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Abstract

Air pollution is a major challenge to public health. Ambient fine particulate matter (PM) is the key component for air pollution, and associated
with significant mortality. The majority of the mortality following PM exposure is related to cardiovascular diseases. However, the mechanisms
for the adverse effects of PM exposure on cardiovascular system remain largely unknown and under active investigation. Endothelial dysfunc-
tion or injury is considered one of the major factors that contribute to the development of cardiovascular diseases such as atherosclerosis and
coronary heart disease. Endothelial progenitor cells (EPCs) play a critical role in maintaining the structural and functional integrity of vascula-
ture. Particulate matter exposure significantly suppressed the number and function of EPCs in animals and humans. However, the mechanisms
for the detrimental effects of PM on EPCs remain to be fully defined. One of the important mechanisms might be related to increased level of
reactive oxygen species (ROS) and inflammation. Bone marrow (BM) is a major source of EPCs. Thus, the number and function of EPCs could
be intimately associated with the population and functional status of stem cells (SCs) in the BM. Bone marrow stem cells and other SCs have
the potential for cardiovascular regeneration and repair. The present review is focused on summarizing the detrimental effects of PM exposure
on EPCs and SCs, and potential mechanisms including ROS formation as well as clinical implications.
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Introduction

Air pollution is a major challenge to public health. Ambient particulate
matter (PM) is the key component for air pollution. A recent Global
Burden of Disease Study showed that PM exposure is responsible for
3.2 million deaths per year and 76 million years of healthy life lost
[1]. Particulate matter exposure could be especially a major health
problem in the developing countries as the fine PM levels in some
developing countries are reported to be 10 times higher than that in

the developed countries [2]. The majority of mortality following fine
PM exposure has been related to cardiovascular diseases [1].

Particulate matter is a mixture of various particles including met-
als, crustal material and bio-aerosols [3, 4]. The particles with a med-
ian aerodynamic diameter of <2.5 lm (PM2.5) and <10 lm (PM10)
are of serious global health concerns because of their close associa-
tion (especially PM2.5) with the detrimental effects of air pollution on
our health [5, 6]. The PM2.5 exposure has been reported to produce a
variety of deleterious effects on cardiovascular system including (but
not limited to) vascular dysfunction, reduced heart rate variability and
enhanced risk for thrombosis [3, 7]. Long-term exposure to PM2.5

has been demonstrated to accelerate the process of atherosclerosis
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and vascular inflammation in apolipoprotein E�/� mice with high-fat
diet [8], and increase blood pressure in human and animal models
[9], while short-term exposure to PM2.5 could also induce hyperten-
sion [10].

Endothelial dysfunction or injury is considered one of the major
factors that contribute to the development of atherosclerosis and
coronary heart disease [11, 12]. Endothelial progenitor cells (EPCs)
play a critical role in vascular re-endothelialization, angiogenesis and
prevention of neointima formation after vascular injury [13–16]. The
number and function of stem cells (SCs) and EPCs are significantly
decreased in the animals exposed to PM2.5-10. However, the mecha-
nism(s) for PM2.5-10 exposure-induced impairment of EPCs is not
fully understood. Current data strongly support the concept that the
effect of PM-exposure on EPCs might be related to increased level of
reactive oxygen species (ROS) and inflammation [17–20]. Accumulat-
ing pre-clinical and clinical data suggest that bone marrow stem cells
(BMSCs) and other SCs could significantly contribute to cardiovascu-
lar regeneration and repair after damage like myocardial infarction
and myocarditis. Exposure to ambient PM related to air pollution is a
constant lifelong hazard for all of us. It is therefore important to sum-
marize the adverse consequence of PM exposure on human partici-
pants. The present review is focused on the impact of PM exposure
on cardiovascular system with special efforts on progenitor cells and
SCs as well as related mechanisms especially ROS formation.

