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Hippocampus–neocortex interactions during sleep are critical for memory processes: Hip-
pocampally initiated replay contributes to memory consolidation in the neocortex and
hippocampal sharp wave/ripples modulate cortical activity. Yet, the spatial and temporal
patterns of this interaction are unknown. With voltage imaging, electrocorticography,
and laminarly resolved hippocampal potentials, we characterized cortico-hippocampal sig-
naling during anesthesia and nonrapid eye movement sleep. We observed neocortical acti-
vation transients, with statistics suggesting a quasi-critical regime, may be helpful for
communication across remote brain areas. From activity transients, we identified, in a
data-driven fashion, three functional networks. A network overlapping with the default
mode network and centered on retrosplenial cortex was the most associated with hippo-
campal activity. Hippocampal slow gamma rhythms were strongly associated to neocorti-
cal transients, even more than ripples. In fact, neocortical activity predicted hippocampal
slow gamma and followed ripples, suggesting that consolidation processes rely on bidirec-
tional signaling between hippocampus and neocortex.
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Spontaneous activity during quiescent periods and sleep is likely to be crucial for a multi-
tude of cognitive functions. Functional connectivity studies from human neuroimaging
and other brain monitoring modalities have identified several “resting-state networks”
whose activity fluctuations are coordinated. One of them, the default mode network
(DMN), increases its activity when the brain does not actively drive overt behavior and
is involved in functions such as imagery, planning, self-reflection, and memory mecha-
nism (1, 2). The dynamical interplay between hippocampus and the neocortex is another
hallmark of the spontaneous activity during behavioral idleness. Hippocampal sharp
waves/ripples (SWRs) (3), bursts of hippocampal activity, have attracted most attention
as a conduit for this interplay, as they modulate neocortical activity (4–6). Interestingly,
the DMN areas are among those most strongly activated at SWR times (7). SWRs are
also linked to the bulk of memory replay in the hippocampus, which is the spontaneous
repetition of neural activity patterns that were initially elicited during experience (8, 9).
Replay has been observed also in many cortical areas (see, e.g., refs. 10–13), most
strongly in correspondence with hippocampal SWRs.
The interaction between the hippocampus and the neocortex figures prominently in

most theories of explicit memory: The hippocampus is seen as rapidly forming rapid
memories and “index codes” that summarize and point to activity patterns (14) that
simultaneously (albeit more slowly) form in the neocortex and elsewhere in the brain.
At memory retrieval, and during offline periods, those codes would propagate to the
neocortex. Here, they would help seamlessly updating a large memory repository, as
postulated by the complementary learning systems theory (15), or would create new,
multiple memory traces [MMT theory (16)] with either similar content or semantic,
gist-like representations (17).
According to all of these theoretical accounts, however, cortico-hippocampal inter-

play likely involves the entirety of the neocortex. Yet, previous work has concentrated
mostly on single neocortical areas, chosen among those with strongest anatomical links
to the hippocampus. Functional magnetic resonance imaging (fMRI) (5) and voltage-
sensitive imaging data (18) highlight the global character of neocortical activity modu-
lations related to SWR, with a prominent role of the DMN (7), but how information
propagates in neocortical networks is not known yet.
During sleep cortical networks are capable of self-sustained high activity transients

(UP states, periods of neuronal activation) delimited by silent periods (DOWN states,
periods of neuronal silence) (19), generated by recurrent excitation across cortical neu-
rons (20, 21). UP/DOWN state fluctuations have often been described as traveling
waves (22–25), but little is known about the structure of each transient activation.
Here, with voltage imaging in neocortex of mice combined with layer-resolved
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hippocampal local field potentials (LFPs), we characterize the
probability distribution of transient sizes, showing that it
approximates a power-law shape, signature of a near-critical
state (in which long-range spatial and temporal correlation are
maximized, facilitating global brain coordination), thought to
maximize information transmission between far apart cortical
sites (26, 27). Thus, these dynamics may be an effective sup-
port for the formation of neocortical memory traces.
We further delineate the structure of activity transients in a

data-driven manner and we find three functional networks cen-
tered respectively on the retrosplenial cortex and medial cortical
bank of the cortex, on somatosensory cortex, and on lateral cor-
tex. These networks closely match the results of a large anatom-
ical projections dataset (28). Crucially, we show that they are
differentially involved in hippocampal communication, with a
“retrosplenial” network, overlapping with the standard DMN
playing a prominent role.
All the theoretical accounts mentioned above emphasize the

hippocampal influence on the neocortex and a unidirectional
flow from the hippocampus to neocortex, embodied in SWRs.
Our data from voltage imaging and LFPs from hippocampal
subfield CA1 suggest two refinements of this picture. First, the
strongest correlate of cortical activity transients is the slow
gamma rhythm (20 to 50 Hz), even outpacing SWRs. Slow
gamma has been linked with the routing of information from
hippocampal subfields CA3 to CA1. The CA3 subfield is rich
in recurrent connections, features of an auto-associative mem-
ory (29–31). During sleep, increased slow gamma during SWR
events correlates with greater replay (32). Furthermore, using
pseudocausality analysis we show here that cortical transients in
the DMN/retrosplenial network precede bouts of hippocampal
slow gamma.
Together, these data point toward a bidirectional interaction as

a constituent of the overall architecture of cortico-hippocampal
interactions, which provides a potential dynamical scenario. This
picture opens up a theoretical view explaining the involvement
of the DMN in memory and the two-way exchanges between
hippocampus and neocortex, regions crucial for memory and
cognition.

