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Spatial and temporal attention embedded spatial
temporal graph convolutional networks for skeleton
based gait recognition with multiple IMUs

Jianjun Yan,1,3,* Weixiang Xiong,1,* Li Jin,2 Jinlin Jiang,2 Zhihao Yang,1 Shuai Hu,1 and Qinghong Zhang1
SUMMARY

Gait recognition is one of the key technologies for exoskeleton robot control, while the current IMU-based
gait recognition methods only use inertial data and do not fully consider the interconnections of human
spatial structure and human joints. In this regard, a skeleton-based gait recognition approach with inertial
measurement units using spatial temporal graph convolutional networks with spatial and temporal atten-
tion is proposed. A human forward kinematics solver module was used for constructing different human
skeleton models and a temporal attention module was added for capturing the more important time
frames in the gait cycle.Moreover, the two-stream structurewas used to construct spatial temporal graph
convolutional networks with spatial and temporal attention for gait recognition, and an average accuracy
of about 99% was obtained in user experiments, which is the best performance compared to other algo-
rithms, provides certain reference for gait recognition and real-time control of exoskeleton robots.

INTRODUCTION

Exoskeleton robots are intelligent wearable devices that are tightly integrated with the human body through the binding structure and carry

out human-computer interaction and collaborative work to realize the functions of strength enhancement, body protection, and assisted

movement for the wearer, and assist the wearer in accomplishing specific tasks. Exoskeleton robots can be categorized into three types ac-

cording to their applications: power-assisted exoskeleton robots,1 weight-bearing exoskeleton robots2 and rehabilitation exoskeleton ro-

bots.3 Lower limb-assisted exoskeletons are used to help people with lower limb fatigue tomove, to protect normal people’s joints from injury

or to enhance their walking ability, which requires the exoskeleton to be able to judge the humanbody’s intention ofmovement in advance, so

as to cooperate with and assist the human body’s movement.

Accurately judging the wearer’s motion intention is an important prerequisite for realizing the precise control of exoskeleton robots, and

only with a motion sensing system that can accurately judge the user’s motion intention can a more reasonable and efficient control strategy

be adopted.4 Nowadays, the commonly used motion sensing systems mainly include electromyography signal sensing system,5 electroen-

cephalogram (EEG) signal sensing system,6 and inertial measurement unit (IMU) sensing system.7 And it is becomingmore andmore common

to use IMU to form motion sensing systems for exoskeletons. The Israeli team, ReWalk Robotic, introduced ReWalk Personal 6.0,8 which is

mainly controlled by back posture sensors, and when it detects a change in the user’s center of gravity, it immediately actuates the motors

in the hip and knee joints to complete a specificmovement, which is used in the rehabilitation of patients with spinal cord injuries. Indego9 is a

robot developed by Parker Hannifin, which can assist stroke patients in rehabilitation training. This exoskeleton can control separatemodules

through gyroscopes and sensors to realize themovement requirements in differentmodes. IMUmotion sensing system is not easy to be inter-

fered by the outside world, and the application is more mature, so this paper also adopts IMU to build the motion sensing system of the

exoskeleton. The IMU-based exoskeleton sensing system provides hardware foundation for subsequent gait recognition research.
RESULTS

Related work

Gait recognition algorithm is one of the key technologies of humanmotion sensing system, and previous researchmainly focuses on the field

of machine learning. Nguyen et al.10 used distributed plantar pressure sensors to obtain human motion information, and used K nearest

neighbors (KNN) classification method to realize five kinds of motion pattern recognition such as walking on a flat surface, walking up the

stairs, descending the stairs, going up the slope, and going down the slope. Liu et al.11 used inertial sensors to collect motion data in real

time, calculate group class correlation coefficients between motion data and template data, and apply hidden Markov model to identify
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the final motion states. Piris et al.12 incorporated in-ear accelerometer sensors for gait classification between walking and running and

compared them using support vector machines and KNN classifiers. The accuracy of both final classifiers exceeded 99%, outperforming

most of the previous studies.

Deep learning is a new research direction in the field of machine learning, including a variety of network structures such as convolutional

neural networks (CNNs),13 long short-term memory (LSTM),14 and recurrent neural network (RNN),15 which have better learning ability and

adaptability, and have been widely used in the field of gait recognition. Zou et al.16 used a cell phone to collect gait datasets of walking

in a natural state. Unlike the traditional methods that usually require a person to walk along a specified path or at a normal walking speed,

the proposedmethod collects inertial gait data in an unconstrainedmanner and does not need to knowwhen, where, and how the user walks.

In their experiments, the spatial feature information of the data image extracted by CNN combined with the temporal information extracted

by LSTM network, and then merges the features for classification, in the experiment, the experimental accuracy reached 93.7% for 118 exper-

imenters. Dehzangi et al.17 proposed a newmethod using the time-frequency (TF) expansion of human gait cycle to recognize human gait. A

deep convolutional neural network (DCNN) was designed, and the rawmotion data from five inertial sensors placed on the chest, lower back,

right wrist, right knee, and right ankle of each human subject were collected synchronously. Two early (input level) and late (decision scoring

level) multi-sensor fusion methods were proposed for a 10-class recognition task using the optimal individual IMU and 2DTF-DCNN achieved

91% subject recognition accuracy and improved the gait recognition accuracy of the system to 93.36% and 97.06%, respectively, by the multi-

sensor fusion approach. Fang et al.18 proposed a gait neural network (GNN) based on temporal convolutional networks for gait recognition

and prediction, which consists of an intermediate network, a target network, and a recognition and prediction model that can fully utilize his-

torical information from sensors, and has shown excellent performance on publicly available HuGaDB datasets as well as data collected by

inertial-basedwearablemotion capture devices. However, those gait recognitionmethods based on inertial data do not take into account the

spatial connection and graph structure of the human skeleton, and cannot reflect the relationship between joints during motion, and cannot

represent human gait characteristics well.

Spatial temporal graph convolutional networks (ST-GCN)19,20 are widely used in the field of video-based action recognition. This method

utilizes video methods such as OpenPose to detect human skeleton, captures the relationship between human joints during action, and con-

structs a ST-GCN for action recognition based on human skeleton model. Sheng et al.21 proposed an attention augmented temporal graph

convolutional network for gait-based recognition and motion prediction. With spatial and temporal attention enhancement, the proposed

model can capture discriminative features in spatial dependence and temporal dynamics. Liu et al.22 used a multi-scale strategy to extract

gait features, constructed a complex spatial temporal adjacency matrix, and the proposed G3D module utilizes dense inter-temporal edges

as jump connections to directly propagate information in the spatial temporal graph, and the MS-G3D Net constructed by combining these

features showed excellent performance on three publicly available datasets. Yin et al.23 proposed an end-to-end, spatial-temporal, joint

attention graph convolutional network (STJA-GCN) for recognizing anomalous gaits. Accuracy of 93.17% and 92.08% were obtained on

two common anomalous gait datasets, which were improved by 9.22% and 20.65%, respectively, when compared with the original ST-

GCN. Chen et al.24 proposed a novel spatial temporal adaptive graph convolutional network (STA-GCN) where two main modules are intro-

duced, respectively. Spatial feature learning module infers context-sensitive joint implicit connection and adaptively aggregates spatial

feature mined from implicit and explicit connection. Temporal feature learning module extracts and adaptively aggregates multi-scale tem-

poral feature of joint motion. Experimental results demonstrate STA-GCN outperforms state-of-the-art methods in two tasks. Thesemethods

mentioned previously have made improvements in space, time, and graph structure learning, but they do not take into account the construc-

tion of the human skeleton under wearable sensors, and there is still a lack of focus on spatial temporal aspects. Meanwhile, the existing IMU-

based gait recognition methods do not fully consider the connection between the joints of the human lower limbs. However, the spatial loca-

tion of the IMU can be utilized to construct a skeletonmodel, thus reflecting the physical connection relationships of the human body’s joints,

and at the same time, the construction of the skeleton does not have to be confined to the physically fixed position of the sensor, and there are

a variety of different construction possibilities, so a human forward kinematics solver module is added in the ST-GCN in this paper, which

converts the IMUmotion data into human node coordinates to conduct different human skeletons, and then uses the spatial temporal graph

network to mine the connections between the joints of the human lower limbs, capture time-domain relationships and spatial-domain rela-

tionships in gait, and extract the patterns of the different gaits for the prediction of each gait. And the addition of the temporal attention

mechanism also allows the network to capture more important time frames within the gait cycle, thus improving the performance of the

network. Therefore, in order to improve the robustness and accuracy of gait recognition based on inertial data, spatial and temporal attention

embedded spatial temporal graph convolutional networks with two-stream (2s-ST-STGCN) is proposed for skeleton-based gait recognition

with multiple IMUs.