PM and cardiovascular diseases

It has been demonstrated that PM2.5 exposure could induce various
cardiovascular diseases including atherosclerosis, hypertension,
stroke and Type 2 diabetes mellitus (DM) [21]. American Heart Asso-
ciation and the Environmental Protection Agency have officially
acknowledged the detrimental effects of PM2.5 on cardiovascular sys-
tem and related morbidity outcome [2]. The Harvard Six Cities study
showed that the cardiopulmonary mortality was increased up to 37%
in the population exposed to high levels of ambient PM2.5 over a per-
iod of 14–16 years [22]. The analysis from a population of 50 million
living in the major U.S. cities (The National Morbidity, Mortality and
Air Pollution Study) indicated that an increase of 10 lg/m3 in PM10

was related to an increase in 0.68% in cardiopulmonary mortality
[23–25]. Every 10 lg/m3 increase in PM2.5 exposure was also associ-
ated with an increase in 4.5% in coronary artery disease (CAD) [26].
Conversely, it was estimated that each 10 lg/m3 decrease in PM2.5

was associated with an increase in 0.61 years in mean life expectancy
in the United States [27]. In addition, there was a close relationship
between NO2 and PM2.5 and the risk of acute myocardial infarction
and hospitalization in the U.S [28, 29]. Similarly, the Air Pollution and
Health European Approach study analysed a population of 43 million
in 29 large European cities, and showed that PM10 was closely related
to cardiovascular diseases [30].

Particulate matter pollution was also correlated with a significant
increase in blood pressure. It has been reported that there was a
2.8 mmHg increase in systolic blood pressure and 2.7 mmHg
increase in diastolic blood pressure in patients in Boston over 5 days
for every 10.5 lg/m3 increase in PM2.5 levels [31]. Similarly, studies

have shown that increased PM2.5 levels were associated with mean
increases in systolic blood pressure of 3.2 mmHg in Detroit, Michi-
gan, USA [32]. In addition, it was observed that a significant rise in
diastolic blood pressure (6 mmHg) in 23 normotensive patients after
a 2-hr exposure to PM2.5 and O3 compared with the patients without
exposure [33]. These observations support the conclusion that there
is indeed a close association between increased blood pressure and
PM2.5 exposure in human participants [34].

Air pollution has been shown to increase the risk for obesity, hyper-
tension, chronic pulmonary disease and cardiovascular disease in the
elderly [35, 36]. Long-term exposure to PM2.5 could induce insulin resis-
tance and mitochondrial alteration in adipose tissue [37], thus further
causing or exaggerating DM [38, 39]. These studies provide additional
evidence that PM exposure is directly associated with cardiovascular
diseases, and also closely related with conditions like DM directly
associated with increased cardiovascular morbidity and mortality.

Progenitor cells and cardiovascular
diseases

Endothelial dysfunction or injury is considered one of the major factors
that contribute to the development of cardiovascular diseases like
atherosclerosis [11], coronary heart disease [12], congestive heart
failure [40–42] and periphery artery disease [43]. Bone marrow-
derived EPCs play a critical role in vascular re-endothelialization,
angiogenesis and prevention of neointima formation after vascular
injury [13, 15, 44]. There is an obvious inverse relation between the
level of circulating EPCs and the risk of cardiovascular events in the
patients with angiographically documented CAD [45]. Similarly,
impaired function of EPCs such as deficiency in migratory response
and poor angiogenic capability has a negative correlation with the
severity of CAD [46]. The important role of EPCs in maintaining the
structural and functional integrity of the blood vessels has been well-
established and extensively discussed in many excellent reviews [47,
48]. Thus, the level of circulating EPCs has been an important and inde-
pendent predictor for cardiovascular outcome in CAD patients [45], and
it is crucial to preserve the number and function of EPCs at a healthy
level for the normal functionality of vasculature in patients with cardio-
vascular diseases. A variety of factors are critically involved in the regu-
lation of the in vivo dynamics of EPC number and function, including
(but not limited to) cytokines and growth factors like granulocyte-
stimulating colony stimulating factor and VEGF [40–42], nitric oxide,
pharmacological agents like statins [49] and environmental factors like
air pollution [19, 50]. Some disease states like hyperlipidaemia, DM,
inflammation, oxidative stress, ischaemia and chronic heart failure are
also important for the dynamic changes of EPCs in vivo [19, 51–54].

