molecular Therapy: Nucleic Acids Vol. 18 December 2019
selected rank statistics from the maxstat package
and was employed to determine the optimal cut-
off point for an AS event or prognostic model.
The patients were then divided into high-risk
and low-risk groups by cut-off point value for
each AS event. Kaplan-Meier survival curves
and log rank tests were used to assess the differ-
ences in OS of these two groups. HR and p values were calculated to
compare survival curves by using the survival package. The timeROC
package in R, which allows for time-dependent ROC curve estimation
with censored data, was used to generate AUC of the ROC curve and
estimate the sensitivity and specificity of these AS events. RFVH, a
variable selection method suitable for high-dimensionality data,48

was implemented in the randomForestSRC package and used for
marker selection with an iteration procedure, according to minimal
depth and variable importance scores at each iteration step. After
100 Monte Carlo iterations, the AS events were ranked by the fre-
quency of occurrence, and the average number (P) of selected AS
events per iteration was also determined. The top P ranked AS events
were finally selected as AS markers. With the use of the SciPy package
in Python, the Mann–Whitney U test was performed to examine the
differential PSI level of AS markers between high- and low-risk
groups of EC patients, as well as EC and normal uterine tissues.

Construction and Evaluation of the Prognostic Model of EC

With the aggregation of the PSI level of AS markers selected above in
the training cohort, three approaches for statistics and machine
learning, including the GBM, LASSO, and multivariate Cox regres-
sion, were employed to create AS-combined models for predicting
the prognosis of EC patients. In detail, GBM, an implementation of
boosting for the Cox proportional hazard model, implements exten-
sions to Freund and Schapire’s AdaBoost algorithm and Friedman’s
gradient boosting machine in the gbm package. Boosting is the pro-
cess of iteratively adding basis functions in a greedy fashion, such
that each additional basis function further reduces the selected loss
function.49 The 10-fold CV was conducted to calculate an estimate
of generalization error for each boosting iteration, and the optimal
number of boosting iterations was determined by the minimum
generalization error for reducing the possibility of the over-fitting
inmodel selection. An eleven ASmodel was constructed, and the rela-
tive influence of each marker was also calculated to measure the

https://bioinformatics.mdanderson.org
https://portal.gdc.cancer.gov/
https://reactome.org/
https://pathcards.genecards.org/
https://pathcards.genecards.org/
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variable importance. The Cox model, regularized by the LASSO pen-
alty, was conducted in the glmnet package. The optimal step was
determined by the expected generalization error estimated from 10-
fold CV, and a LASSO model was finally built based on the 8 of 11
markers. Additionally, multivariate Cox regression was applied to
build a model and remove any ASmarkers that might not be indepen-
dent factors in the model, and a five AS model was obtained.

Based on the prediction score from GBM, the optimal cut-off point
value was calculated using the survminer package and was then
used to stratify patients into distinct prognostic groups. Subsequently,
the ROC curve and Kaplan-Meier curve were used to evaluate the
performance of the model in prognosis prediction of EC. The Wil-
coxon rank sum test implemented in the survcomp package was
employed to compare any two IAUCs through the results of time-
dependent ROC curves at the time points of 1 to 10 years. The C-in-
dex of the prognostic model was computed to assess their discrimina-
tion in survival analysis.
Gene Network Construction and Functional Enrichment

Analysis

UpSet plot, a novel visualization tool for the quantitative analysis of
interactive sets, was used to analyze the intersections among the seven
types of AS. A gene-interaction network was constructed by import-
ing the AS-marker genes into the STRING database (https://string-
db.org/). KEGG pathway enrichment analyses of the interacted genes
were performed using the clusterProfiler package.50 Only the path-
ways with a p value threshold of <0.05 were considered to be signif-
icantly enriched functional categories. GSEA was performed to deter-
mine whether an a priori defined set of genes shows statistical
significance, concordant differences between two biological states.
In detail, with the use of corresponding gene-expression profiles of
EC patients, differential expression analysis was performed with the
DEseq2 package to rank all genes based on the fold change between
two different risk groups of patients. Then, the entire ranked list
was used to assess how the genes of each gene set are distributed
across the ranked list. GSEA was conducted with the clusterProfiler
package using the gene set of “c2.cp.kegg.v6.1.entrez” downloaded
from the Molecular Signatures Database (MSigDB) database. Gene
sets with a p value <0.05 and a q value <0.25 after performing 1,000
permutations were considered to be significantly enriched.
Correlation Analyses of AS Markers and Splicing Factor Genes

Correlations between the expression levels of splicing factors and the
PSI levels of AS markers were analyzed by Spearman’s test. A p value
of <0.05 and a correlation coefficient of >0.30 were considered to be
significant. The correlation network was then visualized by Cytoscape
software.
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