We improved the existing acquisition device25 through adding IMUs for gaining the motion data of ankles, and re-collected the motion

data of ten gaits of human body, and carried out the research of gait recognition of lower limb exoskeleton robot based on ST-GCN. A

human forward kinematics solver module was added to the network, and different human skeleton models were constructed for experi-

ments, At the same time, the two-stream structure was introduced to simultaneously consider node data, skeleton data, and motion data,

and a temporal attention module was added to focus on more important time frames in the gait cycle. Experiments were conducted to

discuss the effects of different skeleton models on the network, and the effects of window size and shift size on the performance of the

human gait recognition model were explored, and user-independent and user-dependent experiments were conducted, compared

with other algorithms, and the ablation experiment was conducted to validate the enhancement of the model brought by the added

modules.
2 iScience 27, 110646, September 20, 2024



Figure 1. Lower limb assisted exoskeleton robot

ll
OPEN ACCESS

iScience
Article
Methods and data

Lower limb assisted exoskeleton robots

The structure schematic of the lower limb assisted exoskeleton26 developed in our laboratory is shown in Figure 1, which adopts a rigid me-

chanical support structure, installing inertial measurement units in the waist, thigh, calf, and ankle of the exoskeleton robot to collect real-time

gait data of the human body; arranges amotor-driven structure in the knee joint to provide the human body with the assisting torque; places a

battery at the waist to supply power for the controller and actuator; installs the controller and other components at the back of the exoskel-

eton to carry out the gait recognition of the human body and adopts the corresponding control strategy to realize the real-time control of the

exoskeleton robot.

Human gait information acquisition equipment

In this paper, the existing human gait information acquisition device was improved by adding inertial sensors at the ankle, and its structure is

shown in Figure 2, which consists of IMU at the waist, thighs, calves and ankles, a coprocessor, and a flexible binding structure, and the inertial

sensors communicate data with the coprocessor via a can bus. Among them, the IMU is ICM20948, and the main control chip model of the

coprocessor is STM32F767IGT6, and the physical object is shown in Figure 2. The data sampling frequency is 100 HZ. So the three-axis ac-

celeration, three-axis angular velocity, and three-axis angle of the human waist, thigh, calf, and ankle are transmitted to the coprocessor

through the inertial sensors, and the data can be transmitted to the upper computer terminal through the Bluetooth on the coprocessor,

which can be used to prepare the data for the study of gait recognition.25

Acquisition of human gait data

Fewer inertial datasets are currently available for gait recognition and somegaits are not included, so the data are reorganized in this paper. In

this paper, the gait data acquisition is done by the human gait information acquisition equipment, including the nine-axis motion data of ten

gaits of human body, which arewalking, running, going upstairs, going downstairs, going uphill, going downhill, backing off, standing, squat,

and stand at ease.

In this paper, seven volunteers were invited to collect gait data with a sampling frequency of 100 Hz, and nine sets of data were collected,

which were named as dataset 1, dataset 2, dataset 3, dataset 4, dataset 5, dataset 6, dataset 7, dataset 8, and dataset 9 of which datasets 3, 4,

5, 6, and 7 were the gait data of five different volunteers, dataset 1 and dataset 8 were the gait data of the sixth volunteer (re-dressed), and

dataset 2 and dataset 9 were the gait data from the seventh volunteer (re-dressed), and the specifics of the data are shown in Table 1. The
iScience 27, 110646, September 20, 2024 3



Figure 2. Human gait information acquisition device
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schematic diagram of data acquisition is shown in Figure 3, and each dataset includes three-axis motion angles, three-axis acceleration, and

three-axis angular velocity of waist, thigh, calf, and ankle, in which the sensor and the human body coordinate system are specified as shown in

Figure 4, and both of them are based on the side of the human body, with x axis for the direction of motion parallel to the sagittal plane of the

human body, y axis for the direction of gravitational acceleration, and z axis for the direction perpendicular to the sagittal plane of the human

body.25

ST-STGCN based gait recognition

In this paper, a spatial temporal graph convolutional gait recognition method based on spatial temporal attention and IMU is proposed. The

flow of the algorithm is as follows: firstly, gait data are obtained through IMUs; secondly, gait data are converted to joint coordinates through

human forward kinematics solvingmodule; thirdly, human lower limb skeletonmodel is established, and spatial temporal graph convolutional

networks with spatial and temporal attention is constructed for gait recognition based on the two-stream structure; finally, the result of gait

recognition is output. Therefore, the experimental process of the algorithm in this paper can be shown in Figure 5 further.
4 iScience 27, 110646, September 20, 2024



Table 1. Status of data

Activity Time sec (min) Percent (%)

Walking 1000(17) 10

Running 1000(17) 10

Going upstairs 1000(17) 10

Going downstairs 1000(17) 10

Going uphill 1000(17) 10

Going downhill 1000(17) 10

Backing off 1000(17) 10

Standing 1000(17) 10

Squat 1000(17) 10

Stand at ease 1000(17) 10

Total 10000(170) 100
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Positive kinematics solution for the human body. The human forward kinematics solution obtains the position of each joint of the human

body through the human joint lengths, relative joint rotations, and root node coordinates to get the posture of the whole skeleton for gait

recognition.

In this part of the paper, the 3D coordinates of the lower limb joints will be obtained using the motion angles of the hip, knee, and ankle

joints in the aforementioned dataset for subsequent experiments. Since the centers of the hip and waist are relatively fixed in human body

during motion, there are two skeleton construction methods for the hip joint: one is to construct it in its natural state, separating the hip and

waist and considering its small rotation in the horizontal plane; the other is to merge the hip and waist together without considering its rota-

tion in the horizontal plane. Meanwhile, although this paper mainly focuses on the motion characteristics of the human lower limbs, the tilt of

the human torso in motion will also reflect themotion of the gait to a certain extent, such as when going uphill, the human body will be slightly

leaning forward, therefore, in order to express themotion angle of the end joints in the skeleton, it is necessary to lead out virtual nodes at the

end joints, i.e., the chest node and the foot node. In summary, in order to explore a better representation of the skeletonmodel, this paper will

consider three representations of the skeleton model: (1) separating the waist node from the hip node, but not to lead out the virtual chest

node and foot node, and focus only on the hip node, knee node, and ankle node, which have themost significant motion of the lower limb, so

as to establish a 7-node skeletonmodel; (2) combining the hip node with the waist node on the basis of 7-node, without considering the rota-

tion of the hip joint in the horizontal plane, but eliciting the virtual chest node and the foot node, which are used to represent the tilting of the

human body’s torso and the movement of the foot in the movement, respectively, to establish an 8-node skeleton model; (3) on the basis of

eliciting the virtual chest node and foot node, the waist node is separated from the hip node, and the rotation of the hip joint in the horizontal

plane is taken into account to establish a 10-node skeleton model; all the aforementioned nodes are converted from the joint angle and joint

length.
Figure 3. Schematic of data collection (from left to right: walking, going upstairs, going downstairs)

iScience 27, 110646, September 20, 2024 5



Figure 4. Sensor and human body coordinate system
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The skeletonmodel is constructed in the way shown in Figure 6 taking the left leg of 10-node skeleton as an example (7-node skeleton lacks

one chest node and two foot nodes, and 8-node skeletonmerge the hip node with the waist node), defining the length fromwaist to chest as