It is important to point out that the identification and characteriza-
tion of EPCs have been very challenging and complex, and even con-
troversial as excellently summarized in a few recent review articles
[55–57]. There are currently no unified criteria to define EPCs as yet.
Therefore, the terminology ‘EPC’ was adopted from the original
papers without modification to preserve the originality. The obvious
limitation or confusion was that ‘EPCs’ from different studies might
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not be the same cell populations with different with cell markers in
the literature. There are also multiple sources for circulating EPCs,
including BM and non-BM origins such as liver and spleen [58, 59].
The number and function of circulating EPCs could be delicately
determined by the combined outcome of EPC mobilization, differenti-
ation, proliferation and apoptosis at sites of different sources. Accu-
mulating evidence from pre-clinical and clinical studies suggests that
cell-based therapy with progenitor cells (such as EPCs, CD34+ cells,
c-kit+ cells and adipose tissue progenitor cells, APCs) and SCs (in-
cluding BMSCs) remains an attractive option for tissue regeneration
and repair after significant damages like myocardial infarction and
myocarditis or stroke [60–62]. To achieve the optimal outcome for
cell-based therapy, the quality of the cells needs to be preserved both
in the donors and in the recipients before and after the in vivo deliv-
ery. It is well known that only a small fraction of cells could survive
after in vivo delivery (both locally and systematically) [63, 64]. How-
ever, very little is known on how the quality (including the number
and function as well as differentiation potential) of the progenitor cells
and SCs could be affected by the potential factors in vivo.

PM and progenitor cells

Epidemiological and experimental studies have shown that there is an
obvious relationship between exposure to airborne pollutants and
poor cardiovascular health [50]. Although very limited data are avail-
able on the mechanisms for air pollution-related cardiovascular dis-
eases, induction of endothelial dysfunction by PM2.5 (not able to be
filtered by the respiratory tract) is believed to be one of the mecha-
nisms for the adverse effects of air pollution on cardiovascular sys-
tem in a population-based study with children and adolescents [65].

It is well known that EPCs play a critical role in vascular repair,
angiogenesis and maintaining normal endothelial function [13–16].
Particulate matter exposure has been reported to significantly
decrease the number and function of EPCs, and thus increase the risk
of cardiovascular diseases and adverse cardiovascular events. In
2010, O’Toole et al. recruited 16 healthy college students from Provo,
UT, in the United States to participate in their study [18]. The city of
Provo is located in a valley and the temperature inversion in the valley
could lead to a temporary increase in the concentration of PM2.5 in
the atmosphere. In this study, the investigators demonstrated that
episodic exposure to PM2.5 induced reversible vascular injury,
decreased circulating EPC (CD34+/CD31+/CD45+/CD133+) levels,
enhanced platelet activation, and increased plasma level of nonalbu-
min protein in vivo. In the same year, Liberda et al. reported that
inhalation of nickel nanoparticles could result in a decrease in tube
formation and chemotaxis function of EPCs (CD34+/VEGF-R2+/
CD11b�) in vitro as well as a reduction in EPC number in murine BM
in vivo [66]. A study performed in China in 2013 also showed that
PM2.5 exposure decreased the number of EPCs (CD34+/KDR+, CD34+/
KDR+/CD45� or CD34+/KDR+/CD133+) in circulation [67]. This Chi-
nese study was conducted in two large adjacent communities in Jin-
chang and Zhangye with comparable ambient concentrations of
PM2.5. Jinchang was identified as a heavily Nickel-polluted area
because of its proximity to the second largest Nickel refinery in the

world. Zhangye, 250 miles northwest and upwind from Jinchang, was
selected to serve as a control community. A total of 60 healthy non-
smoking adult women residents were recruited in the study. It was
observed that the circulating EPCs were significantly lower in the par-
ticipants from Jinchang than those from Zhangye. Diesel exhaust par-
ticles were reported to reduce the number and function of EPCs with
impaired stromal cell-derived factor (SDF)-1-induced migratory
capacity and neoangiogenesis both in vivo and in vitro in a murine
model. Consistent with above observation, we recently reported that
PM treatment significantly decreased murine-circulating EPC popula-
tion, promoted apoptosis of murine EPCs (CD34+/CD133+) in associa-
tion with increased ROS production and serum TNF-a and IL-1b
levels in vivo (Fig. 1) [19].

