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In recent years, the synthesis of monomer sequence-defined polymers has expanded into
broad-spectrum applications in biomedical, chemical, and materials science fields.
Pursuing the characterization and inverse design of these polymer systems requires
our fundamental understanding not only at the individual monomer level, but also
considering the chain scales, such as polymer configuration, self-assembly, and phase
separation. However, our accessibility to this field is still rudimentary due to the limitations
of traditional design approaches, the complexity of chemical space along with the
burdened cost and time issues that prevent us from unveiling the underlying monomer
sequence-structure-property relationships. Fortunately, thanks to the recent
advancements in molecular dynamics simulations and machine learning (ML)
algorithms, the bottlenecks in the tasks of establishing the structure-function
correlation of the polymer chains can be overcome. In this review, we will discuss the
applications of the integration between ML techniques and coarse-grained molecular
dynamics (CGMD) simulations to solve the current issues in polymer science at the chain
level. In particular, we focus on the case studies in three important topics—polymeric
configuration characterization, feed-forward property prediction, and inverse design—in
which CGMD simulations are leveraged to generate training datasets to developML-based
surrogate models for specific polymer systems and designs. By doing so, this
computational hybridization allows us to well establish the monomer sequence-
functional behavior relationship of the polymers as well as guide us toward the best
polymer chain candidates for the inverse design in undiscovered chemical space with
reasonable computational cost and time. Even though there are still limitations and
challenges ahead in this field, we finally conclude that this CGMD/ML integration is
very promising, not only in the attempt of bridging the monomeric and macroscopic
characterizations of polymer materials, but also enabling further tailored designs for
sequence-specific polymers with superior properties in many practical applications.
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1 INTRODUCTION

Polymer materials, a class of natural or synthetic substances
composed of long-chain molecules, are prevalent, ranging
from proteins, cellulose, nucleic acids in a living organism to
familiar man-made materials such as concrete, glass, paper,
plastics, and rubbers (Council, 1994; Brinson and Catherine
Brinson, 2008; Sawyer et al., 2008; Namazi, 2017). A
polymeric structure is composed of multiple simpler chemical
units, so-called monomers, which are covalently bonded together
to form a long-chain macromolecule. The chemical structure of
the monomers, as well as their arrangements, govern the
properties of polymer from microstructures to physical and
mechanical behaviors (Lutz et al., 2013; Lutz et al., 2016;
Soroush et al., 2019; Balasubramanian et al., 2021), for
instance, conductivity, elasticity, rigidity, or biodegradability
can be finely calibrated by the sequence-defined polymers
(Hartmann and Börner, 2009; Lutz et al., 2013; Porel and
Alabi, 2014; Perry and Sing, 2020).

In general, the design of a polymer can be separated into three
parts corresponding to three steps in the processing of polymers,
as illustrated in Figure 1: molecular design of monomers for
polymerization, microstructure formation due to phase
separation or crystallization, polymer processing, and
manufacturing. Monomer, the building block of polymers,
forms the repeating unit of polymers to influence the

fundamental physical properties of eventually produced
polymers. While molecular weight is one of the critical factors
that influence the properties of small organic molecules, the
polymer’s size effect is different from its monomer size. Since
the polymers are long-chain molecules, their size effect typically
originates from the molecular weight rather than the monomer
size. Indeed, during the various polymerization process, the
molecular weight distribution (MWD) can be formed and
tailored through a controlled fashion from the same type of
monomer (Gentekos et al., 2016), resulting in significantly
different physical and chemical properties (Nunes et al., 1982;
Imrie et al., 1994; Gentekos et al., 2019). Hence, various metrics
based on the MWD of polymers are used to characterize their
sizes to polymer properties (Bur and Fetters, 1976; Colby et al.,
1987; Fetters et al., 1994). Furthermore, the inter- and intra-
molecular interactions between polymer chains can lead to very
different microstructures, such as phase separation and
crystallization, influencing their thermal and mechanical
properties dramatically (Strawhecker et al., 2013; Hsieh et al.,
2014; Yi et al., 2018). Eventually, the same type of polymer can
undergo different processing or manufacturing conditions, such
as stretching, compressing, or mixing additives, to further
enhance or tailor their properties for specific applications
(Vasile and Pascu, 2005). Therefore, the design space of
polymers should cover all the parameters involved in these
steps, such as the molecular space of single or multiple

FIGURE 1 | A hierarchical design principle for polymeric materials, considering their monomer, chain, microstructure, processing, and manufacturing. The
architecture of polymer chains, along with their molecular compositions (monomers), determines the microstructure of polymers, such as phase separation and
crystallization. Monomer is a repeat unit comprising a polymer’s chemical structure. If there is only a single type of monomer, the polymer is known as a homopolymer,
while a polymer containing two or more types of monomers is called a copolymer. In copolymers, monomers can arrange in a variety of manners such as random,
block, gradient, or alternating. A controlled monomer sequence vigorously influences the polymer chain properties, ultimately leading to the desired phase separation or
crystallization of microstructure.
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monomers for homopolymers or copolymers respectively,
temperature, pressure, polymerization process, molding
methods, additives or fillers, etc.

Over the last decade, the development of synthetic polymers
focusing on controlling sequence-specific chains has become
notable in polymer science and engineering (Badi and Lutz,
2009; Hartmann and Börner, 2009; Chan-Seng et al., 2012;
Lutz et al., 2013; Lutz, 2017; Guseva et al., 2017; Solleder
et al., 2017; Nanjan and Porel, 2019; DeStefano et al., 2021).
Monomer sequence can dictate important properties of the
polymer chains, such as polymer configurations, gyration
radius, self-assembly behaviors, etc. via the inter- and intra-
molecular interactions. Compared to classical random and
block copolymers, these sequence-defined polymers provide
enormous opportunities for materials design, with tailored
microstructure and mechanical properties (Leibfarth et al.,
2015; Meier and Barner-Kowollik, 2019; Nanjan and Porel,
2019). However, it also leads to questions that polymer
mechanics must address, including but not limited to: 1) To
what extend does chain sequence matter for mechanical
properties of polymers? Is it worth overcoming the challenge
of synthesizing sequence-defined polymers for unique materials
design? 2) How does the monomer sequence scale relate to the
chain length scale of polymers? Are there fundamental limits
associated with how the monomer sequence can determine the
structure/mechanics of polymers and vice versa? 3) How do we
consider a vast sequence parameter space of sequence-defined
polymers? To answer these questions, it is inevitable to boost our
fundamental understandings of sequence-structure-property
relationships for polymeric materials with not only a single
one, but an assemble of polymer chains. Recently, the
computational approach has been an effective alternative tool
to enhance our predictive capability due to the limitations of
current experimental measurements (Binder, 1995; Li et al.,
2012a; Li et al., 2013; Li et al., 2017; DeStefano et al., 2021). In
particular, molecular dynamics (MD) simulation has
demonstrated its robustness in capturing physical and
mechanical properties of polymers, such as glass transition
temperature (Varnik et al., 2002), viscosity (Mondello and
Grest, 1997), dynamics and relaxation (Binder, 1995), phase
separation (Tanaka, 1993), crystalization (Kavassalis and
Sundararajan, 1993; Gee et al., 2006), entanglement network
(Everaers et al., 2004; Kröger, 2005), Young’s modulus and
yield strength (Li and Strachan, 2011). Among different MD
techniques, coarse-grained molecular dynamics (CGMD) rather
than all-atom modeling can serve as an effective approach for
reducing tremendously computational cost and complexity of
chemical space while maintaining modeling accuracy (Li et al.,
2013; Ingólfsson et al., 2014;Webb et al., 2019;Wang et al., 2020a;
Ye et al., 2021). Nevertheless, carrying out the CGMD
simulations for all potential candidates is impossible
because this would be extremely computationally
demanding and time-consuming, limiting the CGMD
applications in the design and discovery of new polymers.
For instance, if the polymer chain is composed of ten of two
types of monomers, the number of possible chains for
sampling is around 500, which is still feasible. Nonetheless,

if increasing the length to 30, the possibilities increase
exponentially to more than 500 million (Patra et al., 2020).