Results

Parallel Recordings of Neural Activity Transients in the Cortex
and the Hippocampus. We imaged the neocortical spatiotemporal
activity in the right hemisphere (24, 33–35) under urethane anes-
thesia and natural sleep (Fig. 1 A and B and SI Appendix, Fig. S1).
For this, we used wide-field macroscopy and a voltage-sensitive dye
(VSD) in wild-type C57/Bl6 mice (18, 25, 36) (for the anesthesia
experiments) and mice expressing a ratiometric genetically encoded
voltage indicator [GEVI; chiVSFP (33, 37–39); for natural sleep,
here referred to as VSI]. In both cases, the neocortical voltage activ-
ity was simultaneously recorded with the ipsilateral hippocampal
LFP (an electrode was placed in dorsal CA1 for the urethane anes-
thesia recordings and a 16-channel high-density silicon probe
recorded signals from all CA1 layers for natural sleep recordings).
In the urethane anesthesia experiments, we also sampled cortical
electrical activity by use of an electrocorticography (ECoG) 6 × 5
grid placed on the same cortical surface we were imaging.
In neocortex, we observed temporal activity fluctuations

spanning a large range of temporal and spatial scales (Fig. 1C).
We then applied an activity transient detection algorithm based
on local and global average neocortical activity (Fig. 1 D and E;
see SI Appendix, Cortical Transient Detection). Such a method
allowed us to isolate temporal windows of excitation spanning

variable neocortical extents and to separately analyze the global
properties of these activation bouts, such as their duration and
size.

Cortical Transients in the Mouse Cortex Show Power-Law-
Like Distributions of Size in Anesthesia and Natural Sleep. To
characterize the properties of neocortical activity transients, we
computed the statistical distribution of transient descriptors
such as the overall, cumulative activation of cortex over the
duration of the transient (Fig. 2A and SI Appendix, Fig. S2). In
both urethane anesthesia and natural sleep groups we find that
the frequency distribution of magnitude-related properties (size
and duration) of transients are well-captured by a power law.
We nevertheless observe a substantial difference in the goodness
of fit between urethane anesthesia and natural sleep recordings:
Power-law fits were generally better for sleep data, mostly
because anesthesia was associated with a pronounced overabun-
dance of large-sized events (and similarly of longer events), mak-
ing the overall distribution resemble a supercritical one (40)
(urethane anesthesia/VSD group: α = �1.8775 and ε = 0.2325
and natural sleep/VSI group: α = �1.7385 and ε = 0.0856).
Interestingly, such supercriticality is not observed in ECoG
recording of the same cortical states (urethane anesthesia/ECoG
group: α = �2.168 and ε = 0.1751 and urethane anesthesia/
ECoG in VSD group: α = �1.8456 and ε = 0.2106), suggest-
ing a substantial difference in the signal represented in the two
recordings methods. Based on theoretical arguments (41) this
may be due to the nonindependence of electrode in the ECoG
matrix, because of volume conductance effects. Although differ-
ent in their statistical properties, VSD and ECoG signals were
still strongly correlated, consistently with their being two meas-
ures of the same underlying phenomenon (SI Appendix, Fig. S2
B–E; size correlations: mouse 1 = 0.65, mouse 2 = 0.61, mouse
3 = 0.54, mouse 4 = 0.42 and mouse 5 = 0.5).

A Few Cortical Networks Account for Small Cortical Transients.
While size distributions provide information on the relative
abundance of smaller vs. larger, global transients, they are not
informative about the spatial organization of their events or
whether different types of transients exist that span different
cortical regions.