However, some studies demonstrated that circulating EPCs could
be increased after PM2.5-10 exposure. Brook et al. recruited 32 healthy
non-smoking adults (18–50 years old) in Dexter, a town in Michigan,
United States, an area with coarse PM2.5-10 exposures [68]. Dexter is
410 km from major freeways and 460 km west of the Detroit
metropolitan area. The study showed that increased number of EPCs
(CD34+/CD133+/CD3�/CD79b�/CD56�) in vivo persisted for at least
20 hrs following brief inhalation of coarse PM2.5-10. The mechanism
was believed to be related to a systemic reaction to an acute ‘en-
dothelial injury’ and/or a circulating EPCs response to sympathetic
nervous system activation. Haberzettl et al. delineated that exposure
to PM2.5 could increase murine EPC (Sca-1+/Flk-1+) levels in the BM
by preventing their mobilization to the peripheral blood via inhibition
of signalling events triggered by VEGF-receptor stimulation based on
in vivo and ex vivo experiment [17]. This might also explain the
decreased circulating EPCs as a result of the decreased mobilization
of BM EPCs into the circulation.

PM2.5 exposure might also have significant impact on APCs as
well. Adipose tissue progenitor cells (Lin�/CD34+/CD29+/Sca-1+/
CD24+) in brown adipose tissue are closely correlated with the normal
functionality of brown adipose tissue and reduction in obesity [69]. It
has been shown that high level exposure to PM2.5 in murine early life
is associated with decreased number of murine APCs and increased
risk factor for the development of insulin resistance, adiposity and
inflammation in association with ROS generation by NADPH oxidase
in vivo [70]. The effect of PM exposure on different progenitor cells
and their function in both human and animals was summarized in
Tables 1 and 2.

PM and stem cells

Cell-based therapy with progenitor cells and SCs appears to be a
promising option for the regeneration and/or repair of damaged tis-
sues in cardiovascular system [71–74]. Many types of SCs have been
studies as the potential sources for cell-based therapy including
embryonic SCs (ESCs) [75, 76], neural SCs [77], cardiac SCs [78–81],
BM-derived haematopoietic SCs (HSCs) [82], BM-derived c-kit+/Lin�

cells [83, 84], mesenchymal SCs (MSCs) [72, 85, 86], adipose-
derived SCs [87] and inducible pluripotent stem cells from somatic
cells [88]. Progenitor/SCs in circulating blood and in the vascular wall
could serve as the endogenous pool of SCs to restore the structural
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and functional integrity of the vasculature through rapid repair of
the endothelial cells and/or formation of new vessels after injuries
[89]. The progenitor/SCs residing in vascular intima, media and
adventitia may participate in vascular repair and the formation of
neointimal lesions in severely damaged vessels [90]. Recently, a
new type of SCs was identified in the murine arterial media, named

multipotent vascular SCs, which could differentiate into neural cells
and MSC-like cells and subsequently differentiate into SMCs [91].
In addition, abundant progenitor/SCs expressing Sca-1 have been
identified in the adventitia, which may contribute to endothelial
regeneration and smooth muscle accumulation in the neointimal
lesions [92].