L1, the length fromwaist to hip as L2, the length of the thigh as L3, the length of the calf as L4, and the length of the foot as L5, and the angle of

human body’s tilting, the rotation angle of the thigh and the rotation angle of the calf, and the rotation angle of the foot in the sagittal plane
Figure 5. Flow of gait recognition

6 iScience 27, 110646, September 20, 2024



Figure 6. Node information conversion
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are a, g, q, h, respectively, and the rotation angle of the hip with respect to the waist in the horizontal plane is b. Since the human body mainly

moves in the sagittal plane, the motion in the horizontal plane is dominated by the hip joint, and other joints are not taken into account. From

this, the waist coordinate P0 is defined as (0, 0, 0) as the base, the chest coordinate P1 can be calculated by L1 and angle a, the hip coordinate

P2 can be obtained by L2 and b, the knee coordinate P3 can be calculated by L2 and g as well as P2, the ankle coordinate P4 can be calculated

by P3, L4, and q, and the foot coordinate P5 can be calculated by P4, L5, and h, and the right leg adopts similar case processing, the human

body node information is obtained as shown in Figure 7 (the joint length is averaged from the normal human body), and the calculation pro-

cess is as follows:

P0 = ð0;0;0Þ
P1 = ðL1 � sinðaÞ;0; L1 � cosðaÞ Þ
P2 = ðsinðbÞ � L2; 0; cosðbÞ � L2 Þ
P3 = ðP2: x+ sinðgÞ3 L3; P2: y+ cosðgÞ � L3;P2:z Þ
P4 = ðP3: x+ sinðqÞ3 L4; P3: y+ cosðqÞ � L4;P2:z Þ
P5 = ðP4: x+ sinðhÞ3 L5; P4: y+ cosðhÞ � L5; P2:z Þ

Modeling the human skeleton. Previous studies have shown that fusing joint information with skeletal information facilitates gait recog-

nition. The human skeleton can be expressed as the difference in coordinates between two connected joints. Take 3D joint coordinates as an
Figure 7. Different skeleton models for walking (from left to right: 7 nodes, 8 nodes, 10 nodes)

iScience 27, 110646, September 20, 2024 7



Figure 8. Spatial temporal graph (from left to right: 7 nodes, 8 nodes, 10 nodes)
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example: the original joint data contains coordinates in both x and y directions. Given two nodes P1 = (x1, y1, z1) and P2 = (x2, y2, z2), then the

skeleton formed by connecting two joints P1 and P2 can be expressed as the vector difference between the two joints, i.e., Bp1, p2 = (x1-x2, y1-

y2, z1-z2), expanding to each node. But for the motion gait, we have to consider both the joint position and the joint rotation. After the joint

position has been estimated, combined with the corresponding inertial measurement output to get the joint rotation. Therefore, taking

walking as an example, the three skeleton construction methods to get the skeleton model are shown in Figure 7 below. As shown in the

figure, the 7-node skeleton model separates the hip joint node from the waist node, taking into account the motion angle of the hip joint

in the horizontal plane, but not the foot movement of the human body. On the contrary, the 8-node skeleton model takes into account

the foot movement of the human body, but does not consider the rotation of the hip joint in the horizontal plane. Therefore, the 10-node

skeleton model is further introduced. This model simultaneously considers the rotation of the hip joint in the horizontal plane and the
Figure 9. Spatial configuration partitioning (nodes are labeled according to their distance to the skeleton center of gravity (black fork) and the root

node (green)

The distance to the centripetal node is shorter (blue) and the distance to the centrifugal node is farther (yellow).

8 iScience 27, 110646, September 20, 2024



Figure 10. Two-stream structure, two ST-STGCN taking joint information, bone information, and joint motion information, and bone motion

information as inputs, respectively, and the output tensor is fused to predict gait labels
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movement of the human foot. In the future, these three skeletonmodels will be used for experiments to explore better skeleton construction

methods.

Graph structure and graph convolution. A graph is a data structure consisting of a series of nodes and edges. As non-Euclidean data,

graph data have no regular spatial structure and its complexity poses a great challenge to existing machine learning algorithms.27 Recently,

GNNs have been used in a variety of difficult tasks for previous machine learning algorithms because of their ability to model data generated

from non-Euclidean domains and capture the internal correlation of the data and have beenwidely successful.28,29 Encouraged by the success

of CNN in computer vision, graph convolutional neural networks (GCN)30 have attracted more people. These methods can be divided into

spectral methods31 and spatial methods.32 Spectral methods define graph convolution by using the graph Fourier transform. Spatial methods

use the topology of the graph directly and apply convolution filters based on the neighborhood information of the graph.

The core of graph convolution is to do matrix multiplication, and the matrix it uses is the adjacency matrix. In terms of image processing,

the convolution operation uses a number of convolution kernels (filter/kernel) of fixed size to scan the input image. Near the center pixel of

each scan, a pixel matrix of the same size as the weight matrix is extracted, and the feature vectors on these pixels are stitched in spatial order

and inner product with the parameter vectors of the convolution kernel to obtain the convolution output value at that location. Here, a nearby

pixel can be defined as a neighborhood on a grid of pixels. When extending the convolution operation on an image to an arbitrary graph

structure, we can also define the neighborhood and a series of weight matrices of any node. This is the basic idea of graph convolution

networks.

However, unlike images, the number of nodes in the neighborhood of each node is not fixed if an adjacency matrix is used to define the

neighborhood on ordinary graph structures (the pixels near the pixels on the image are always fixed when considering the complement 0).

This makes it difficult for us to determine: (1) the dimensionality of the parameters of the convolution kernel to be used; (2) how to arrange the

weight matrix with the nodes in the neighborhood to perform inner product operations. In the original GCN article, the authors proposed to

turn the inner product operation into one that computes: the inner product using the same vector with all the feature vectors on the points in

the neighborhood and averages the result. This allows: (1) the parameters of the convolution kernel to be determined as a vector of fixed

length; (2) the order of the nodes in the neighborhood need not be considered. This design allows GCN to be used on graphs with arbitrary

connectivity relations and has achieved good performance in some tasks such as network analysis and semi-supervised learning.

Spatial-temporal graph convolutional network. A ST-GCN was proposed for solving the human action recognition problem based on

key points of the human skeleton.33 In addition to the novelty, the approach achieved a large performance improvement on standard action

recognition datasets. The basis of ST-GCN is the spatial temporal graph structure. The idea of constructing a spatial temporal graph from a

sequence of skeleton key points is derived from existing skeleton action recognition methods and image recognition methods. Most of the

existing skeleton-based action recognition methods introduce some spatial structure information to improve the recognition accuracy,

including the connection relationship of adjacent key points or body parts such as hand-elbow-shoulder connection relationship. To model

this spatial information, existing methods often use a sequential model such as RNN to traverse the connected key points. This requires the

model designer to define a rule for traversal or to define some body parts manually. But in such design, it is difficult to get an optimal traversal

rule or partitioning of components. The natural connection relationship between key points actually constitutes a natural graph structure.

Therefore, ST-GCNactually proposed a spatial temporal graph constructionmethodwith the following rules: (1) inside each frame, the spatial

graph was constructed according to the natural skeleton connection relationship of the human body; (2) the same key points in two adjacent

frameswere connected to form a temporal edge; (3) all key points in the input frames formed a node set, and all edges in steps 1 and 2 form an

edge set, i.e., the required temporal graph. The spatial temporal graph constructed by the three skeleton models in this paper is shown in

Figure 8.