To address these questions, we first segmented the neocorti-
cal transients in six equal quantiles based on their size (Fig.
2B). Then, we classified the spatial patterns of activity by train-
ing a restricted Boltzmann machine (RBM) on temporal frames
belonging to each of these transient quantiles. The RBM enco-
des these images based on the statistics of pixels coactivations
and the state of each hidden unit state becomes selective for a
different recurring arrangement of active pixels. To ascertain
whether transient events can be classified in a finite number of
discrete categories, we applied a clustering algorithm on the set
of learned RBM weights (42) relative to all events (Fig. 2C and
SI Appendix, Fig. S3F). We find a marked dependency on the
transient size. In both urethane anesthesia and natural sleep
groups, transients at the lowest end of the quantile distribution
can in fact be neatly subdivided in a very low number of well-
separated modes (scatter plots in Fig. 2C; EM model fitting
resulted in three modes as being the most likely subdivision for
four out of five animals for the urethane anesthesia group and
four out of five animals for the natural sleep group. The cluster
separation was confirmed by the strong bimodal distribution of
pairwise distances between RBM weight vectors as shown in
the histograms). For larger transients, no clearly distinct modes
appeared.
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While large activations consist of the simultaneous activation
of large swaths of cortical surface, small ones disproportionally
involve a handful of networks centered around, respectively, ret-
rosplenial cortex (RS), temporal association area (TeA), and
somato-sensory (SS) (Fig. 2D). Further inspection of the spatial
organization of the RBM-identified modes reveals a tendency for
these areas to form pairwise activation patterns (SI Appendix, Fig.
S3G). Thus, a set of well-defined networks appear to dominate
the small activity fluctuations which make for the vast majority
of transient cortical activity.

Large Cortical Transients Are Most Often Preceded by RS or
SS Activation. As seen from the analysis above, large neocortical
transients in both urethane anesthesia and natural sleep could
not be straightforwardly classified in a handful of modes. In
fact, activity propagation during these periods does not seem to
follow stereotypical dynamical patterns (Movie S1). Instead, we
actually found that large transients (in particular those in the

sixth and largest quantile) mostly differ by the activation pat-
terns immediately preceding them. When applying the same
previous RBM-based analysis on time frames extracted from
short periods (∼100 ms) immediately preceding the detected
onset of the large transient, we found activation modes resem-
bling those of Fig. 2C, with activations preceding last-quantile
transients neatly clustering into a couple of well-separated
groups (Expectation Maximization model fitting resulted in
two modes as being the most likely subdivision for five out of
five animals for the urethane anesthesia group and three out of
five animals for the natural sleep group; Fig. 2E). This is, how-
ever, not the case for smaller transients.

In both urethane anesthesia and natural sleep groups, activity
preceding large transients is found to be concentrated either
in the medial-posterior portion of the cortex, around the RS,
or laterally around the SS. Thus, we can conclude that large tran-
sients are triggered by small and focused activity bouts and also
that such preactivations are mostly confined to two well-defined

A

C

D E

B

Fig. 1. Experimental setups used for the neocortical transients recording. (A) Schematic of wide-field topography (Left) and photo of the preparation (Center)
of the setup for the neocortical voltage-sensitive dye imaging recorded in combination with hippocampal LFP and ECoG in mice under urethane anesthesia.
The black dashed line in the diagram (white dashed line in the photo) represents the borders of the camera field of view. Bregma is represented as a black
dot. (Insets) The transparent ECoG (6 × 5 channels) covering much of the imaging field of view and the location of hippocampal LFP electrode. (B) Schematic
and photo of ipsilateral wide-field topography of the neocortical voltage-sensitive indicator imaging recorded in combination with a linear silicon probe
(16 channels) in the hippocampus. In this experiment, we recorded natural sleep in GEVI mice. Note that imaged region is smaller than in the anesthesia
group (because skull was not removed, but only thinned). (C) Example traces of hippocampal LFP, ECoG, and VSD signals (anesthesia group). (D) Global activ-
ity level of the neocortex recorded by the VSD. The shadowed area represents the size of the transient, defined by the area under the curve, and red lines
highlight the intervals relative to each transient. (E) Examples of detected neocortical transients.
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Fig. 2. Probability distribution of transient sizes in urethane anesthesia and natural sleep reveals different modular networks for small neocortical transi-
ents. (A) Transient probability density size in urethane-anesthetized and natural sleep states. For both urethane and natural sleep datasets, we computed
the size of transients detected and measured from the VSD and VSI data. For the natural sleep dataset, we computed neocortical transients of the VSI data
during the NREM periods (iv, see Materials and Methods for the sleep state detection). Lines of different colors represent different animals. Note that the ani-
mals from the natural sleep code have a different color code. The black dashed lines represent the linear regression (in log-log scale) for each animal. α is
the critical exponent (slope of the regression line) and ε the fitting error (see Materials and Methods). a.u., arbitrary units. (B) Neocortical average signals for
the transients subdivided in sox quantiles based on the size shown in A. (C) Example of RBM weights (reduced to three dimensions by principal component
analysis) computed on each of the six quantile groups distributed by the transient size for urethane anesthesia and natural sleep data. The blue, orange,
and yellow colors denote three clusters separated by using the k-means algorithm. Note that for both datasets a tendency for clustering in the RBM weights
can be observed in smaller transient groups. (D) Spatial distribution of activity corresponding to the three k-means clusters in the first quartile RBM weights.
(E) Example of RBM weights computed from cortical activations 100 ms before the transient onset for each of the six size quantiles for urethane anesthesia
and natural sleep data. The blue and orange colors represent two clusters separated by k-means for each quantile. The respective yellow histograms show
the distributed cosine distance for each individual pretransient. Note that for both datasets a dissociation in the RBM weights can be better observed in the
bigger transient groups. (F) Spatial distribution of activity corresponding to the two k-means clusters in the sixth quartile RBM weights. (G) Spatiotemporal
evolution of the transients triggered by RS or SS modes. The panel shows the average temporal propagation profile (blue: transient start, red: transient end)
for each quantile.
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cortical regions (Fig. 2F). While smaller events happening to orig-
inate in the RS or SS area remained largely confined to the same
area for their entire duration, larger events have a growing chance
of “spilling over” (Fig. 2G and SI Appendix, Fig. S4D). Both
RS-led and SS-led transients of large size are found to involve dif-
ferent cortical networks over their evolution, generally terminat-
ing in the central area of the imaged cortical surface, or even
invading the opposite network (so RS activation eventually leads
to an activation of the SS network, and vice versa) (Movies S2
and S3). These findings highlight the presence of two, largely
independent cortical networks, one centered around the RS cor-
tex and the other around the SS region (28).