Using theory in combination with MD simulations is a
conventional approach to boost the simulations in polymeric
systems. Different fromMD simulations in which the coordinates
(including bond and torsional angles) of the atoms or particles
will be solved, theory-based simulations focus on the functional
integrals over the chemical potential fields in a simulation
domain. Thus, a discrete bead-spring chain model from MD
simulations can be simplified by a continuous chain (a space
curve) (Fredrickson et al., 2002). We can visualize the
combination between MD simulations and theoretical
approach in which MD simulations can be used to provide
structural information into or validate the theory-based
method, and then the theoretical model is used to explore the
polymeric properties in larger parameter space, time, and length
scales that are too computationally expensive when using MD
simulations alone. This combination allows us to overcome the
limitations of MD simulations, such as the size effects of finite
systems, conformational transitions with large length and time
scales, or long polymer relaxation times (Gartner and Jayaraman,
2019). Common theories used in polymer simulations include
field-theoretic computer simulation (FTCS), self-consistent-field
theory (SCFT)/density functional theory (DFT), dynamic mean-
field theory (DMFT), integral equation polymer reference
interaction site model (PRISM). Each of these methods has
advantages and disadvantages. For instance, FTCS can work
well in concentrated systems of high molecular weight
polymers (e.g., dense polymer solutions, molten blends, block
copolymers, and their composites) as well as systems with soft,
long-ranged interactions (e.g., electrolyte solutions,
polyelectrolytes, block co-polyelectrolytes), but turned out to
be inaccurate in dilute and semi-dilute polymer solutions
(Fredrickson et al., 2002). SCFT/DFT can work efficiently with
perplexing architecture copolymers in bulk and self-assembled
structures in dilute copolymer solutions (Wang et al., 2018), but
the method accuracy might be vulnerable to system fluctuations
(Zhang et al., 2007). Classical DFT shares a number of similarities
with the polymer SCFT and can reproduce the morphologies of
block copolymer thin films predicted by SCFT as well as resolve
the structural properties near the interface, but needs more
development for complex systems with multidimensional
density profiles (Frischknecht et al., 2002). Another approach
is the DMFT which proved to be effective to simulate processes
with length and time scales for the polymer systems currently
inaccessible byMD simulations (Knoll et al., 2004), but inefficient
for nonlocal coupling effect due to the huge computational
expense to acquire the chemical potential (Zhang et al., 2017).
One interesting approach that has recently received much
attention is the use of PRISM. PRISM theory describes the
liquid-like structural correlations in single- and
multicomponent polymer melts, solutions, nanocomposites,
and complex fluid systems, and the theory has been validated
for many polymeric systems (Martin et al., 2018). The theory uses
the “closure relations” (intra- and inter-molecular correlation
functions) to reflect the pairwise interaction potentials acting
between components. The integration of MD and PRISM theory

Frontiers in Chemistry | www.frontiersin.org January 2022 | Volume 9 | Article 8204173

Nguyen et al. Machine Learning and Coarse-Grained Simulations

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


can be done by using the physical and chemical features of the
MD models to import into the PRISM model and numerically
solving the PRISM theory. The qualitative and quantitative
agreements between PRISM and MD simulation results in the
study of copolymers show that PRISM theory can be used as an
effective tool to guide MD simulations and experiments in the
study of block copolymer assemblies with various copolymer
sequences and compositions (Lyubimov et al., 2017).
Additionally, since PRISM calculations are much faster than
all-atomistic MD simulations, it allows the exploration of a
much larger parameter space such as different block
copolymer architectures, sequences, compositions, etc.
However, this theory-based method also has some limitations.
PRISM cannot be directly applied for the structure of ordered,
macrophase-separated, or microphase-separated materials that
are different from the liquid-like system. Additionally, the theory
produces only pair correlation functions rather than a coordinate
trajectory, thus leading to the lack of visual analysis. The method
can be extremely slow to converge and unstable in some
conditions (Martin et al., 2018).

When it comes to the issue of big data, artificial intelligence
(AI) or machine learning (ML) is considered one of the best
computational tools for problem-solving. ML is enabled by
preexisting experimental and/or computational data and is
extremely useful not only for polymer applications but for
materials discovery and characterizations (Hill et al., 2016; Liu
et al., 2017; Ramprasad et al., 2017; Butler et al., 2018; Chen et al.,
2020; Lopez-Bezanilla and Littlewood, 2020; Saal et al., 2020;
Chen et al., 2021a; Batra et al., 2021). However, most of the
current training data for ML algorithms in polymer applications
are derived from the DFT calculations of monomeric or small
oligomeric substances (Webb et al., 2020). Additionally, the
polymeric structures used in the current ML models are
mostly represented by a simplified molecular-input line-entry
system (SMILES) of the monomers for simplification
(Chandrasekaran et al., 2020; Zhu et al., 2020; Nazarova et al.,
2021). We know that SMILES is one of the most popular methods
to represent molecules because it is handy and readable for both
humans and machines. Even though the SMILES is applicable in
homopolymer property predictions, the influence of polymer
chain topology on the target properties is almost excluded
(Pilania et al., 2019; Deacy et al., 2021; Patel et al., 2021). It
seems ineffective to obtain understandings of the
macromolecular behaviors such as self-assembly, polymeric
crystallization or knot-type classifications, etc. when the
polymer chain is represented by its monomer only. Therefore,
using the traditional ML approaches with the current polymeric
database and monomeric representation might not be sufficient
to comprehensively acquire the macroscopic behaviors of
polymers. To overcome this challenge, researchers have been
integrating CGMD with ML tools to effectively accelerate the
polymer chain and microstructure design (Jackson et al., 2019;
Webb et al., 2020; Arora et al., 2021; Jablonka et al., 2021;
Schneider and de Pablo, 2021). In this way, the CGMD
simulation is used to generate the training datasets for
polymer chains (configurations and/or microstructures), and
then ML algorithms are implemented to establish surrogate