In order to perform skeleton action recognition on the spatial temporal graph, it is also necessary to define the convolution operation on

the spatial temporal graph, so the original paper proposed three spatial partitioning rules, which were uni-labeling, distance partitioning, and

spatial configuration partitioning. The three types of division mainly lie in the different ways of dividing the node neighborhoods. The third
iScience 27, 110646, September 20, 2024 9



Figure 11. Illustration of the overall structure of the ST-STGCN

Residual connectivity is used to ensure the stability of training. S-SGC denotes the spatial graph convolutional layer with self-attention enhancement. T-Conv

denotes the temporal convolutional layer with temporal attention.
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partitioning method divides the 1 neighborhood of a node into 3 subsets, and the first subset is the node itself, and the second is the set of

neighboring nodes that are closer to the center of gravity of the whole skeleton than this node in spatial location, and the third is the set of

neighboring nodes that are further away from the center of gravity. The establishment of this division rule lies in the definition of centripetal

and centrifugal motions according to the study of motion analysis. This division is also used in this paper, as shown in Figure 9 (taking 8-node

skeleton as an example).

Self-attention enhanced spatial graph convolution layer. The spatial-temporal graph convolution in this paper has been partially

defined by ST-GCN previously, while in the message passing process it is necessary to consider not only the local neighborhood nodes pre-

defined by the natural connectivity of the human body, but also other nodes with high information relevance. Therefore, the S-ST-GCN20

added a self-attention enhanced spatial graph convolutional layer on top of the ST-GCN, which consisted of three parts: a graph convolu-

tional part, a self-attention part, and a gating mechanism, where the self-attention mechanism calculated the weighted sum of the values

of all nodes to aggregate the features of the whole graph and provided supplemental information to the spatial graph convolutional module.

Temporal convolution layer with temporal attention. However, in the human gait recognition task, it is necessary to focus not only on

the spatial structure of the human body, but also to consider which time frames in the gait cycle are more important, so it is necessary to

incorporate a temporal attention mechanism. A temporal attention mechanism34 is incorporated in this paper to help improve the perfor-

mance. The temporal attention part is added within the original temporal convolutional layer, so that a temporal convolutional part, a tem-

poral attention part and a gatingmechanism constitute the temporal convolutional layer with temporal attention. The basicmechanism of the

temporal attention part can be represented by the following equation:

E = Ve$s
���

ch
ðr � 1Þ�TU1

�
U2

�
U3ch

ðr � 1Þ� + be

�
(Equation 1)

That is, the inputs of time steps T are transposed into vector multiplications in the time dimension and the correlation degree between

different times is calculated. This allows considering time frames within the gait cycle that are more relevant to the gait.

Two-stream structure. In some previous work on action recognition, in addition to joint positions, second-order features, i.e., skeletal

information representing the length and orientation of the human skeleton, have also proved to be useful for skeleton-based action recog-

nition tasks. Therefore, in gait recognition tasks, skeletal information may also play an important role and needs to be considered as well. At

the same time, for some gaits, motion information such as velocity and acceleration may become equally important for differentiation be-

tween the two, and thus we constructed a two-stream network to use joint information, bone information, and motion information of both

simultaneously.

Skeletal vectors have been constructed previous, so the two-stream spatial temporal attention 2s-ST-STGCN is shown in Figure 10. The

joint data representing the joint position and the bone data representing the length and orientation of the bones, as well as themotion data of

both, are input into the two ST-STGCN, and the neighbor matrix A is learned separately, and the edge_importance (a matrix of weights of

edges, which is used to give a larger weight to important edges in the neighbormatrix and suppresses the weights of non-important edges) is

learned, i.e., each data stream is trained separately, and then the output tensor of the two data streams is fused to predict the gait labels.

The basic block of ST-STGCN consisted of the self-attention enhanced spatial graph convolutional layer, the temporal convolutional layer

with temporal attention and several functional layers. The self-attention enhanced spatial graph convolutional layer was used to aggregate

information of joints along the spatial dimension, and the temporal convolutional layer with was temporal attention used to aggregate infor-

mation along the temporal dimension. The whole S-ST-GCN structure in the original paper consisted of three parts: an input layer of
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Table 2. Experimental environment configuration

Name Configuration Information

OS Windows 10

Hardware CPU: AMD R7-5800H

Memory: 16GB

Graphs card: RTX3060, 6GB

Python library Python 3.8

Pytorch 1.8.1

Sklearn 0.24.2

Numpy 1.20.0

Pandas 1.2.5

Matplotlib 3.4.2

Keras 2.4.3
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BatchNorm; nine basic graph convolution blocks; and a fully convolutional network (FCN). But this paper did not use all the basic graph convo-

lution blocks, only six basic graph convolution blocks were used. In this paper, we use the overall structure of the ST-STGCN as shown in

Figure 11. The coordinate conversion module converts the IMU data into human skeleton data and constructs the spatial-temporal graph

in the subsequent network according to the previous rules. After the constructed spatial temporal graph are convolved by six graph convo-

lution modules, respectively, the output tensor is input to the global average pooling layer to obtain the feature vector for each gait. Finally,

the vectors are passed to the output layer by the softmax function to obtain the prediction of gait categories.
Experiment

Experimental setup

We converted the joint angle data of the previous ten gaits into joint coordinates by human forward kinematics solving, conducted experi-

ments on the effect of window size and shift size, and applied MiniRocket,35 time series transformer (TST),36 temporal convolutional network

(TCN),37 LSTM,14 RNN,15 five purely data-driven time series algorithms for user-independent and user-dependent experiments, and

compared with 2s-ST-STGCN to demonstrate the superiority of 2s-ST-STGCN proposed in this paper for gait recognition.

In order to verify the feasibility of the proposed human gait recognition method based on 2s-ST-STGCN, in this part of the paper,

three types of experiments are conducted: (1) user-independent experiment: using the motion data of five different volunteers as the

training set, using the motion data of another two volunteers as the test set, and comparing the algorithms; (2) user-dependent

experiment: using the motion data of seven different volunteers as the training set, using the motion data of the two volunteers of

the seven volunteers after re-wearing as the test set, to compare the algorithms and to compare with experiment (1); (3) ablation exper-

iment: remove the human forward kinematics solving module, the time attention module and the two-stream structure for user-inde-

pendent and user-dependent experiments, respectively, to validate the performance enhancement of the improvements made in

this paper.

In this paper, training and testing platform for gait recognition models was built on Windows 10, mainly implemented using Python and

Pytorch. Table 2 shows the specific hardware configuration information of the experimental environment.

Experiment of skeleton construction

In order to choose a better skeleton representation, the previously mentioned construction methods of three skeleton models were experi-

mented separately, and the other parameters of 2s-ST-STGCNwere kept consistent, and the results are shown in Table 3. It can be seen from

the results that under the skeleton model representation of 8 nodes, the accuracy of the model is the highest, 98.307%, which is 0.518% and

0.419% higher than that of 7 nodes and 10 nodes, respectively, and the F1-score, which combines recall and precision, is 98.308%, which is

0.532% and 0.419% higher than that of 7 nodes and 10 nodes, respectively, which indicates that under the 8-node the network model per-

formance is better. Therefore, the skeleton model expression of 8 nodes will be used in this paper.
Table 3. Results of experiment of number of nodes

Number of nodes Accuracy (%) Recall (%) Precision (%) F1-score (%)

7 nodes 97.789 97.799 97.748 97.776

8 nodes 98.307 98.311 98.321 98.308

10 nodes 97.888 97.890 97.889 97.889
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Table 4. Impact of shift size on algorithm performance

Shift size Accuracy (%) Recall (%) Precision (%) F1-score (%)

10 98.407 98.411 98.421 98.408

20 98.116 98.119 98.146 98.116

30 97.876 97.876 97.939 97.873

40 98.037 98.040 98.090 98.041

50 97.796 97.799 97.869 97.772

60 98.017 98.028 98.073 98.009
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Experiment of shift size

Since the data processing method used in this paper is data sliding window, it is necessary to explore the effect of both window size and

window shift size on the model. Since the sampling frequency of the sensor used in this experiment is 100Hz, a normal person walks about

100�120 steps perminute, and a gait cycle is about 1s, so the window size should vary around 100. Therefore, in order to better investigate the

effect of shift size on the performance of the algorithm, this paper sets the window size to 100, and changes only the shift size of the training

data, and unifies the shift size of the predicted data to 1. So we change the shift size to 10, 20, 30, 40, 50, and 60, respectively, for the exper-

iment, using datasets 1, 2, 3, 4, and 5 as the training set and dataset 6 and 7 as the test set, and 90% of the data were used for training and 10%

for validation, with 500 training sessions each time, and the learning rate was set to 0.0001. The results are shown in Table 4.