Neocortical Transients Preferentially Correlate with Slow
Gamma Activity in the Hippocampus. We then considered
what the functional repercussions of transient activity and its
structure can be. In particular, cortical sleep activity has been
connected to interactions with the hippocampus, possibly sup-
porting memory consolidation (15).
In order to explore this question, we analyzed the relation-

ship between global cortical transients and hippocampal LFPs.
We concentrated on two frequency bands that have been asso-
ciated to cortico-hippocampal communication, gamma (20 to
80 Hz), involved in entorhinal-hippocampal and prefrontal-
hippocampal interactions (29, 30), and ripple (150 to 250 Hz),
a component of the SWR complex thought to be a main carrier
of hippocampal input to the cortex (4, 6).
By averaging the hippocampal CA1 LFP in coincidence with

neocortical transients, separately for events belonging to each of
the six size quantiles defined above, we observed different patterns
in the distribution of LFP power density with increasing transient
size (Fig. 3A). The frequency bands of interests, gamma and rip-
ple, appeared to be prominent in the hippocampal LFP spectrum
and modulated by the transient size. Indeed, power in both fre-
quency bands showed a significant correlation with simultaneous
transient size (Spearman correlation, urethane gamma and ripple
R = 1, P = 0.001, sleep gamma R = 1, P = 0.001, ripple R =
0.7 P = 0.05; Fig. 3B). The two bands appeared nevertheless to
follow different patterns, with gamma power presenting a linear
increase with transient size, while ripple power followed a
sigmoid-like trend (indeed ripple power correlation in sleep was
only marginally significant, P = 0.05).
To further characterize interactions between hippocampal

gamma and cortical activity, in the natural sleep group we
looked at layer-resolved signals from linear silicon probe record-
ings to distinguish between gamma sources at different depths
in CA1. Based on existing literature (43, 44), distinct gamma
power was computed from the subsequent source area: slow
gamma (20 to 50 Hz, stratum radiatum), medium gamma
(60 to 90 Hz, stratum lacnosum moleculare), and high gamma
(100 to 140 Hz, stratum pyramidale). We observed that mostly
slow gamma showed a modulation with the transient size (SI
Appendix, Fig. S5A). In order to isolate any effect of the volume
conduction, we computed gamma power of the current source
density (CSD) signal across different transient sizes. Using the
CSD signal, we compared slow gamma activity obtained from
different hippocampal layers. The result confirmed slow gamma
modulation to be stronger in the stratum radiatum (Fig. 3C;
Spearman correlation, R = 0.8 P = 0.01).
Thus, hippocampal gamma appears to be associated with

global cortical activation to at least a similar extent as
SWR, which is considered the hallmark of cortico-hippocampal
interactions.