Fig. 1 Illustration of potential mechanisms for the effect of PM exposure on cardiovascular system and progenitor/stem cells. PM exposure resulted

in ROS formation that in turn could lead to the detrimental effects on cardiovascular system and impaired number and function of progenitor/stem

cells. The mechanisms for decreased number and function of progenitor/stem cells following PM exposure might be because of the inhibition of

self-renewal, proliferation, survival (enhanced apoptosis), homing, mobilization, adhesion to extracellular matrices or differentiation. Blocking PM-
induced ROS formation might be an effective treatment option to attenuate or prevent the adverse effect of PM exposure on the progenitor/stem

cells and cardiovascular system. Other mechanisms like reduction in VEGF receptor-mediated signalling, decreased Akt signalling and nitric oxide

level could be also important for the effect of PM exposure. PM: particulate matter; ROS: reactive oxygen species. -: diminish; ↓: decrease.

Table 1 The effect of particulate air pollution on human progenitor/stem cells

Authors Key findings Participants Exposure time Location

O’Toole et al. PM2.5 exposure decreases circulating EPC level 18–25 years adults 3 months Utah, US

Brook et al. Brief PM inhalation could increase EPC number for at least
20 hrs

18–50 years adults 2 hrs Michigan US

Niu et al. Specific metals in PM2.5 may be responsible for decreased
circulating EPC level

60–65 years women 12 months China

Lin et al. CS inhibits ESCs growth ESCs 6–24 hrs Lab

Talbot et al. CS could lead to poor adhesion to extracellular matrices,
diminished survival and proliferation and increased apoptosis
of ESCs

ESCs 6–24 hrs Lab

Liszewski et al. Tobacco smoking impairs foetal development ESCs 8–21 days Lab

Zhou et al. Smoking inhibits BMSC recruitment and differentiation MSCs 1 month Lab

PM: particulate matter; SCs: stem cell; ESCs: embryonic stem cells; MSCs: mesenchymal stem cells; HSC: haematopoietic stem cells; BM: bone
marrow; BMSCs: bone marrow stem cells; CSC: cigarette smoke condensate.
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The therapeutic efficacy of cell therapy for cardiovascular dis-
eases is associated with a variety of factors including cell types,
myocardial ischemia, cardiac dysfunction or their combination [93].
The outcome of cell therapy with stem cells could be also related to
the engraftment and survival of the cells transplanted into the target
area such as an infarcted myocardial area. It is known that one of the
major challenges for cell therapy with BMSCs is the low viability of
the implanted cells with the loss of cells occurring mainly in the first
few days after in vivo delivery [94]. However, the mechanisms for the
poor in vivo survival of the cells are complex, and have yet to be
defined. It is believed that an acute inflammatory reaction with forma-
tion of various inflammatory factors including inducible nitric oxide
synthase in the delivery site is a critical factor for the cell death in the
first 24–72 hr period [94–96].

Unfortunately, there is very little data available in the area of PM2.5

and SCs. We recently found that PM exposure significantly decreased

murine BMSCs population in vivo, defined as lineage negative/Sca-1
positive (LS) and lineage negative/CD133 positive (Lin�/CD133+)
cells, in association with increased ROS formation, decreased level
of Akt phosphorylation and inhibition of in vivo proliferation of mur-
ine BMSCs without induction of apoptosis [20]. We further demon-
strated that PM-induced ROS production was the major mechanism
for decreased in vivo proliferation and population of murine BMSCs.
Treating mice with antioxidant N-acetylcysteine (NAC) or using a tri-
ple transgenic mouse line with overexpression of antioxidant
enzyme network (AON) composed of superoxide dismutase (SOD)1,
SOD3 and glutathione peroxidase-1 with decreased in vivo ROS pro-
duction significantly decreased murine BMSCs intracellular ROS
level, partially reversed the suppression of p-Akt expression, effec-
tively reversed the inhibition of BMSCs proliferation rate and
restored the BMSCs population in the mice with PM exposure
in vivo (Fig. 1).