The average accuracy of the shift size of 10 is 98.407%,which is 0.291%, 0.531%, 0.370%, 0.611%, and 0.390%higher than shift sizes of 20, 30,

40, 50, and 60, respectively. Moreover, its F1-sorce of 98.408% was also the highest when shift size was 10, so shift size was set to 10 in all

subsequent experiments.

Experiment of window size

It has shown that the window size affects the experimental results when adding windows to the data. Therefore, when other parameters

remain unchanged, experiments on the effect of window size on the performance of 2s-ST-STGCN algorithm were conducted to explore

the optimal window size. It has been mentioned that the window size should be varied around 100, so in this part the window size is set

to 60, 70, 80, 90, 100, 110, 120, and 130, respectively, and the shift size is set to 10 to keep it unchanged, using datasets 1, 2, 3, 4, and 5 as

the training set and dataset 6 and 7 as the test set. The obtained results are shown in Table 5.

The average accuracy is 98.978% that of the window size is 80, which is 0.961%, 0. 72%, 0.27%, 1.102%, 0.121%, 0.041%, and 0.181% higher

than the window sizes of 60, 70, 90, 100, 110, 120, and 130, respectively. And its F1-score is 98.979% when the window size is 80, which is also

the highest and the best performance, so the window size is set to 80 in the subsequent experiments.

User-independent experiment

The optimal window size and shift size settings have been obtained from the previous experiments. In this section, an experimental compar-

ison between the 2s-ST-STGCN and other algorithms will be conducted. In this section, the raw three-axis angular velocity and three-axis

acceleration are used as inputs to MiniRocket, TST, TCN, LSTM, and RNN, respectively, and experimental comparisons are performed

separately.

In this part, we used datasets 1, 2, 3, 4, and 5 as the training set and dataset 6 and 7 as the test set, and the window size and shift size were

set to 80 and 10, respectively, the results shown in Table 6.

As shown in Table 6, among the algorithms, 2s-ST-STGCN has the highest average accuracy, which is 4.107%, 11.105%, 20.041%, 19.38%,

and 17.441% higher than MiniRocket, TST, TCN, LSTM, and RNN, respectively, and its F1-score of 98.979%, which is also the highest.
Table 5. Impact of window size on algorithm performance

Window size Accuracy (%) Recall (%) Precision (%) F1-score (%)

60 98.017 98.028 98.073 98.009

70 98.258 98.259 98.274 98.255

80 98.978 98.980 98.983 98.979

90 98.708 98.710 98.721 98.708

100 97.876 97.876 97.939 97.873

110 98.857 98.858 98.862 98.858

120 98.937 98.939 98.943 98.938

130 98.797 98.799 98.802 98.799
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Table 6. User-independent experimental results

Algorithm Accuracy (%) Recall (%) Precision (%) F1-score (%)

RNN 81.537 78.887 80.439 79.016

LSTM 79.598 77.489 83.241 76.842

TCN 78.937 77.787 79.584 76.880

TST 87.873 86.543 87.754 86.287

MiniRocket 94.871 93.761 93.890 93.881

2s-ST-STGCN 98.978 98.980 98.983 98.979
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User-dependent experiment

This part is basically the same as the user-independent experiments in terms of experimental setup except for the use of datasets. This part

uses datasets 1, 2, 3, 4, 5, 6, and 7 as training sets and dataset 8 and 9 as test set for user-dependent experiments, and the results are obtained

as shown in Table 7.

As shown in Table 7, 2s-ST-STGCN has the highest average accuracy among the algorithms, which is 1.288%, 7.699%, 13.595%, 11.181%,

and 15.403% higher than MiniRocket, TST, TCN, LSTM, and RNN, respectively, and also achieves the highest with its F1-score of 99.159%.

Ablation experiment

The ST-STGCN has been compared with other algorithms in the previous section, but it has not been verified that the modules added in this

paper bring performance improvement to the model. Therefore, in this part, in order to verify the performance enhancement brought to the

model by the human forward kinematics solving module as well as the temporal attention module, experiments are carried out on the ST-

GCN containing only the human forward kinematics solving module (S-STGCN-Y) and the ST-GCN containing only the temporal attention

module (ST-STGCN-N). In addition, to verify the performance of the two-stream structure proposed in this article, ST-STGCN (including

the human forward kinematics solvingmodule and temporal attentionmodule) with one-stream was also tested, and the results are obtained

as shown in Table 8, and the parameters of the experiments are the same as those described in the previous section.

As shown in Table 8, the average accuracy of 2s-ST-STGCN is highest, which is 0.102% higher than ST-STGCN in user-independent exper-

iment, and in user-dependent experiment, the average accuracy of 2s-ST-STGCN is 0.049% higher than ST-STGCN, indicating that the two-

stream structure brings positive gains. At the same time, the average accuracy of ST-STGCN is 0.29% and 0.279% higher than S-STGCN-Y and

ST-STGCN-N in user-independent experiment, respectively. And in user-dependent experiment, ST-STGCN is 0.232% and 0.011% higher

than S-STGCN-Y and ST-STGCN-N, respectively. The results of the experiment suggest that both the human forward kinematics solvingmod-

ule and the temporal attention module improve the model’s performance.
DISCUSSION

Effect of skeleton construction method on algorithm performance

As can be seen from Table 3, the algorithm performs better using the 8-node skeleton model expression pattern than using the 7-node and

10-node skeleton model expression patterns. To further analyze it, the difference between the skeleton model of 10 nodes and the skeleton

model of 8 nodes is that 10 nodes separate the hip nodes from the waist nodes and consider the rotation of the hip joints in the horizontal

plane, but adding this information its results are not improved but the difference is not big, probably the similarity of the hip joint rotation

angle between different gaits leads to this result; and the difference between it and the skeleton model of 7 nodes is that in 10 nodes, virtual

chest node and foot node are added, and extra human torso information is added, such as the humanbody leans back whengoing downstairs

and leans forward when going up. The virtual chest node is able to represent the inclination degree of the torso tilt, which is more helpful for

the expression of human gait and facilitates the differentiation of different gaits, and thus the results are better than those at 7 nodes. To

further analyze the results, the mean value of the torso tilt angle for each gait is calculated, as shown in Table 9.
Table 7. Results of user-dependent experiment

Algorithm Accuracy (%) Recall (%) Precision (%) F1-score (%)

RNN 83.756 81.437 82.853 80.112

LSTM 87.978 87.487 86.511 86.332

TCN 85.564 84.787 85.223 85.778

TST 91.460 90.190 92.464 90.287

MiniRocket 97.871 96.598 97.687 97.881

2s-ST-STGCN 99.159 99.160 99.163 99.158
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Table 8. Results of ablation experiment

Algorithm Accuracy (%) Recall (%) Precision (%) F1-score (%)

Independent experiment

S-STGCN-Y 98.586 98.589 98.593 98.588

ST-STGCN-N 98.597 98.602 98.609 98.600

ST-STGCN 98.876 98.880 98.883 98.879

2s-ST-STGCN 98.978 98.980 98.983 98.979

Dependent experiment

S-STGCN-Y 98.878 98.881 98.887 98.879

ST-STGCN-N 99.099 99.107 99.106 99.099

ST-STGCN 99.110 99.092 99.123 99.108

2s-ST-STGCN 99.159 99.160 99.163 99.158
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As can be seen from Table 9, the average tilt angle of the torso under different gaits is different, for example, for the three gaits of running,

going upstairs, and going uphill, the average angle between the human torso and the positive direction of the x axis is less than 90�, which
indicates that the human body is tilted forward at this time, but the average angle between the human torso and the positive direction of the x

axis is more than 90� for the two gaits of going downstairs and going uphill, indicating that the human body is leaning back, which effectively

helps the algorithm to differentiate between these similar gaits, so the addition of the virtual chest node helps to improve the performance of

the algorithm.
Effect of shift size on algorithm performance

Appropriately changing the shift size improves the performance of the 2s-ST-STGCN algorithm. From Table 4, it can be seen that the average

accuracy of gait recognition is the lowest when the shift size is 50, which is 97.796%; when the shift size is 10, the average accuracy of gait

recognition is the highest, which is 98.407%, which is 0.611% higher than the shift size of 50.