models for polymer chain characterizations or inverse designs.
ML is very powerful since it does not require a rigorous
theoretical description of polymeric materials and, more
importantly, can handle sparse training data (Zhang and Ling,
2018). This is very helpful under some difficult or labor-intensive
circumstances for measuring or sampling, for instance, MD
simulation for a very large system. Therefore, in the current
lacking of clear physics-based models and polymer datasets, the
hybridization of ML and CGMD (CGMD/ML) allows us to speed
up the problem-solving at the scale of the polymer chain or
network, particularly outside the “comfort zone” of these
materials. However, like other computational approaches, ML
tools in the field of polymers also face some limitations that need
to take into account in the future, including 1) Dataset
availability; 2) Feature representations and 3) Transferability.
Compared to the more experienced bioinformatics or material
informatics databases, there are fewer databases for polymeric
materials, especially at the chain-length level. ML algorithms at
this level require a sufficient number of data points derived from
MD simulations; thus when it comes to an unexplored corner of
polymer material (or novel structures), one needs to generate the
MD simulation dataset, which might take a lot of time and
computational cost to acquire and process the raw data.
Therefore, it will be encouraged to obtain a constitution and
variety of such databases to derive maximum utility for the
polymer materials community. Another concern is the choice
of the feature representations. Efficient descriptors are considered
to be 1) invariant to the symmetries of the underlying physics; 2)
easy to interpret; 3) expressed in a direct and concise form and 4)
computationally efficient (Haghighatlari and Hachmann, 2019).
However, it is still challenging to develop descriptors that could
satisfy all these criteria. Thus, it requires more effort to
standardize the feature representation and selection for ML
models in the future. Another biggest question is related to
the accuracy and transferability of the ML models. For
instance, even though one can use an ML algorithm to tackle
a specific CG polymer system, but it does not guarantee this ML
model can be applicable in a new CG polymer setup with different
coarse-graining representations. Therefore, making a better
transferable ML model also requires further ML algorithm
development as well as a suitable coarse-graining mapping for
polymer systems.

Although several excellent reviews already exist in the
application of ML algorithms in the field of polymers and soft
matters (Audus and de Pablo, 2017; Ramprasad et al., 2017;
Zhang and Ling, 2018; Jackson et al., 2019; Chen et al., 2020; Batra
et al., 2021; Clegg, 2021; Deacy et al., 2021; Friederich et al., 2021;
Sattari et al., 2021; Sha et al., 2021), none of them thoroughly
focused on studying the combination of ML algorithms and
CGMD modeling of polymer chains. Therefore, we aim to
promote our understanding of this fascinating topic by
providing case studies on the integration of these two
powerful computational techniques in polymer science. To this
end, this review is organized as follows: Section 2 provides basis
description of MD simulations for polymer system; Section 3
describes an overview ofML approaches with essential knowledge
and then provides some commonly used ML algorithms in

Frontiers in Chemistry | www.frontiersin.org January 2022 | Volume 9 | Article 8204174

Nguyen et al. Machine Learning and Coarse-Grained Simulations

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


polymeric materials; Section 4 introduces the most recent
CGMD/ML studies related to the three most common
polymer chain applications including configuration
classification, feed-forward property prediction, and inverse
design; Section 5 highlights main challenges and future
directions expected to go in this field. Finally, Section 6
presents our summary and conclusions of the promising
employment of CGMD/ML in polymer chain studies.

2 BASIC DESCRIPTION OF MD
SIMULATIONS FOR POLYMERS

Due to the limitations of current experimental techniques,
molecular dynamic (MD) simulations have provided an
effective alternative approach to characterize the structures
and molecular mechanisms of polymers. In MD simulations,
the equations of motion are used to derive the positions and
velocities of atoms and molecules via external and interatomic
forces (Brighenti et al., 2020). By doing so, we are able to explore
the molecular structures and thermodynamic properties of
polymers. The emergence of MD simulations not only helps to
understand the experimental observation but also significantly
assists the molecular and macroscopic modeling.

2.1 The Spatial and Temporal Scales of
Polymer Simulations
The simulations for polymers can have various temporal and
spatial scales, including quantum mechanics, atomistic scale,
coarse-grained (CG)/mesoscopic scale, and macroscale
(Figure 2). Briefly, the quantum scale is about 10−10 m and
10−12 s. The particles at this scale include the nuclei and

electrons, and their configurations are solved using quantum
mechanics. At the atomistic scale (∼10−9 m and ∼10−9–10−6 s),
all-atoms (AA) models are explicitly represented by their nuclei
as single sites. The interactions between atoms include bonded
and non-bonded forces. The former interaction accounts for
bond length, bond angle, and bond dihedral potentials. The
latter one usually uses Coulomb interactions and dispersion
forces. At the coarse-grained and mesoscopic scale (∼10−6 m
and ∼10−6–10−3 s), a molecule of polymer will be represented
by a number of microscopic particles known as a bead. This
coarse level of modeling allows us to simulate the polymer system
with larger spatial and temporal scales than the previous models.
The last scale is called the macroscopic or continuum scale that is
in the order of 10−3 m and 1 s. At this level of modeling, the
polymer system is described as a continuous medium without
discrete atoms and molecules. The model uses constitutive and
conservation laws to capture the macroscopic phenomena in
polymeric systems that are typically acquired via experimental
measurements. Since coarse-grained molecular dynamics
(CGMD) simulation is one of the significant computational
approaches of this review, we are going to provide more detail
about it.

2.2 Basic Description of CGMD Simulation
for Polymers
CGMD is a process of reducing atomistic systems with fewer
degrees of freedom in order to simplify the polymeric system. The
models consist of CG beads corresponding to a group of atoms of
the polymers, thus leading to fewer degrees of freedom to
compute as well as neighbors to take into account per particle.
By doing so, the CGMD can reduce the complexity of the system,
increase the computational efficiency while retaining several

FIGURE 2 | Schematic diagram to show different spatial and temporal scales in the MD simulations of polymers as well as two types of coarse-grained methods:
bottom-up and top-down. An example of the coarse-graining process of a polypeptide (polyalanine) is shown in the inset. Figure was reproduced from Ref. (Ye et al.,
2021) with permission.
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important properties of MD simulations at the atomistic level,
and allow a longer temporal scale. The CGMD usually includes
two key steps: 1) mapping CG beads from the AA scale model to
reduce the complexity of the system; and 2) defining the
interaction between these CG beads.

2.2.1 Mapping the CG Beads
The mapping procedures aim to represent small groups of atoms
from all-atom (AA) simulation with CG beads (one example of a
polypeptide shown in Figure 2). The number of heavy atoms
represented by a CG bead reflects the degree of coarse-graining.
Besides the coarse-graining level, the mapping must take into
account the important physics and chemistry of the polymer
system as well (Dallavalle and van der Vegt, 2017). Additionally,
in the presence of a solvent, it is essential that CG models also
consider solvent-solvent and solvent-solute interactions to
reproduce the experimental observations, especially for
biological and thermosensitive polymers (Joshi and
Deshmukh, 2021). The chosen mapping scheme must also
guarantee the statistical correlations of internal degrees of
freedom so that we can distinguish the bonded interactions
with the bond (stretching), angle (bending), and dihedral
(torsion) terms (Peter et al., 2008). Typically, the centers of
CG beads are determined such that the connection between
these beads can be expressed by a single harmonic potential
(Abrams and Kremer, 2002).