Table 2 The effect of particulate air pollution on animal progenitor/stem cells

Authors Key findings Participants Exposure time

Xu et al. PM2.5 exposure induces oxidative stress Mouse APCs 10 weeks

Liberda et al. Ni nanoparticles result in reduced number and function of
EPCs in bone marrow

Mouse EPCs 2–5 days

Haberzettl et al. PM2.5 exposure increases EPC levels in the bone marrow by
preventing mobilization via inhibition of VEGF-receptor
signalling

Mouse EPCs 18 months

Poss et al. Diesel exhaust particles impair EPC number and function
in vivo and in vitro

Mouse EPCs 3–6 weeks

Cui et al. PM exposure significantly decreased circulating EPCs
population due to increased apoptosis via ROS formation

Mouse EPCs 1 month

Cui et al. PM suppresses BMSC in vivo proliferation via ROS formation Mouse SCs 1 month

Huang et al. CS induces oxidative stress, telomere shortening, and
apoptosis

Mouse EPCs 1 month

Yauk et al. CS leads to mutations of spermatogonial SCs Mouse spermatogonial SCs 6–12 weeks

Huang et al. Acute CS exposure causes cell death and reduces
pluripotency, while chronic CS exposure leads to DNA
damage and telomere shortening

Mouse ESCs 20 hrs–2 weeks

Lin et al. CS impairs ESC function Mouse ESCs 6–24 hrs

Albrecht et al. Titanium dioxide in coal dust induces hyperplasia of Clara
cells

Rat Clara cell 126–129 weeks

Izzotti et al. CS could induce recruitment of undifferentiated SC into lung Mouse MSCs 1–4 months

De Flora et al. Same as above Mouse MSCs 1 week–11 months

Khaldoyanidi et al. Nicotine could impair the function of the haematopoiesis-
supportive stromal microenvironment, and interfere with SCs
homing

Mouse HSCs 1–4 weeks

Zhou et al. Smoking inhibits BMSC recruitment and differentiation Mouse MSCs 1 month

PM: particulate matter; APCs: adipose tissue progenitor cells; SCs: stem cell; ESCs: embryonic stem cells; MSCs: mesenchymal stem cells;
HSC: haematopoietic stem cells; BM: bone marrow; BMSCs: bone marrow stem cells; CSC: cigarette smoke condensate.

786 ª 2016 The Authors.

Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.



There are a variety of sources for PM exposure [97]. Recent
studies showed that the median concentration of PM2.5 in the smok-
ing area (both indoor and outdoor) was significantly higher than in
the control area [98–100]. Thus, environmental tobacco smoke-
associated PM could be an important independent health hazard in
addition to the well-known toxic and carcinogenic compounds
contained in cigarette smoking (CS). It has been reported that CS
could significantly impair the number and function of various SCs
including ESCs, spermatogonial SCs (SSCs) and Clara cell (SCs of
the bronchiolar epithelium). Cigarette smoking could produce cyto-
toxic action on human ESCs (hESCs) and mouse ESCs (mESCs),
induce oxidative stress, apoptosis and telomere shortening in ESCs
in vitro, inhibit cell adhesion and growth in vitro, and compromise
embryo development in vivo [101–103]. In addition, CS might also
induce mutation of SSCs gene and alterations in hESCs gene expres-
sion (especially those characteristic for mesoderm and ectoderm
development) in vivo [104]. Increased expression of Notch, Wnt or
transforming growth factor-b genes by smoking resulted in retention
of the cells in pluripotent state in vivo [105]. In addition, acute expo-
sure of mESCs to CS or cadmium could cause immediate cell death,
and decrease their pluripotency, while chronic exposure could lead
to DNA damage and telomere shortening in vivo [106, 107]. Coal
dust exposure resulted in the disappearance of proliferating cell
nuclear antigen in rat Clara cell in vivo [108]. Although CS could
recruit SCs into murine lung in vivo [109, 110], negative impact
including interfering murine and human MSCs homing by targeting
microvascular endothelial cells and differentiation into endometrial
cells and blood vessel ex vivo were reported [111, 112]. The detri-
mental effects of PM exposure and CS on SCs were summarized in
Tables 1 and 2. However, it is important to differentiate the effect of
PM exposure from that of other toxic and carcinogenic compounds
in CS on SCs.