In order to further analyze the effect of shift size change on the performance of gait recognition, the recognition accuracy of each gait in

different shift size was calculated, as shown in Figure 12.

As can be seen from Figure 12, in the process of changing the shift size, 2s-ST-STGCN recognizes most of the gaits stably, and the recog-

nition accuracies are around 97%, and only running is relatively lower. From the confusion matrix (Figure 13), the relatively low recognition

accuracy of running is because it is recognized as going downstairs and going upstairs indicating that there is still some error between similar

gaits due to the similarity of data. However, the performance of 2s-ST-STGCN is good for different shift sizes, so the performanceof the spatial

temporal graph convolution algorithm with spatial temporal attention proposed in this paper is not greatly affected by the parameter of shift

size, and the gait model has a strong robustness, which can reduce the computational amount of finding the appropriate shift size for different

data in practical use.
Effect of window size on algorithm performance

Different window size affects the performance of 2s-ST-STGCN algorithm. As can be seen from Table 5, 2s-ST-STGCN performs the worst

when the window size is 100, with an average accuracy of 97.876%, and 2s-ST-STGCN performs the best when the window size is 80, with
Table 9. Mean values of trunk tilt angle for each gait

Gait Mean waist angle (�)

Walking 95.684

Running 84.823

Going upstairs 86.978

Going downstairs 97.691

Going uphill 86.676

Going downhill 108.640

Backing off 89.465

Standing 86.575

Squat 71.809

Stand at ease 93.047
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Figure 12. Recognition accuracy of each gait during shift size changing
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an average accuracy of 98.978%, which is 1.102% higher than the window size of 100. To further analyze the effect of window size on the ac-

curacy of gait recognition, the accuracy of each gait recognition under different window sizes was calculated, as shown in Figure 14.

As shown in Figure 14, similar to shift size, 2s-ST-STGCN also recognizes most of the gaits stably with recognition accuracies around 97%

during the process of changing the window size, still only running is relatively low. Similarly, from the confusionmatrix (shown in Figure 15), the

relatively low recognition accuracy of running is because it is recognized as going upstairs and going downstairs. But overall, for different

window sizes, the performance of 2s-ST-STGCN is good, so the performance of the spatial temporal graph convolution algorithmwith spatial

temporal attention proposed in this paper is not greatly affected by the parameter of window size, and the gait model has a strong robust-

ness, which can reduce the computational amount of finding the appropriate window size for different data in practical use.
Analysis of results of user-independent experiment

2s-ST-STGCN performed the best in the user-independent experiment with an average recognition accuracy of 98.978%. To further analyze

the performance of each algorithm, the recognition accuracy of each gait was calculated, as shown in Figure 16. 2s-ST-STGCN has higher and

more stable recognition accuracy than the other five algorithms in most gait recognition, and the lowest accuracy is around 98%, while the

other algorithms even have the lowest accuracy of 23%. The accuracy of 2s-ST-STGCN on the nine gaits of walking, running, going upstairs,

going downstairs, going uphill, backing off, standing, squat, and stand at ease are 100%, 99%, 99%, 98%, 99%, 99%, 99%, 100%, and 98%,

respectively, ranking first, and the accuracy of going downhill is 98%, ranking second, indicating that 2s-ST-STGCN outperforms other algo-

rithms in each gait, and its high accuracy and stability are more suitable for gait recognition.

The experimental results of 2s-ST-STGCN are further analyzed, and its confusion matrix is shown in Figure 15. 2s-ST-STGCN has high

recognition accuracy for all ten gaits, but there are still cases of misrecognition of gaits such as going downhill, such as the misrecognition

rate of 1% for recognizing going downhill aswalking, etc., and the other five algorithms have highermisrecognition rates for these gaits, which

is the main reason why the average recognition accuracy of the other algorithms is relatively low.

The experimental results of each algorithm are further analyzed. In terms of data, the reason for the misrecognition of these gaits is that

because the data used in this paper are the three-axis motion angle, three-axis acceleration and three-axis angular velocity of the human

lower limb. In the actual movement process, the difference in the motion characteristics of these gaits in the leg is not very large, so there

is a misrecognition of these gaits with each other, resulting in a lower average accuracy rate. However, there is also a difference in the average

recognition accuracy of each algorithm when using the same data, indicating that the characteristics of the model itself are also an important

factor affecting the performance of gait recognition.

For 2s-ST-STGCN, in order to highlight the role played by the model in feature extraction, the original data and the middle layer of the

trained model were, respectively, downscaled to a two-dimensional plane using the T-SNEmethod and visualized, and the results are shown

in Figure 17. As can be seen from the figure, the ten features of the original data had overlapping distributions, and the distinction between

different categories was not obvious, while after the network extraction, the entropy values of the ten features were greatly reduced, and they

gradually formed communities in their respective categories and were well separated, and especially the categories of stand at ease and

squat were obviously separated from other categories, so the better experimental results were obtained. From the model, it was the

same as ST-GCNwith two important points: the first one was the evolution from understanding the skeleton sequence as a frame of the skel-

eton to understanding thewhole dataset as awhole spatial-temporal graph, whichmade it possible to analyze the actionwith a unifiedmodel,

and this ideawas also used in this paper to construct the inertial data as a spatial-temporal graph of the human lower limbs skeleton, and it can

better express the motion characteristics of each gait, so it can unify the recognition of each gait. And the spatial-temporal graph network
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Figure 13. Confusion matrix for different shift size (top: 10, bottom: 50)
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itself possesses the ability to capture this spatial location relationship and temporal relationship, easily finding the movement patterns of

different gaits with strong robustness; the second one was the evolution from the plain idea of the original GCN to the definition of convo-

lution using division rule-based convolution. This ideamade ST-GCN can surpass the original GCN and got huge performance improvement.
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Figure 14. Recognition accuracy of each gait during window size changing
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Based on the previous, the 2s-ST-STGCNproposed in this paper not only has a spatial attentionmechanism that can take different weights for

different neighborhoods of human skeleton nodes and consider other nodes with higher relevance, but also adds a temporal attentionmech-

anism that enables it to consider time frames within the gait cycle that have a greater impact on motion, thus obtaining better performance,

and in this experiment, the recognition accuracy of each gait is above 98%.

Meanwhile, in order to represent the learning for theadjacencymatrixA in2s-ST-STGCN, theunlearned,predefinedadjacencymatrixAand

the learned,multipliedand stackedadjacencymatrixA0 with edge_importance (learnedweightmatrix used togive largerweights to important

edges in the adjacencymatrix and to suppress theweights of non-important edges) are extracted, respectively. Anddue to the adoptionof the

spatial configuration partitioning, max_dis_connect is defined as 1 and the number of nodes is 8. Therefore, three 8*8 matrices representing

the weights between the root node and the root node, the root node and the centripetal node, and the root node and the centrifugal node,

respectively, aregenerated,which expresses the stationarymotion characteristics of thewholegait, centripetalmotion characteristics and cen-

trifugal motion characteristics, which are combined together to form an adjacency matrix graph, as shown in Figure 18.