Slow Gamma Accounts for Correlations between SWR and
Cortical Activations. As previously reported, SWR events are
associated to slow oscillations in the cortex (4), and more recently
they have been found to be especially correlated to a network cen-
tered around retrosplenial cortex (7, 11, 18, 45). To establish the
relevance of SWR events for cortical excitation, we replicated in
both urethane anesthesia and natural sleep datasets the approach
used by Karimi Abadchi et al. (18). As shown in those studies, we
also find that a cooccurrence measure of correlation between
SWR events and cortical activation identifies RS as the main hot-
spot (SI Appendix, Fig. S5 B and C), but which feature of the
SWR complex is mainly responsible for such relationship? Indeed,
SWRs and slow gamma events appear to be highly correlated in
time (32) (Fig. 3D), causing their contribution to be potentially
intermingled. To answer this question, we considered three SWR
properties: ripple power component, slow gamma power compo-
nent, and sharp wave amplitude. Indeed, we find that while ripple
power does not correlate with RS activation, the magnitude of
the sharp wave component of SWR events does show a significant
correlation with the degree of RS activation (correlations: Ripple/
RS R: 9.3102e-5 and P: 0.7642; sharp wave/RS R: 0.0045 and
P: 0.0375). It is nevertheless the slow gamma contribution to
the SWR event that appears to have the strongest relationship
with RS activity (correlations: slow gamma/RS R: 0.0183 and
P: 2.3407e-5). Remarkably, sharp wave-to-RS correlation is not
significant anymore after controlling for the simultaneous slow
gamma power by partial correlation analysis (partialized for slow
gamma: ripple/RS R: �0.0187 and P : 0.5609; sharp wave/RS
R: 0.0081 and P: 0.8017). Conversely, the slow gamma-to-RS
correlation remains significant after controlling for the simulta-
neous sharp wave magnitude (partialized for sharp wave ampli-
tude: slow gamma/RS R: �0.1183 and P : 0.0002). This set of
analyses suggests that at least a portion of the reported depen-
dence of cortical activation on SWR occurrence might be ascribed
to the gamma component present in the latter.

Transients Triggered by RS Activation Shape Gamma but Not
SWR in the Hippocampus. We then asked how our classification
of neocortical transients fits into this emerging picture of
cortico-hippocampal interactions. We thus repeated the previ-
ous analysis using RS-led and SS-led transients separately. Visu-
alizing the average LFP power for different sets of events already
makes evident a stark differentiation between the transient fami-
lies (Fig. 4A). RS-led events appear to elicit a much stronger
response in the hippocampus, both under urethane anesthesia
and in natural sleep groups. By quantifying this effect, we find
it to be specific to the gamma band of the power spectrum (Fig.
4B and SI Appendix, Fig. S6B; two-way ANOVA; urethane
anesthesia: gamma+RS/SS: bins 1–4, P < 0.05; ripple+RS/SS:
not significant; natural sleep: gamma+RS/SS: bins 4, P < 0.05;
ripple+RS/SS: not significant). Only SS-led transients of major
size are found to elicit a comparable gamma activation in the
hippocampus. We speculate that this might possibly happen as
a consequence of the transient spilling previously described, in
which case an initially SS-triggered event would eventually
result in a delayed RS activation. On the other hand, ripple
power turned out to be largely independent of the transient
identity, consistently with our previous analysis of the SWR–RS
relationship.

This interaction can be further specified by comparing the
magnitude of the RS cortex preactivation with the elicited power
in the gamma or ripple band (Fig. 4C and SI Appendix, Fig.
S6B). By computing the correlation within groups of events of
comparable size we find that RS preactivation scales consistently
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with the degree of gamma engagement, and not the ripple one,
during the following cortical transient (P < 0.05; two-way
ANOVA). This role of RS cortex is time-specific: Using its aver-
age activity during the transient, thus during a period of cortical
excitation, results in no correlation with hippocampal gamma.

Precise, Bidirectional Temporal Relationships between Cortical
and Hippocampal Activations Are Orchestrated by RS. Finally,
we investigated the temporal structure of the cortico-hippocampal
interactions outlined above. We first computed the cross-correlation

between the temporal evolution of hippocampal power in either
the ripple or gamma band and the degree of activation of differ-
ent portions of the cortical surface (Fig. 4D). Importantly, we
used partial correlations, that is, we computed the correlation
between pixel activation and gamma power controlling for ripple
power, and vice versa (cortical activity vs. ripple controlling for
gamma). Confirming our previous findings, correlations between
gamma and cortex are much stronger than those involving
ripples. Both in urethane anesthesia and natural sleep recordings
correlations appear to follow a precise spatiotemporal pattern.