2.2.2 Defining the Interactions Between CG Beads
Once we have the CG representation of the polymeric molecule,
we need to define the interactions between the CG beads. This
process includes two different approaches: bottom-up and top-
down (Figure 2). In the bottom-up approach: we adopt the AA
simulation (as a reference) to derive the force fields or
interactions between CG beads. The microscopic
thermodynamics and structural properties derived from AA
modeling will be used to calibrate the force fields of CG beads.
However, this approach is not transferable from one system to
another due to its specific AA representation. Another method
that can be more generic is called the top-down approach. In this
approach, the force field of CG beads is tuned from macroscopic
experimental observation, which exhibits a great ability of
transferability. The interactions between beads can be either
generic or chemistry-specific. In the generic force field, the
beads are lack chemical information for specific systems. The
generic models employ potentials with fewer parameters but can
be efficiently used to investigate the influence of molecular
parameters on different properties (Cooke et al., 2005).
Among generic force fields, finite extensible nonlinear elastic
(FENE) (Li et al., 2012b) is a common “bead-spring” CG model
used in many polymeric studies. On the other hand, the
chemically specific models use the multi-property fitting
approach to parameterize the potentials and replicate the AA
model’s observations (Shinoda et al., 2007). One of the most
common ones in chemical-defined models is the Martini force
fields for polymer and biological systems (Marrink and Tieleman,
2013). The Martini model follows a four-to-one mapping that

means, on average, a single CG bead represents four heavy atoms.
Based on the chemical nature of the polymer structure, the CG
beads are assigned a specific particle type with more or less polar
properties, including polar (P), non-polar (N), apolar (C), and
charged (Q). Within each bead type, there are also subtypes with
specific chemical properties giving a total of 18 different “building
blocks”. In the Martini models, the non-bonded interactions are
parameterized based on experimental thermodynamic data, while
the bonded interactions are tuned to reproduce the AA
simulation results (Marrink and Tieleman, 2013). The Martini
can reduce a lot of chemical complexity with stable simulations in
a variety of applications in polymer and biological fields.

In MD simulations for polymers, the interactions between CG
beads include bonded and non-bonded interactions. The bonded
interactions typically include bonds, angles, dihedrals, and
impropers. The bond potentials are commonly used with the
empirical form of finite extensible nonlinear elastic (FENE)
potential. The form of FENE potential is as follow (Li et al., 2013):

VFENE(r) � −1
2
KR2

0 ln[1 − ( r

R0
)

2

], (1)

where K is the bond strength (usually K � 30, to avoid bond
crossing) and R0 � 1.5σ is used as the maximum bond length.
Another common generic form of bonded potential is the
harmonic bond force as follow:

Ubond � K(r − r0)2, (2)

in which K is the bonded force constant, and r0 is the equilibrium
bond length. The angle is typically used with a harmonic angle
potential. This potential has the form:

Uangle � Kθ(θ − θ0)2, (3)

where Kθ is the angle force constant and θ0 is the equilibrium
angle. The dihedrals and impropers are used for torsion potentials
based on the quartet of CG beads. The cosine and harmonic
potentials are the most commonly used for these two interactions.
These generic potential functions can reduce the computational
time while fairly maintaining the polymeric molecular structures.

Non-bonded interactions account for the attractive and
repulsive forces between CG beads, namely Van der Waals
and electrostatic forces. The non-bonded interactions
determine the macroscopic properties in soft matter systems
(Peter and Kremer, 2009). The electrostatic interaction
between two beads can be expressed with Coulomb’s law:

Uelectrostatic � qiqj
4πε0εRr

, (4)

where qi and qj are the charges of two interacting beads, ε0 is the
permittivity of vacuum, εR is the dielectric constant, and r is the
distance between interacting beads. The Van der Waals
interactions are commonly used with Lennard-Jones (LJ) 12-6
potential in the following form:

ULJ � 4ε[(σ
r
)12

− (σ
r
)6], (5)
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where ε is the depth of the potential well, σ is the collision
diameter, and r is the distance between the particles. The LJ
potential includes repulsion short-range and attractive long-
range terms (Wang et al., 2020b).

Another coarse-grained modeling approach for polymer
systems that is different from the aforementioned methods is
called the mesoscopic particle-based model or dissipative particle
dynamics (DPD). This is a simulation technique developed for
Newtonian and non-Newtonian fluids. In this method, the
elementary unit is not an atom or molecule, but a collection
of atoms. In DPD, two particles i and j interact with a sum of
different forces, including conservative (FC

ij), dissipative (FD
ij )

and random forces (FR
ij):

FDPD
ij � FC

ij + FD
ij + FR

ij., (6)

For polymer simulation, the DPD method considers polymers
as a chain of soft CG beads, and each CG bead represents a group
of monomers in a whole polymer structure. In DPD, the CG
spheres interact with each other through purely repulsive soft
potentials. These interactions between beads can be fine-tuned to
capture the macroscopic phenomena on larger time scales. The
approach is more effective in studying the mesoscale properties,
such as the flow of polymer fluids and the growth of self-
assembled morphologies (Wang et al., 2021a).

We have known that the force fields or interactions between
CG beads are crucial to capture the microscopic and macroscopic
behaviors of polymer systems. The question is, how can we
acquire these interaction parameters? The answer comes from
the force-field parameterizing (FFP) process. One of the most
widely used FFP approaches is the Iterative Boltzmann Inversion
(IBI) method (Moore et al., 2014). It is used to determine the
bead-bead interactions whichmatch the structural properties (the
radial distribution function or RDF) from the AA simulation
reference. In practice, the probability distribution function for the
AA model, pR, can be estimated directly from trajectories of MD
simulations and considered to depend on the following four
variables: pair distance (r), bond length (l), bond angle (θ),
and dihedral angle (ψ). The potential function for the
corresponding CG system is determined through the following
equation (Li et al., 2013):

U(RN) � −kBT lnpR(RN). (7)

If we assume the above four variables are independent of each
other, then the potential function for the coarse-grained model
becomes:

U(RN) � U(r; l; θ;ψ) � U(r) + U(l) + U(θ) + U(ψ), (8)

whereU (q) � −kBT ln pR (q) with q � r; l; θ; ψ for pair, bond, angle
and dihedral interactions, respectively. In order to replicate the
distribution function of AA reference, the iterative parameter
optimization for CG potential is then implemented as:

Un+1(q) � Un(q) + ΔUn(q)
ΔUn(q) � kBT ln

pn
R(q)

ptarget
R (q)

, (9)

where Un is the CG potential after step n, kB is the Boltzmann
constant, T is the absolute temperature, ptarget

R are the target
distribution functions calculated from the all-atomistic molecular
simulations. Thus, the distribution functions, pR, can converge to
the target distribution functions, ptarget

R , after several iterations.
The IBI is a structure-based parameterizing method. Another
common method is called force-based procedure, which is based
on the matching of force distributions from AA simulations to
CG beads. This approach includes force matching, multiscale
coarse-graining (MS-CG), stochastic parametric optimization
(SPO), relative entropy minimization, etc. The aforementioned
techniques are traditional ones. With the aid of more advanced
optimization algorithms and machine learning, the force field
parameterizing process can now be achieved much faster with
higher accuracy (Ye et al., 2021).