It can be seen from Figure 18 that by multiplying and stacking with edge_importance, the weights of the three types of edges represented

by the adjacency matrix A0 have been changed, and the weights of the edges closer to the end of the limb (farther away from the center of

gravity) have been increased, which is more useful for expressing different gaits, and conforms to the laws of human gait movement, thus

achieving better results.

For the other algorithms, RNN still has the gradient vanishing andgradient explosion problems of recurrent networks, and performs poorly

when dealing with larger data volumes and longer period data. LSTM improves on RNN, and is able to avoid the problems of gradient van-

ishing and gradient explosion, but it still faces challenges with parallel data processing and capturing the dependencies of long sequences.

TCN allows parallel computation of data and can avoid above issues, but it still needs complete sequences and has limatations in perfor-

mance due to restricted receptive field and difficulty in migration. TST supports parallel computation and possesses stronger long-term

dependence modeling ability. However, it has large computational space complexity, is insensitive to local information, and is susceptible

to anomalous data. As a result, the anomalous data generated during motion may result in degradation of its performance. MiniRocket

does not pay attention to the temporal order of the convolutional output, and thus still produces some confusion on some gait data with

similar features, which reduces its average recognition accuracy. Therefore, 2s-ST-STGCN performs best among six algorithms.
Analysis of results of user-dependent experiment

The generalized model for gait recognition was developed through user-independent experiments, and good results were obtained. How-

ever, this experiment did not use the user data, and although the generic model could reduce the time required in the training process, the

generic modelmight not be applicable to a specific individual.38,39 Therefore, user-dependent experiments were conducted to add user data

to the model for training to further improve the accuracy of gait recognition.

The average accuracy of 2s-ST-STGCN in the user-dependent experiment is the highest, reaching 99.159%, which is 0.181% higher than

the user-independent experiment, and the accuracies of these six algorithms have been improved in user-dependent experiment, and the

highest one is the LSTM, which has been improved by 8.38%, which indicates that the user-dependent experiment is conducive to the

improvement of the average recognition accuracies of each algorithm. The recognition accuracy of each algorithm for different gaits is

shown in Figure 19. 2s-ST-STGCN achieves the highest recognition accuracy for all gaits, with a minimum of 97%, while the other algo-

rithms have a minimum of even 46%. This indicates that 2s-ST-STGCN performs well on gait recognition and outperforms several other

algorithms.
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Figure 15. Confusion matrix for different window size (top: 80, bottom: 100)
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The confusionmatrix of 2s-ST-STGCN is shown in Figure 20. The accuracy of 2s-ST-STGCN in user-dependent experiments is highest for all

ten gaits, with a minimum of 97%, which is better than the user-independent experiments, and is more stable and robust, and although there

are still cases of misrecognition, they are greatly improved compared with the user-independent experiments.
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Figure 16. Gait recognition accuracy of each algorithm in user-independent experiment
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For further analysis of the model, the middle layer of the trained model is also taken out, which is downscaled to a two-dimensional plane

using the T-SNEmethod and visualized, and compared with the original data, and the results are shown in Figure 21. As can be seen from the

figures, similar to the user-independent experiment, the distribution of the ten features of the original data overlapped, and the distinction

between different categories was not obvious, while the entropy value of the ten features extracted by the network was greatly reduced, and

they gradually formed clusters in their respective categories and were well separated, so that better experimental results were obtained.

Overall, most of the gait recognition accuracies of the algorithms increased in the user-dependent experiments, among which 2s-ST-STGCN

performed the best, with the highest total accuracy of 99.159%, which is an improvement of 0.181% over the user-independent experiments.

Its recognition accuracy for each gait is highest, and the misrecognition rate is generally no more than 2%, with more stable and robust. This

indicates that the user-dependent experiment is conducive to improving the accuracy of the algorithm for each gait, which can reduce the

misrecognition rate of gait and improve the gait recognition results, and in practice, it can be considered to add user data to participate in the

model training to improve the accuracy of gait recognition.

Analysis of results of ablation experiment

As can be seen from Table 8, the average accuracy of 2s-ST-STGCN is the highest in the ablation experiment, which is 0.102% higher than ST-

STGCN in the user-independent experiment, and 0.049% higher than ST-STGCN in the user-dependent experiment. This is because

ST-STGCN only uses joint data, but 2s-ST-STGCN considers joint data, bone data, and their motion data at the same time, and thus 2s-

ST-STGCN achieves higher accuracy, indicating that the two-stream structure synthesizes more information and is more beneficial for the

representation of different gaits. At the same time, the average accuracy of ST-STGCN is 0.29% and 0.279% than only the human forward

kinematics solving module added (S-STGCN-Y) and only the time attention module included (ST-STGCN-N) in user-dependent experiment,

and 0.232% and 0.011% higher in the user-dependent experiment, respectively. This proves that both the human forward kinematics solving

module and the time attention module have improved the performance of the model. The results indicates converting inertial data to human

node coordinates facilitates a better representation of the connections between human joints, enabling the network to better capture the

posture of the entire human skeleton, which improves the accuracy of human gait recognition; the temporal attention module helps the

model to focus on the more important temporal frames in the sequence, and assigns a greater weight to moments of each gait pattern

with a higher degree of specificity, which further improves the model’s performance.

In summary, this paper establishes a recognition model for ten human gaits based on 2s-ST-STGCN. The necessity of the existence of

virtual nodes is verified, and the optimal window size and shift size are determined to be 80 and 10, respectively; three types of experiments

are carried out: in user-independent experiment, 2s-ST-STGCNperforms the best among the six algorithms, with an average gait recognition

accuracy of 98.978%; in user-dependent experiment, 2s-ST-STGCN also performs the best, with an average recognition accuracy of 99.159%,

which is improved by 0.181% compared with user-independent experiments, and the recognition result of each gait is improved by 0.1%

compared with the user-independent experiment, and the recognition results of each gait are more stable; in the ablation experiment,

the two-stream structure improved the performance of the model, and the ST-STGCN with the addition of both the human body forward

kinematics solver module and the temporal attention module performs better than that when only one of the modules is added.

Conclusion and limitation

In this paper, skeleton-based gait recognition approach with inertial measurement units using ST-GCNwith spatial and temporal attention is

proposed to carry out the gait recognition research of human lower limb. Firstly, the human gait data acquisition equipment of the
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Figure 17. T-SNE feature display in user-independent experiment (top: raw data, bottom: model middle layer)
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Figure 18. Diagram of the adjacency matrix (left: initial matrix, right: learned matrix)
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exoskeleton robot is improved, and the motion data of ten human gaits are acquired, then different human lower limb skeleton models are

established by the forward kinematics solution of the human body and the natural connection of the human body, and the spatial temporal

graph of each gait are constructed by certain rules, and a two-stream structure is used to input the joint data, the skeleton data, and the mo-

tion data of the two, respectively, into the two ST-STGCN, and then the gait features are extracted using the spatial convolutional layer with

self-attention enhancement and the temporal convolutional layer with temporal attention, and at last the information of the two streams are

fused together to build a human gait recognition model. The experimental part discusses the necessity of the existence of virtual nodes; the

effects of two types of parameters window size and shift size on the performance of 2s-ST-STGCN are investigated, and the optimal values of

window size and shift size are determined; user-independent experiments and user-dependent experiments are carried out, respectively, in

comparisonwith several algorithms, includingMiniRocket, TST, TCN, LSTM, and RNN; ablation experiments are conducted to verify the effec-

tiveness of the two-stream structure and the significance of the existence of the human forward motion solving module and the temporal

attention mechanism. The experimental results prove that the average gait recognition accuracy of 2s-ST-STGCN reaches 98.978% and

99.159% in user-independent and user-dependent experiments, respectively, which is higher than that of other algorithms, and the ablation

experiments show that the two-stream structure brings improvement and the human forwardmotion solvingmodule and the temporal atten-

tion mechanism also bring about performance enhancement, which achieves a more satisfactory result in the gait recognition task in this pa-

per, and can meet the requirements of the motion perception requirements of exoskeleton robots.