A

B

D

C

Fig. 3. Neocortical transient’s interactions with hippocampal slow gamma and SWR. (A) CA1 LFP spectrogram (Left) and power spectra (Right) during transi-
ents in the six quantiles in urethane anesthesia and natural sleep data, averaged across animals. Note that the presence of gamma activity during the transi-
ents is proportional to the transient size (a.u. = arbitrary units). (B) Averaged gamma (20 to 80 Hz) and ripple (150 to 250 Hz) power normalized between
0 and 1 across animals in different transient sizes. (Spearman’s rank correlation coefficient, n = 5 animals). (C, Left) depiction of CA1 layers overlayed on a
pyramidal neuron silhouette. (C, Center) Layer-resolved LFP (traces) and CSD (color image) from the CA1 layers. (C, Right) Normalized CSD power for slow
gamma (20 to 40 Hz) in stratum pyramidale, stratum radiatum, and stratum lacunosum moleculare as a function of transient size during natural sleep.
A channel in each CA1 layer was selected to calculate the normalized power. The line and respective shadowed area represent the average across animal
and SEM (significance: Spearman one-tailed correlation). (D) Interaction between hippocampal LFP and RS activation during SWR. (Left) Diagram showing the
definition of the three measures (ripple power, sharp wave amplitude and slow gamma power) for which we compute correlations with RS activity. (Center)
Event-triggered average of slow gamma peaks centered on ripples. (Right) Mean normalized RS activity around the SWR (�100 to 100 ms) (y axis) against
slow gamma, ripple power, and the sharp wave normalized amplitude (x axis) in radiatum during the ripples. (Right) Correlation of slow gamma-RS partial-
ized for sharp wave amplitude, sharp wave-RS partialized for slow gamma amplitude, and ripple-RS partialized for slow gamma amplitude.
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Fig. 4. Neocortical transients triggered by RS influence gamma power in the hippocampus. (A) Interpolated CA1 spectrogram during the RS- and
SS-triggered transient intervals across different sizes in urethane anesthesia and natural sleep data. (B) Normalized power of gamma (20 to 80 Hz) for transi-
ents triggered by RS and SS across size (*P < 0.05; two-way ANOVA). (C) Correlation of gamma with RS- or SS-triggered events within the same block sizes.
The panels are the correlation between the hippocampal CA1 LFP and the activity of the period before RS and SS transients. (D) Partial correlation between
hippocampal gamma power versus the optical temporal signal for each pixel partialized for ripple power and partial correlation between hippocampal
ripple power versus the optical temporal signal in each pixel partialized for gamma power. Correlations were calculated from z-scored data. (E) Phase slope
index for normalized gamma or ripple power versus the optical temporal signal in each pixel. The white dot represents bregma. The gray arrows indicate
the position of retrosplenial cortex, which presents a temporal modulation, in gamma but not in ripple, from the cortex to the hippocampus (*P < 0.05 and
**P < 0.005; one-sample t test against zero; n = 5 animals for the urethane and n = 5 for the natural-sleep group represented in different colors).
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Positive correlations with gamma power tend to appear at nega-
tive time shifts, thus preceding the peak of the gamma power.
Also, they are initially localized in areas close to the midline and
they mostly involve cortical areas distributed either medially or
posteriorly, overlapping with the DMN. In contrast, ripple power
is associated with a much weaker coherence in cortical activation
and with a higher degree of symmetry around its peak.
Not only then hippocampal engagement is preferentially

associated to a network organized around the RS cortex, but
such engagement appears to be initiated by the cortex. This
view is confirmed when computing the phase slope index (46),
a measure of directed causality, between cortical activation at
different sites and hippocampal LFP instantaneous power. Con-
versely, ripple power leads a large swath of the cortex with little
spatial specificity. Directionality scores are in fact higher than
those obtained from gamma power (Fig. 4E). Strikingly, the
RS region present an extreme version of this tendency (one-
sample t test, between gamma and ripple for urethane anesthe-
sia: P < 0.005; gamma and ripple for natural sleep: P < 0.05;
comparing to zero, urethane anesthesia: gamma P < 0.005, rip-
ple P < 0.05 and natural sleep: gamma P < 0.005, Ripple, not
significant). Interaction directionality scores computed from
this area in fact present an almost complete switch between
gamma and ripple power band: they are consistently negative
in the former case and distributed around zero in the latter.
Thus, RS cortex alone (in the range of cortical areas we were
able to image) is responsible for leading the hippocampal
gamma events, while ripple events are associated with a more
spatially generalized flow of information from the hippocampus
to the cortex (SI Appendix, Fig. S7).

Discussion

Quasi-Critical Nature of Cortical Spontaneous Activity during
Sleep. We show here, with voltage imaging and ECoG, that
neocortical spontaneous activity during sleep is largely made up
by transient activations that follow the statistics of critical phe-
nomena, most evident in natural sleep, where there is a tight fit
with a power-law, signature of critical processes (Fig. 2A and SI
Appendix, Fig. S2A).
In fact, computational models UP and DOWN states of non-

rapid eye movement (NREM) cortical activity (47, 48) showed
that recurrent excitation (which sustain UP states) and short-term
synaptic depression (a candidate cause for UP state termination)
are sufficient ingredients to obtain a (quasi)-critical distribution
of UP state sizes.
We suggest that critical dynamics could play a very important

role in systems memory consolidation processes. Any complex
long-term memory will involve distributed traces at multiple,
remote sites. The hippocampus is thought to generate rapidly
constructed and readily retrievable index representations, which
may ignite cortex-wide representations. Yet, this scheme poses the
question of how the limited hippocampal input, propagated
through relatively sparse long-range pathways may accomplish
this feat. Critical dynamics is a regime of enhanced long-range
correlations, yielding increased information storage (27) and
transmission (49). As such, criticality facilitates the cortex-wide
spread of hippocampal signals and provides a basis for coherent
cortex-wide representations linking to the hippocampus. Indeed,
coherent replay has been observed between the hippocampus and
sensory areas with only an indirect, polysynaptic link with it,
such as auditory (50) and visual cortex (10).
Cortical activity transients may also be self-ignited, reflecting