2.3 Selecting an Ensemble or Thermostat
After defining the CG mapping, the force field potentials, and the
structure of the polymer, the next important step is to choose a
suitable thermostat or ensemble. There are multiple options for
selecting the type of thermodynamics ensemble to sample
depending on the purpose of users as well as experimental
conditions. The microcanonical statistical-mechanical
ensemble or NVE is a common one where the number of
atoms (N), volume (V), and total energy (E) of the simulation
box are maintained constant. The simplest extension of the NVE
ensemble is the isothermal-isochoric or NVT, in which the kinetic
energy of the system at a specific temperature remains constant.
Other common approaches are the isothermal–isobaric (NPT)
with constant pressure P and grand canonical (μVT) with
constant chemical potential μ as well as the isothermal-
isostress (NσT) ensembles. Among those, NPT simulations are
preferable because this ensemble is mostly comparable to
experimental conditions (constant pressure and temperature
condition are doable in the lab environments), yet the
simulation box size needs to be taken into account during the
simulations. The most common thermostats used in MD
simulation for polymer systems include the velocity
Verlet algorithms, the Nose-Hoover thermostat, and stochastic
thermostat or Brownian dynamics.

3 MACHINE LEARNING ALGORITHMS

3.1 Overview of Machine Learning Methods
ML involves a broad field of artificial intelligence, computer
science, data analysis, and every individual branch in ML
constitutes an area of research. Generally, ML is utilized to
identify patterns from data and make decisions accordingly.
There are two basic types of learning that are usually
formulated, including supervised and unsupervised learning
(Figure 3). In supervised learning, previously collected data is
required to train ML models. The training data with
corresponding results, namely the labeled data, is necessary in
this case. Trained with labeled data, the supervised ML model
learns the pattern that maps input data to output results.
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Unsupervised learning, meanwhile, not requiring the labeled
data, directly learns the pattern of the data and differentiates
data points into clusters with similar features. As shown in
Figure 3, for each type of learning, the selection of relevant
algorithms depends on the purpose of users, such as classification
or regression in supervised learning and clustering or dimension
reduction in unsupervised learning. Besides two main types, there
are semi-supervised and reinforcement learning. Combining
supervised learning and unsupervised learning brings out
semi-supervised learning. In semi-supervised learning, active
learning is a technique recently getting more attention,
especially in inverse designs due to its ability to sort out what
data should be collected or used for the model training (Lookman
et al., 2019). It is normally applied in cases where obtaining labels
is expensive (either computationally or experimentally), so the
model defines a strategy to maximize the usefulness of the new
data point. Last but not least, reinforcement learning is a method
to force an agent to learn how to make decisions based on
feedback from its environment (Palminteri et al., 2013). This
type of learning is one of the most researched fields inML. Such as
in game theory, reinforcement learning can guide players to
maximize their score by finding the optimal solution to each
movement (Singh et al., 2017). The choice of ML method is
usually problem or application-dependent. In the later parts, we
are going to discuss some of the ML algorithms that are more
commonly used in the field of polymer informatics, particularly at
the scale of the polymer chain.

3.2 Feed-Forward Neural Networks
Feed-forward Neural Networks (FNNs) model is a type of deep
neural network or referred to as multilayer perceptrons. FNNs
can be applied in supervised learning classification and
regression. Its goal is to approximate a function y � f (x; θ)
that maps an input x to an output ywhere the parameters θ define
the mapping relation. The FNNs suggest a feed-forward

information flow that passes through the function of input x,
then through the intermediate computations of hidden neurons,
and finally to the output y. The training of FNNs corresponds to
minimizing a loss function, through which the weights and biases
in the parameters θ are optimized to get an improved mapping
performance. Common loss functions include mean square error
(MSE), mean absolute error (MAE), and root mean squared error
(RMSE), etc. To minimize the loss function, gradient-based (GB)
algorithms such as Stochastic Gradient Descent (SGD) and
Adaptive Moment Estimation (Adam) are mostly used to
search for the optimal parameters (Ruder, 2017). As a branch
of FFNs, a deep neural networks (DNNs) model is an improvised
neural network with manymore layers. Different from traditional
ML methods, the DNN algorithm is given raw data and identifies
for itself what features are appropriate. It is efficiently used for
training large amounts of data and learning more complex
patterns (Najafabadi et al., 2015; Becker et al., 2020; Verpoort
et al., 2020).

3.3 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) extend from FNNs to
include feedback connections between layers, such that an
extra loop is added to the original feed-forward information
flow. RNN is suitable for processing sequential data such as
characters or words, such as natural language processing (Cho
et al., 2014). It learns a pattern from past tokens and is able to
predict the next tokens in a sequence. However, the basic RNNs
architecture is known to suffer from a short-term memory issue.
If a sequence is very lengthy, it will be difficult to carry
information from earlier to later time steps. Therefore, RNNs
may leave out important information from the beginning in case
of processing a long paragraph to make predictions. Additionally,
RNNs suffer from the vanishing gradient problem during
backpropagation (Sak et al., 2014). Gradients are essential
values to update the weight of neural networks, but the

FIGURE 3 |Overview of machine learning algorithms. The flowchart guides users in the selection of an appropriate machine learning algorithm. There are two main
types of learning, including supervised and unsupervised learning. The selection of relevant algorithms in each type of learning method depends on the purposes of
learning, such as clustering, dimension reduction, classification, or regression.
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vanishing gradient problem makes the weight updating
unachievable. If the gradient shrinks as it back propagates
through each time step, the gradient value becomes extremely
small, and it will not contribute much to the learning. To deal
with the short-term memory and vanishing gradient issues, new
RNNs architectures like Long Short-Term Memory (LSTM) or
Gated Recurrent Unit (GRU) have been proposed (Dey and
Salem, 2017; Sherstinsky, 2020). These additions use gates
mechanisms to regulate the information flow through the
sequence, and automatically learn to keep only relevant
information and forget non-relevant information to make
predictions.

3.4 Convolutional Neural Networks
Convolutional Neural Networks (CNNs) represent another type
of FNNs. Instead of only using fully connected layers, CNNs
model contains special convolutional layers that are particularly
designed to extract features from image inputs (Liu, 2018). In a
convolutional layer, one three-dimensional (3D) filter matrix
converts a volume of neurons in the previous layer into a new
neuron in the current layer, and a set of 3D filters convert a
volume of neurons into a new volume of neurons. CNNs models
have flexible architectures as the filter size, and sliding step is
arbitrary. One challenge is that convolutional layers based on
multiple filter matrices may have too many parameters to
optimize. Overfitting happens easily when the model is so
complex while the training data is limited. Therefore, a
pooling layer is usually added to reduce the dimension of
convolutional layers, consequently, reduce the complexity of
the CNNs model. Max pooling is the most commonly used
one that extracts the maximum value from the convolved
features and passes it to the next layer. Although the
convolutional layer plus pooling layer architecture was
originally designed to process image input, other lower-
dimensional inputs such as one-dimensional (1D) vectors are
also feasible for CNNs.