In this paper, we improved the temporal graph convolutional network by adding the human forward kinematics solving part and the tem-

poral attention mechanism, but it is not comprehensive enough to learn the structure of the human skeleton graph, and the learning method

of graph structure can be improved to enhance the performance of the gait recognition in the future work.
Figure 19. Gait recognition accuracy of each algorithm in user-dependent experiment
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Figure 20. Confusion matrix of 2s-ST-STGCN in user-dependent experiment
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Figure 21. T-SNE feature display in user-dependent experiment (top: raw data, bottom: model middle layer)
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Gait Data This paper N/A

Software and algorithms

Python 3.8; RRID: SCR_008394 This paper https://www.python.org/getit/

Pytorch 1.8.1; RRID: SCR_018536 This paper N/A

Sklearn 0.24.2; RRID: SCR_019053 This paper N/A

Numpy 1.20.0; RRID: SCR_008633 This paper N/A

Pandas 1.2.5; RRID: SCR_018214 This paper N/A

Matplotlib 3.4.2; RRID: SCR_008624 This paper N/A

Keras 2.4.3 This paper N/A

S-ST-GCN Shi J et al.20 https://doi.org/10.3390/s21010205

MiniRcket Dempster A et al.35 https://doi.org/10.1145/3447548.3467231

TST Li S et al.36 https://doi.org/10.48550/arXiv.1907.00235

TCN Shaojie B et al. https://doi.org/10.48550/arXiv.1907.00235

LSTM Hochreiter, S et al.14 https://doi.org/10.1162/neco.1997.9.8.1735

RNN Elman J L et al.15 https://doi.org/10.1207/s15516709cog1402_1

2s-ST-ST-GCN/ST-STGCN This paper N/A

Other

Windows 10 N/A N/A

CPU: AMD R7-5800H N/A N/A

Memory: 16GB N/A N/A

Graphs card: RTX3060, 6GB N/A N/A

ICM20948 N/A N/A

STM32F103C8T6 N/A N/A

STM32F767IGT6 N/A N/A
RESOURCE AVAILABILITY

Lead contact

The Lead Contact of our manuscript is Jianjun Yan with his email address jjyan@ecust.edu.cn.
Materials availability

In our experiment, we used hardware resources mainly, such as the inertial measurement unit ICM20948, microcontroller STM32F103C8T6

and STM32F767IGT6, and a computer (detailed environment configuration in Table 2).
Data and code availability

� The data that support the findings of this study are available from the corresponding author upon reasonable request. The remaining

hardware and software resources are listed in the table of key resources table.
� All original code has been listed in the key resources table with DOIs and is publicly available from the lead contact upon reasonable

request.

� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon reasonable

request.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Experiment of skeleton construction

This experiment was mainly used to select and compare the effects of different skeleton construction methods onmodel performance. In this

experiment, we change the number of nodes and the way of connecting the nodes through the human forward kinematics solver module to

obtain different skeleton models, and conduct the experiment when other algorithmic parameters remain unchanged, and the result proves

that the 8-node skeleton model is more beneficial for the expression of gait.

Experiment of shift size

This experiment was used to compare the effect of different shift size onmodel performancewhen addingwindows to process data. Applying

the same external conditions, the data are processedby varying the shift size and then used separately as inputs to themodel for experimental

comparisons, and the result proves that the model performs best when the shift size is 10.

Experiment of window size

This experiment was used to compare the effect of different window size on model performance when adding windows to process data.

Applying the same external conditions, the data are processed by varying the window size and then used separately as inputs to the model

for experimental comparisons, and the result proves that the model performs best when the window size is 10.

User-independent experiment

This experiment uses the algorithmproposed in this paper to experimentally comparewith other algorithms to demonstrate the superiority of

2s-ST-STGCN. In the experiment, other external conditions are kept the same (e.g., shift size of 10, window size of 80), the established human

skeleton (including joints, bones andmotion data) is used as the input of 2s-ST-STGCN, and the original three-axis acceleration and three-axis

angular velocity of the human body are used as the inputs of the other algorithms, and both of them are trained for 500 rounds with the

learning rate of 0.0001. The experimental results prove that 2s-ST-STGCN achieves the best results.

User-dependent experiment

This experiment uses the algorithmproposed in this paper to experimentally comparewith other algorithms to demonstrate the superiority of

2s-ST-STGCN. Unlike the user-independent experiments, the dataset of this experiment does not guarantee a one-to-one correspondence

between the dataset and the person, but rather includes the data of someone in both the training and validation sets. In the experiment, other

external conditions are kept the same (e.g., shift size of 10, window size of 80), the established human skeleton (including joints, bones and

motion data) is used as the input of 2s-ST-STGCN, and the original three-axis acceleration and three-axis angular velocity of the human body

are used as the inputs of the other algorithms, and both of them are trained for 500 rounds with the learning rate of 0.0001. The experimental

results prove that 2s-ST-STGCN achieves the best results.

Ablation experiment

This experiment is to verify that the improvements to the algorithm in this paper are effective. The algorithmwith the removal of the temporal

attention module (S-STGCN-Y), the algorithm with the removal of the human positivism module (ST-STGCN-N), the algorithm with the

removal of the two-stream structure (ST-STGCN), and the algorithm with all modules included (2s-ST-STGCN) were experimented with

the same external conditions, respectively. The experimental results prove that all the modules added have positive gain on the model.

METHOD DETAILS

The algorithm proposed in this paper consists of the following main parts.

Positive kinematics solution for the human body

This part is mainly through the human body movement angle data and human joint length calculation to get the human skeleton model, the

specific formula and calculation method can be found in section positive kinematics solution for the human body.

Temporal convolution layer with temporal attention

The temporal attention part is addedwithin the original temporal convolutional layer, so that a temporal convolutional part, a temporal atten-

tion part and a gating mechanism constitute the temporal convolutional layer with temporal attention. The basic mechanism of the temporal

attention part can be represented by the following equation:

E = Ve$s
���

ch
ðr � 1Þ�TU1

�
U2

�
U3ch

ðr � 1Þ� + be

�

That is, the inputs of T time steps are transposed into vector multiplications in the time dimension and the correlation degree between

different times is calculated. This allows considering time frames within the gait cycle that are more relevant to the gait.
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Two-stream structure

The joint data representing the joint position and the bone data representing the length and orientation of the bones, as well as the motion

data of both, are input into the two ST-STGCN, and the neighbor matrix A is learned separately, and the edge_importance (a matrix of

weights of edges, which is used to give a larger weight to important edges in the neighbor matrix and suppresses the weights of non-impor-

tant edges) is learned, i.e., each data stream is trained separately, and then the output tensor of the two data streams is fused to predict the

gait labels.

So the whole ST-STGCN structure consisted of three parts: an input layer of BatchNorm; six basic graph convolution blocks; and a Fully

Convolutional Network (FCN). The basic graph convolution blockmainly contains two kinds ofmodules, S-SGC and T-Conv. S-SGC is a spatial

graph convolutionmodule, which contains spatial attentionmechanism; T-Conv is a temporal graph convolutionmodule, which contains tem-

poral attention mechanism. The two-stream structure consists of two ST-STGCNs, which form a 2s-ST-STGCN by processing different data

separately and fusing the outputs at the end.
QUANTIFICATION AND STATISTICAL ANALYSIS

We mainly use the confusion matrix provided by python to compute the metrics so as to make a comparison between the algorithms.
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