spontaneous local processing and—during sleep—memory

reactivation. Initial evidence that this may happen comes from
magnetoencephalography studies with human subjects (51, 52)
showing spontaneous replay events in the cortex. These cortex-
originated transients may also provide a powerful input to the
hippocampus, therefore participating in the two-way informa-
tion exchange that we will discuss later.

Cortical Transients Activate Anatomically Defined Networks.
Next, we show that multiscale activity transients are organized
in cortex-wide networks. Our data-driven analysis demonstrates
(Fig. 2 C and D), in a highly consistent fashion across two volt-
age imaging approaches, that small transient activations mostly
remain confined to one of three networks, centered respectively
on medial areas (with large overlap with the DMN) anterior
sensorimotor cortices, and lateral cortex.

Enticingly, this tightly matches a network-theoretic analysis
based on a massive amount of anatomical projection experiments.
In the paper by Zingg et al. (28), a clustering of cortical connec-
tions is described in four networks. Our “RBM 2” (Fig. 2 C
and D) component strongly overlaps with the “sensorimotor
network” in that study, combining somatosensory and primary
motor cortices. A set of “medial subnetworks” highlighted by
Zingg et al. overlaps with our “RBM 3” component. That net-
work, both in our data and in the anatomical characterization, is
centered around the retrosplenial cortex and overlaps with the
DMN as defined in the mouse brain (53). Our “RBM 1” compo-
nent contains part of what Zingg et al. call the “posterior tempo-
ral lateral” network, which includes structures such as perirhinal
and TeA cortices that are major players in the up and down
streams of highly processed sensory information into the medial
temporal lobe and eventually the hippocampus. An obvious limi-
tation of our study is that, by imaging only dorsal cortices, we
miss much of the lateral network in particular, as well as DMN
areas, such as medial prefrontal cortex. Still, our data provide evi-
dence that anatomical connectivity shapes the transient constitu-
ents of spontaneous activity, in a fashion that likely affects its
function.

Larger transients eventually invade most of the recorded cor-
tex and therefore cannot be allocated to specific clusters, but
their origins follow the same topography. In fact, if we look at
the cortical activity immediately preceding them, we see that
the activity that ignites them is still circumscribed to one of the
networks described above. Our “RBM 1” component (Fig. 2
E–G) shows activation confined to retrosplenial cortex and
other areas in the DMN, whereas “RBM 2” shows transients
with a sensorimotor origin.

The three functional networks that we identify in the mouse
brain are rough equivalents of the more numerous resting-state
networks found in the human brain (54) with fMRI. The time
resolution of our voltage imaging enables us to closely follow the
dynamics of these networks during sleep, to analyze, for example,
how they may initiate whole-brain activity. Such generalized acti-
vations may potentially carry complex memories. The informa-
tion reactivated by these networks may differ for the age or for
the nature of the memory (e.g., implicit vs. explicit), which
would have to be ascertained by further experiments.

Bidirectional Interactions between Cortical Networks and
Hippocampal Activity. Our analysis of the link between cortical
activation and hippocampal LFP points at a two-way interac-
tion that involves multiple features of hippocampal activity.
Our imaging data (Fig. 3) are consistent with the well-studied
link between cortical activity and SWRs (4–7, 10, 13, 18, 55).
Hippocampal ripple oscillation power correlates with small and
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large transients (Fig. 3B) with similar intensity. Phase slope
index (PSI), a pseudocausality analysis, suggests that ripple
power predicts cortical transients (Fig. 4). Thus, SWRs and
potentially replay are able to elicit widespread neocortical UP
states at multiple spatial scales.
Yet, a surprisingly strong link was observed between hippocam-

pal slow gamma and cortical transients. Whenever a comparison
was possible, for example by partial correlation analysis, we found
that the slow gamma link dominated the association between rip-
ples and neocortical activity (Fig. 4B and SI Appendix, Fig. S6).
PSI for slow gamma shows an opposite pseudocausality flow,
from neocortical activity to hippocampal slow gamma. It is known
that hippocampal activity is affected by cortical UP–DOWN state
fluctuations (56, 57), even at the level of resting membrane poten-
tial (58). Here, we suggest that slow gamma oscillations are an
important mediator of cortical influences.
The hippocampal physiology literature associates slow gamma