3.5 Decision Tree and Random Forest
A decision tree (DT) is a tree-like model where each node
represents an observation, and each branch represents the
possible consequences. A decision tree can be a classification
tree or a regression tree, based on the target variable represented
by the leaves. No matter the leaves are discrete values or
continuous values, the model can go through each node
along with a series of branches and reach the target value.
The key to building a DT model is to find the best attribute to
test in each decision node, and the model training is an
optimization of the tree shape and node arrangement. Each
optimization may result in a different tree shape and node
arrangement, accompanied by many model uncertainties. To
make the model more robust, a special DT-based model-
random forest (RF)—is developed with the ensemble method.
RF is composed of a set of DT, and their results are combined to
make final predictions. It is found that although each tree makes
its own prediction, averaging multiple DTs reduces the model
variance and generates a more accurate prediction compared to
any single DT (Qiu and Fan, 2021).

3.6 Gaussian Process Regression
Gaussian process regression (GPR) is a nonparametric model that
is function-free in the initial setup. It avoids the optimization of a
specific function but calculates the probability distribution of all
possible functions that fit the data. The first step in GPR is to
specify a prior Gaussian process on the function space, such as the
mean and covariance functions. This allows the incorporation of
prior knowledge about the functional space. Common covariance
kernel functions can be constant, linear, or square exponential.
With the Gaussian process prior specified, optimization is then
carried out to tune the function hyperparameters using the
training data. At last, the obtained posterior compute the
predictive distribution on the new data points. Compared to
other ML methods, the GPR model also provides uncertainty
intervals together with prediction values. This unique feature
makes GPR valuable whenever uncertainty estimates are
especially demanded (Deringer et al., 2021).

3.7 Generative Models
In ML, generating new data from the existing dataset is
sometimes necessary in case of a limited source of data for the
training process. To overcome it, a generative model (GM) is
developed that learns true data distribution from the current
training set and then generates new data points with some
variations. Among GM algorithms, two major families stand
out and deserve special attention: Variational Autoencoders
(VAEs) (Kingma and Welling, 2013) and Generative
Adversarial Networks (GANs) (Goodfellow, 2014). VAE
transforms high dimension data into lower-dimensional latent
space through its encoder. The encoding distribution is
regularized during the training in order to ensure that its
latent space has proper features so that the following decoder
can generate similar new data. The encoder produces the “new
features” representation from the “old features” representation,
and the decoder is the reverse process to reconstruct the data.
GAN model, also containing two components, utilizes a
generator and a discriminator to play an adversarial game
against each other. The generator aims to generate new data
(fake ones) while the discriminator tries to identify its
authenticity. When GANs are fully optimized, the generated
data is so like the true data that the discriminator cannot tell
the difference. VAEs and GANs have demonstrated excellent
performances in many polymer and materials informatics
applications (Elton et al., 2019; Shmilovich et al., 2020; Yang
et al., 2021).

3.8 Bayesian Optimization
Bayesian optimization (BO) is one of the most common active
learning approaches that is recently getting much attention in
polymers and materials design (Hou et al., 2020; Wang et al.,
2021b). BO generates a probability model of the objective
function and uses it to determine the most promising
hyperparameters to estimate the true objective function. BO is
especially advantageous for problems where the true function is
highly non-linear and difficult to evaluate its optimization.
Therefore, BO treats the true objective function as a random
function and applies a prior over it based on the existing data

Frontiers in Chemistry | www.frontiersin.org January 2022 | Volume 9 | Article 8204179

Nguyen et al. Machine Learning and Coarse-Grained Simulations

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


points. The prior is then updated based on the acquisition functions
(AF) to form the posterior distribution over the true objective
function. After that, the posterior distribution is used to construct
a new AF and then determine the next query point. BO is
accomplished by repeating the aforementioned steps until the
maximum iterations to find the best surrogate model for the true
objective function. AF used in BO is a trade-off between exploration
(keep searching for new strategies) and exploitation (while exploring
the best strategies found thus far), which is important to minimize
the number of evaluated data points. Commonly used AFs are
expected improvement, probability of improvement, and knowledge
gradient (Chen et al., 2020). There are severalmethods used to define
the prior/posterior distribution over the true function based on the
sampled data points. The most common one is the Kriging method
(Kleijnen and van Beers, 2020). BO is very well suited for functions
that are expensive to evaluate either computationally or
experimentally.

3.9 Pareto Active Learning
When targeting multi-task problems, most multi-task learning
(MTL) approaches aim to find one single solution to optimize
the overall performance of all tasks. However, it is observed in
many applications that some tasks could be incompatible with each
other, so no single optimal solution can optimize the overall
performance concurrently. In real-world applications, MTL
practitioners have to make a trade-off among different tasks
(Alhammadi et al., 2004; Jablonka et al., 2021). Usually, no single
optimum is preferred over all the others. Instead, there is a set of all
Pareto-optimal solutions (or Pareto front) whose performances
dominate the rest of the entire design set (Brisset et al., 2015).
Therefore, Pareto active learning (PAL) is emerged as an active
learning algorithm to find a set of Pareto optimality over every point
of design space E. Moreover, a recently modified version of PAL
called ε-PAL is able to predict the set of solutions that covers the true
Pareto front of E with some granularity regulated by a parameter ε
(Zuluaga et al., 2016). There are two main advantages of ε-PAL over
traditional one. The value of ε allows us to generate an ε-accurate
Pareto set, reduce the computational time by removing redundancy
and rejecting points more efficiently.

4 APPLICATION OF ML FOR
UNDERSTANDING AND DESIGN OF
POLYMER CHAINS
In this section, we are going to discuss the most recent studies of ML
applications in polymer chain characterization and inverse design by
answering the following four key questions: 1)What is the bottleneck
in polymer chain characterization or inverse design? 2) What is the
ML strategy? 3) How can ML solve the challenging problem? and 4)
How can we leverage the model in future applications?

4.1 Classification of Polymer Chain’s
Configuration
In polymeric materials, some chain configurations are not
distinguishable by direct visualization, especially disordered

ones, yet there is a lack of clear local structural parameters or
robust theoretical models for their classifications. ML methods
have demonstrated their surprising capability in recognizing
patterns of enormous complexity after being appropriately
trained by humans or self-trained through learning
mechanisms (Bishop, 2006; Schmidhuber, 2015). In this case
study, a hybridization of ML and CGMD simulation was adopted
to efficiently classify various configurations of polymer chains,
including disordered, partially ordered, and ordered states (Wei
et al., 2017). To complete this task, Wei et al. used a standard
FNNs model in which the polymeric structures were used as
inputs and corresponding labeled structural configurations were
used as output. The output included gas-like coil, liquid-like
globular, and crystalline anti-Mackay andMackay structures. The
CGMD simulations were performed to generate 5000 coarse-
grained polymer configurations for the training process, and then
a supervised ML algorithm was implemented to build a
relationship between the input structures and their
corresponding types of configuration.