Possible mechanisms for the effects
of PM exposure on progenitor/stem
cells

There is growing evidence that supports an important role of oxidative
stress in response to air pollution in different organ systems [113].
Reactive oxygen species could function as signalling molecules in
PM2.5-trigged autophagy in human epithelia A549 cells [114]. Oxida-
tive stress could be triggered by PM2.5 and result in alterations in
mitochondrial gene expression in brown adipose tissue [115].
Clinical studies suggested that ROS formation, oxidative stress
and inflammation induced by PM2.5 exposure were closely related
to paediatric asthma [116]. A relationship has been observed
between ambient PM10, oxidative burden and carotid intima-media
thickness (a change and indicator for subclinical atherosclerosis)
[117]. Studies, using a simulated respiratory tract lining fluid
model with three major water soluble antioxidants (glutathione,
urate and ascorbate) at physiological concentrations that served
as the first-line defence in the airway against the oxidative activity
of PM, showed that PM could deplete the antioxidants [118]. It

was also demonstrated that a close relationship was present for
ultrafine particles and NO2/NOx [119].

Reactive oxygen species and oxidative stress are involved in
EPCs dysfunction in many disease states including hyperlipidaemia,
DM and CAD [13, 15, 44]. It was observed that the functional
impairment of human EPCs by diesel exhaust particles was associ-
ated with an increased superoxide production [120]. We also
observed that ROS production was significantly increased in the
EPCs and BMSCs from the mice exposed to PM. Blockage of ROS
formation using pharmacological agent NAC or transgenic model
with overexpression of NOA effectively prevented PM-induced
decrease in the numbers of circulating EPCs and BMSCs. These data
suggested that ROS formation was an important cause for
decreased number of EPCs [19] and BMSCs following PM exposure
(Fig. 1).

Particulate matter exposure was shown to suppress VEGF-
induced Akt activation and endothelial nitric oxide synthase (eNOS)
phosphorylation in the aorta, and prevented VEGF/AMD3100-induced
mobilization of EPCs into the peripheral circulation without change in
the plasma levels of human SDF-1a and VEGF [17, 66]. Second-hand
smoke exposure was also reported to block VEGF-stimulated nitric
oxide production [121]. There are extensive and complex interactions
between ROS and Akt pathway in both normal and cancer cells. We
observed that PM exposure inhibited BMSC proliferation via ROS-
mediated mechanism(s) partially through suppression of Akt sig-
nalling. It is certainly possible that other pathways might also be
affected by PM exposure. Future studies are needed to define the role
of other pathways in the effect of PM exposure on BMSCs and pro-
genitor cells.

Clinical implications for PM-induced
detrimental effects on progenitor/stem
cells in cardiovascular system

It is clear that exposure to PM increases the risk of cardiovascular
diseases with ROS formation as the predominant mechanism. It could
be ideal to avoid inhaling PM physically via wearing masks or using
filters. However, fine PM such as PM2.5 is very difficult to be removed
or isolated from the air because of their extremely small size, espe-
cially in those cities with severe air pollution. Moreover, PM2.5 widely
exists in the environment and may carry ROS within gas phase [122]
or water phase (aerosol) [123] into the lower respiratory tract to
create an increased risk for adverse cardiovascular events.