with CA3 activity and possibly retrieval of information in that
structure, which is widely seen as an auto-associative memory
(31). During wakefulness, slow gamma oscillations fluctuate
greatly (59). The instantaneous balance between slow gamma
and medium gamma may reflect the momentary prevalence of
respectively CA3 vs. entorhinal inputs into CA1 (29, 30). Corre-
spondingly, a shift between memory retrieval, predictive hippo-
campal activity, and registration and storage of novel cortical
inputs may take place (60) when slow gamma oscillations are
larger. During sleep, SWR events associated to higher levels of
slow gamma contain increased replay (32).
Our data may be explained by positing that cortical transients,

by depolarizing neurons, may bias the hippocampal networks
into a slow gamma–rich state. It is also likely in our view that
the information content of the neocortical input will modulate
which activity patterns will be retrieved (or generated) by the
hippocampus. This interpretation is consistent with a bidirec-
tional interaction between cortex and hippocampus (Fig. 5) dur-
ing sleep. An enticing hypothesis, which would have to be
explored experimentally and computationally, is that neocortex
and hippocampus act in the sleep state as a single network, with
transient activations that may be initiated in several points in the
network and propagate at multiple scales, with e.g., the cortex
biasing hippocampal activity (8, 57). This may enable neural

plasticity continuous update of hippocampal representations as
well as cortical representations, which may serve the function of
keeping representations coherent across structures in face of sub-
stantial drift that has been observed across days (61, 62).

Thus, slow gamma and SWR are two signatures of retrieval
processes in the hippocampus that are related but not completely
overlapping. An interesting speculation is that while SWRs reflect
“autonomous” hippocampal retrieval, slow gamma is strongest
when retrieval takes place in a larger network, with hippocampal
and neocortical components.

Retrosplenial Cortex and the DMN Preferentially Engage
Hippocampal Activity. Importantly, not all neocortical activity
transients interact with the hippocampus equally (18). The
medial/DMN network is related to a significantly larger
increase in slow gamma power in the hippocampus (Fig. 3 A
and B) and with a tighter correlation (Fig. 3C) compared to the
somatomotor network. Within the medial network, the role of
retrosplenial cortex stands out: Not only is RS the hotspot for
initiating large transients (RBM 1 in Fig. 2 E and F) but it is
also the area whose activity most markedly predicts increases in
hippocampal slow gamma. The rest of the medial network (and
of the recorded neocortex) activates only following hippocam-
pal activation (Fig. 4E). Thus, the medial/DMN network acti-
vation may activate independently of the hippocampus. In
humans, the DMN has been found to activate in correspon-
dence with replay bursts (63), suggesting that it plays a distinct
role in memory retrieval and reactivation. Because the retrosple-
nial cortex, also a hub of the DMN, has been found to be a
hub for remote memory reactivation (64), it is possible that the
large transients initiating there do represent replay of older
memories, to be interleaved with new memory replay, initiated
by the hippocampus, a setup that is thought to be beneficial for
memory consolidation. We speculate also that the RS-initiated
replay may provide the semantic context for reprocessing in the
hippocampus.

In summary, we presented a view of the global architecture
of cortico-hippocampal interactions, which opens theoretical
perspectives on the mechanisms of memory consolidation, in a
view emphasizing two-way exchanges between these two brain
areas key for memory and cognition.

Materials and Methods

For detailed methods, see SI Appendix. All experiments were approved by the
Animal Welfare Committee of the University of Lethbridge (urethane dataset) or
by the Dutch Centraal Commissie Dierproeven and by the Radboud University
Animal Welfare Board and conducted in accordance with the Experiments on
Animals Act and the European Directive 2010/63/EU on animal research (sleep
dataset). Imaging was carried out with wide-field cameras on the exposed brain
surface (under urethane anesthesia; 1,250 mg/kg; voltage dye RH1691 from
Optical Imaging) or through the thinned skull [sleep; Butterfly 1.2 Genetically
Encoded Voltage indicator (33) expressed in transgenic line] at the appropriate
wavelength for the fluorophores. Electrodes or linear silicon probes were
implanted in the CA1 hippocampal subfield for LFP recording. For natural sleep
recordings NREM and REM sleep periods were detected based on LFP features
(theta/delta ratio), pupil size, and bodily movements. Current-source density
analysis was performed on the linear probe traces to obtain layer-resolved hippo-
campal potentials.

Cortical transients were detected by a thresholding procedure and classified
by training an RBM autoencoder on the pixel-by-pixel activation configurations
and clustering the hidden layer weight configurations obtained. Pseudocausality
analysis used the PSI measure (46) between the time series of the pixels in the
imaging recording and of the bandpass-filtered hippocampal LFP.

Fig. 5. Schematic of the hypothesized bidirectional interaction between
the RS network and the hippocampus.
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Data, Materials, and Software Availability. The codes and electrophysiol-
ogy and imaging data used in this work have been deposited in the Donders
Repository [https://doi.org/10.34973/2w2s-tg07(65)].
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