Specifically, the input was the polymer’s 3D structure obtained
from the CGMD simulation (Figure 4A). It was represented by
3N spatial coordinates ofN bondedmonomers (N � 102). In these
MD simulations, the polymer model is a generic one. The bonded
beads are connected by a particular implementation of the FENE
model, and nonbonded monomers interact with each other via a
LJ potential. The ML model (FNNs) contained three layers of
nodes, including input, hidden, and output layers consisting ofNi,
Nh, and No neurons, respectively. The 3N coordinates were fed
directly into 3N input nodes of the Ni (Figure 4B). The FNNs
model was trained to establish the relationship between the vector
of monomer coordinates and the corresponding configuration in
the output layer (No). There were 100 nodes in the hidden layer
(Nh), and the number of output nodes was set to 2 or 3, depending
on the number of polymer configuration types. By doing so, the
model could classify both globule-to-coil (Figure 4C) and
Mackay-to-anti-Mackay-to-globule (Figure 4D) transitions in
a very convenient and robust way. It directly passed the
unlabeled configuration (molecular coordinates) to neural
networks without defining any order parameter or requiring
high numerical precision methods (Wei et al., 2017). This
hybridization of ML model and CGMD simulation in polymer
configuration classification has opened numerous opportunities
for similar research topics, including categorizing knot types of
polymer conformation (Vandans et al., 2020), identifying the
Gardner transition (temperature-induced transition) (Li et al.,
2021), or even more complex polymeric systems such as
entanglement effects or polymeric crystalization (Morthomas
et al., 2017), and phase separation of block copolymers (Arora
et al., 2021).

The CGMD/ML coupling can also learn and distinguish
various global aggregate structures of sequence-defined
copolymers. As mentioned in the Section 1, the monomer
sequence governs the bulk self-assembly, which eventually
influences the synthetic multiblock copolymer’s
microstructures (Gody et al., 2016; Jiang et al., 2018).
However, understanding the self-assembly behaviors of
copolymer faces some issues once suitable order parameters

Frontiers in Chemistry | www.frontiersin.org January 2022 | Volume 9 | Article 82041710

Nguyen et al. Machine Learning and Coarse-Grained Simulations

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


are not well identified. As a result, ML methods are considered
because they are well-known to be capable of building a rigorous
structure-property relationship of materials (Liu et al., 2017;
Ramprasad et al., 2017). However, due to the unknown
numbers of disordered states of the copolymer, supervised
learning is not appropriate, thus it requires alternative ML
models to efficiently recognize random copolymer topologies.
Thus, unsupervised ML algorithms are the most suitable ones for
this classification task (Statt et al., 2021).

In principle, the ML methodology will employ feature vectors
of copolymer configurations and embed these local descriptors
into a low-dimensional manifold (latent space). The self-
assembled structures will be afterward characterized and
classified based on the feature vectors in the latent space. This
methodology is called dimension reduction. In detail, CGMD
simulation generated more than 2000 polymer aggregation
configurations as inputs for the ML model (Figure 5A). One
aggregation structure contained 500 chains of the copolymer.
Each polymer chain consisted of 20 monomers of A (sticky) and
B (non-sticky) with different bead types (Figure 5B). The MD
simulation was implemented by a generic model. The sticky beads
interacted with each other via the LJ potential, meanwhile the
non-sticky interactions were described by the purely repulsive
Weeks–Chandler–Anderson (WCA) potential. The bonded

beads were represented by the FENE potential. For each
monomer i in the polymer chain, local neighborhood Ri was
calculated using an isotropic cutoff radius with ni monomers
inside the cutoff radius. From there, a structural input vector was
calculated as three-body features Fi between particles (i, j, k),
including the distance between neighbors djk � |rk − rj|, bond
angle θjik � arccos(rik · rij), and bond length ljik � dij + dik
where rij is the displacement vector between particle i and j
for the entire neighborhood. All these feature vectors are
translational and rotational invariant. Besides, the permutation
invariance is enforced by performing the Gaussian expansion and
pooling to yield a histogram of features Ho

i . This histogram was
then reshaped and embedded into a low-dimensional latent space
Z0 using a Uniform Manifold Approximation and Projection
(UMAP) approach, which is a non-linear, unsupervised method
for dimension reduction (Xiang et al., 2021). By doing so, a
projection of Ho

i was obtained in the latent space Z0, and then
local structural information of monomers was achieved based on
their positions in this manifold. The local information was then
pooled and embedded once again, following the same procedure
to generate collective variables in order that all copolymer
morphologies could be observed and classified in the second
latent space Z (Figure 5A). By using this strategy, Statt et al.
showcased the ability to use the CGMD/ML hybridization to

FIGURE 4 | Identifying polymer states by machine learning. (A) Typical configurations of a polymer chain in states of (i) coil, (ii) globular, (iii) anti-Mackay, and (iv)
Mackay. (B) Polymeric configuration is imported into a fully connected FNNs. The circles represent nodes connecting layer by layer via weight and activation parameters.
The number of input nodes is 3N representing the numbers of spatial coordinates of the N-monomer chain, while the number of output nodes depends on the number of
configurations that will be classified. (C) FNNs classifies polymer configurations under coil-to-globule transition: (i)Monte Carlo (MC) shows phase transition point
from coil to globule at kBT/ϵ ≈ 2.0 corresponding to the peak of specific heat value C; the mean FNN output (ν values) can be correctly evaluated for globule (red squares)
or coil (white squares) based on either original (ii) or normalized (iii) coordinates of monomers with the accurate transition points (kBT/ϵ) compared to CGMD simulations
(i). (D) FNNs model can classify Mackay (filled diamonds) and anti-Mackay (open diamonds) based on the mean FNNs output (ν values), correctly compared with
transition points represented by a specific heat-like curve (Mackay-anti-Mackay-globule) derived from independent MC simulations. Figure was reproduced from Ref.
(Wei et al., 2017) with permission.
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characterize global structure in disordered aggregation states
based on local environment information, without explicitly
considering global geometry (Figures 5C,D). Furthermore, this
methodology is applicable in other soft materials, especially for
understanding macroscopic self-assembly behaviors when
suitable order parameters are not well defined, for instance,
copolymer, peptide, and peptide-like systems.

4.2 ML Prediction of Polymer Property
The integration of CGMD/ML is able to speed up the prediction
of polymer properties at the chain level. Researchers have adopted
ML models for the prediction of polymer properties mostly based
on their monomer representation (Ramprasad and Kim, 2019;
Sattari et al., 2021; Chen et al., 2021b; Gracheva et al., 2021),
ignoring the influence of polymer chains, such as molecular
weight, topology (Tao et al., 2021a), and copolymer sequence
(Kuenneth et al., 2021). Particularly for novel polymeric
materials, there are limitations in the existing database due to
unexplored chemical space (Wilbraham et al., 2019). Under these
circumstances, CGMD simulation is very beneficial to generate
new training data, which can be used for ML studies. One of the
most recent studies in polymer property prediction is to estimate
the translocation time of a copolymer through a lipid membrane
as a function of its sequence of hydrophilic and hydrophobic
units (Werner et al., 2020). Sequence-defined polymers have a
wide range of applications in biomedicine and biotechnology for

drug or ligand designs (Hartmann and Börner, 2009; Hartmann,
2011; Deacy et al., 2021). However, their translocation through
lipid membranes and biological barriers has not clearly been
studied with an accurate theoretical relationship between
monomer sequences and their membrane-translocation ability.
To overcome this challenge, Werner et al. used a DNNs model to
unravel this structure-property correlation. In detail, more than
8,000 monomer sequences obtained from coarse-grained (CG)
modeling (Figure 6A) were used as input to predict the
corresponding translocation time as output (Figure 6C). The
polymer simulation was a generic model where the monomers
were represented as simple cubic lattices, and the CG polymer
structure was placed in an external concentration field that
represents a mean-field level bilayer membrane composed of
an hydrophilic region (H) and a hydrophobic core (T), as well as
solvent (S) (Figure 6A). Bond vectors were taken from a set of 26
vectors with lengths of 1,