Antioxidant enzyme and antioxidant supplementation have been
examined for its impact on cardio-respiratory effects of PM2.5 exposure.
Animal studies have shown an increase in the levels of antioxidant
gene expression in epithelial cells after exposure to diesel exhaust
particles [124]. It was reported that omega-3 polyunsaturated fatty
acid could attenuate the adverse effect of PM2.5 on heart rate variabil-
ity [125]. Antioxidant supplementation such as vitamin C and E was
shown to have beneficial effects against human lung damage by air
pollution [126]. Antioxidant probucol could reduce CS-induced
impairment of neovascularization associated with improved function
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of EPCs [127]. Inhibition of ROS accumulation/production or oxida-
tive stress with pharmacological agents like NAC and SOD-mimics, or
overexpression of antioxidant enzymes like Hsp20 and SOD could
reduce ROS accumulation in human MSCs, and attenuate oxidative
cell damage in BMSCs in vitro [128], protect stem cells against
ROS-induced apoptosis in vitro [129], protect MSCs against cell
death triggered by oxidative stress in vitro in association with
enhanced Akt activation and increased secretion of growth factors
(such as VEGF, fibroblast growth factor-2, and insulin-like growth
factor 1) [130], increase the differentiation of EPCs into endothelial
cells [131], inhibit cell senescence in HSCs in the BM [132] and
restore the impaired self-renewal potential and functional activity of
HSCs with high ROS level [133]. N-acetylcysteine treatment also pro-
tected BMSCs against the toxic effect of low concentration ox-LDL,
and restored their endothelial differentiation potential impaired by ox-
LDL [134]. Recently, we observed that after PM≤4 exposure, NAC or
overexpression of AON could completely block intracellular ROS pro-
duction in BMSCs, partially restore p-Akt level, decrease serum TNF-
a and IL-1b level, reduce EPCs apoptotic rate, effectively reversed the
decreased proliferation rate of BMSCs and increased the BMSCs and
EPCs number to normal level [19]. Thus, inhibition of ROS production
and oxidative stress might be an effective option to ameliorate PM-
induced detrimental effects on progenitor cells and SCs as well as
cardiovascular system.

Other considerations

There is no question that PM exposure has significant impact on the
number and function of progenitor cells and stem cells. However,
studies are needed to address a variety of important issues in this
area including (but not limited to): (i) determining the size and active
components of PM that are responsible for detrimental effect of PM
exposure on progenitor cells and SCs, as well as cardiovascular dis-
eases and related mechanism(s) since the size and components are
critical to the action of PM [135]; and (ii) defining the mode of actions
(direct or indirect) for PM exposure on the progenitor cells and SCs.

The number and function of progenitor cells and SCs are associ-
ated with other factors and cells like monocytes and platelets through
a wide range of cytokines and growth factors [136–139]. Both mono-
cytes and platelets are important to cardiovascular physiology (like
angiogenesis and haemostasis), and closely related to cardiovascular
diseases like CAD. It is known that monocytes display certain plastic-
ity and could function as pluripotent stem cells with regenerative
capability, and produce a variety of cytokines and inflammatory fac-

tors [140, 141]. Particulate matter exposure could exhibit its effects
on progenitor cells and SCs through functional and/or structural mod-
ifications of monocytes and platelets. Indeed, PM exposure is able to
significantly alter the function and responses of platelets both in vitro
and in vivo including induction of Ca(2+) release, dense granule
secretion and surface expression of platelet activation markers like P-
selectin expression, as well as aggregation, and change in the mean
platelet volume [142–146]. Particulate matter exposure/treatment has
been shown to modify the function of monocytes significantly includ-
ing inflammatory response and cytokine production, recruitment and
mobilization, and transcriptional and translational modulations of
gene expressions in monocytes [135, 136, 147–152]. Further studies
are needed to determine the complex relations between PM exposure,
monocyte and platelet function, and progenitor cells/SCs.

Conclusion

In this review, we discussed the adverse effects of PM exposure on
cardiovascular diseases with specific effort on PM-induced detrimen-
tal impact on progenitor/SCs. Indeed, PM exposure correlated with
the reduction in life expectancy primarily via cardiovascular diseases,
and the resultant abnormality in the number and function of progeni-
tor/SCs might play an important role in cardiovascular diseases
related to PM exposure (Fig. 1). However, there are lots of questions
that need to be addressed on PM-induced structural and functional
impairment on progenitor/SCs. For example, does PM affect the dif-
ferentiation potential of BMSCs and how? Does PM affect other SCs
and how? All these questions require further studies. Although pre-
vention of ROS formation and oxidative stress might be an effective
way to attenuate PM-induced deleterious effects on progenitor/SCs,
we believe that other mechanisms may be also important for the
effect of PM exposure, which merit further investigations.
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