2

√
and



3

√
lattice units. Double

occupancy of lattice sites was forbidden, and the monomers
had excluded volume. Additionally, short-range repulsive
interactions were implemented on between hydrophilic sites
(H and S), and hydrophobic sites (T). The DNNs model
employed four consecutive hidden layers with the number of
nodes as 64: 64: 32: 32 (Figure 6B). In the input layer, monomer
sequence information was used as a vector of values 0 and 1
representing the sequence of hydrophobic and hydrophilic
monomers, respectively. There was one node in the output

FIGURE 5 | Unsupervised learning of aggregation behavior for a sequence-defined copolymer. (A) Schematic of unsupervised learning method for aggregation
classification: the aggregation configuration containing 500 copolymer chains is used as an input, three-body features Fi is calculated for each bead which includes
distance between neighbors, bond angle, and bond length (featurization) prior to carrying out Gaussian expansion and pooling over the features in order to obtain a
histogram Ho. The histogram is then embedded into a latent space Zo to obtain local structures of the aggregation, before being implemented in a second pooling
and projecting into a latent space Z in which all morphologies can be distinguished. (B) Representative structures perceived from the manifold learning including strings
(a), membranes (b), vesicles (c), liquids (d), structured liquids (e), disordered micelles (f), spherical micelles (g), and wormlike micelles (h). Sequences are shown
schematically, with • indicating an A-bead and ○ for a B-bead. (C) Representative configurations are embedded in the manifold with number of chains (system size) N �
500 showing a full range of possible structures for copolymer’s aggregation classification. (D) The alpha shapes for each system size (N � 20, 50, 100, 200, 500, 1,000,
and 2,000) in the manifold reveal a gradually larger coverage in the latent space when increasing system size. Figure was reproduced from Ref. (Statt et al., 2021) with
permission.
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layer representing the corresponding translocation time of the
polymer. It was calculated based on the Rosenbluth-Rosenbluth
(RS) sampling method for CG polymers through an external
concentration field that represents a bilayer membrane structure
(Rosenbluth and Rosenbluth, 1955). The DNNs model thereby
accurately established a complex connection between the
hydrophobicity and sequence-dependent translocational ability of
a copolymer at the bilayer–solvent interface. Even though this work
was focused on a simple CG polymer—membrane system, the
model of DNNs is expected to enhance our predictive capability
in a wide range of applications, for example, in complex biological
systems such as nanoparticle–bilayer interactions (Wang et al.,
2017), in characterizations of critical properties of polymer
materials such as glass transition temperature, the radius of
gyration, structural factor, stress-strain relation, etc.

The CGMD/ML coupling can also predict optical properties of
conjugated polymers, for example, UV-vis (light absorption)
spectrum, one of the key experimental methods for
characterization of conjugated polymers (Ivan et al., 2012; Root
et al., 2017; Abdel-Aziz et al., 2021). However, there is no well-
established bridge between these CG polymer structures and their
absorption spectroscopy. Therefore, using CGMD coupled ML
models can answer the question of whether we can directly
predict the UV-vis spectra of conjugated polymers from their CG
representations (Simine et al., 2020). Since the polymer is a
monomer-sequence of information, it leads to another question

of which ML algorithm is efficiently used when it comes to
sequential data? One of the most commonly used methods in
natural language processing is LSTM-RNN (Hochreiter and
Schmidhuber, 1997; Sutskever et al., 2014). In particular, the
monomeric information used in this study is dihedral twisting
angles that are well understood to qualitatively define the
electronic states and quantum energy of polymer structures.
Hence, Simine et al. took advantage of this sequence of dihedral
angles as molecular sequence information to represent the spectral
energy of the whole polymer chain (Figure 7A).

In the LSTM-RNN model, the training and validation datasets
were produced using CGMD simulations of 50 chains of poly-3-
hexyl (P3HT) with 30 monomers. The force field governing the MD
simulation model for polymers consists of harmonic bond, angle,
and dihedral terms for the bonded atom interactions, as well as LJ
interatomic potentials describing non-bonded contributions. Since
the model was a chemistry-specific approach, CG parameters were
tuned from AA model to reproduce the aggregation and
optoelectronic behaviors of this polymer. The input was the
torsional conformation of each CGMD configuration of the
polymer (Figure 7B). It is a vector of 29 cosines of the inter-
monomer dihedral cos (φ) taken from the back-mapped atomistic
molecular structures of polymer. The output was the associated
values of the ground-to-excited state Sj transition energy (Ejo). These
values were calculated using the all-atom quantum chemistry
method called Pariser–Parr–Pople (PPP) model Hamiltonian

FIGURE 6 | Neural network model for predicting copolymer translocation through amphiphilic barriers. (A) CG polymer chains are adopted in membrane
translocation simulations with a laterally homogeneousmembrane surrounded by solvent grids. Herein, H represents a hydrophilic grid, T for hydrophobic core, and S as
solvent. (B)NNsmodel is used for predicting the translocation time of a polymer as a function of hydrophilic/hydrophobic (H/T) sequence. (C)NNs can predict accurately
the translocation time of sequence-defined copolymer (dots) compared to RS-based results (gray line) with a root mean squared relative deviation in the order of 1%
for the logarithmic mean translocation time. Figure was reproduced from Ref. (Werner et al., 2020) with permission.
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(Simine and Rossky, 2017). The LSTM-RNN model employed one
hidden layer with 150 nodes to establish a relationship between the
sequence of torsional angle information and the corresponding
energy-state deviations. This CGMD/ML coupling can effectively
predict optical properties or UV-vis spectra for different conjugated
polymers with high accuracy based on conformational information
solely (Figures 7C,D). In the future, themodel can be further applied
not only for UV-vis or other structure-dependent spectral properties
such as fluorescence, Raman, Infrared, etc. but for characterization of
the bulk electronic and optical properties of photoactive materials.

4.3 Inverse Design of Sequence-Defined
Polymers
Another application that has recently received significant interest
is called polymeric inverse design or target design. However, like
other soft materials, polymer design faces a major impediment
due to the chemical, topological, and morphological complexity

of macromolecular systems (Ferguson, 2018; Jackson et al., 2019;
Sherman et al., 2020; Wu et al., 2020), as well as the proper
representation or description of soft materials at macromolecular
scale to make the calculations feasible (Audus and de Pablo, 2017;
Peerless et al., 2018; Lin et al., 2019). Especially, in terms of
sequence-defined copolymer inverse designs, the number of
possible candidates goes up exponentially with the increase of
chain length, requiring more effective tools for inverse design at
the chain level. Recently, Webb et al. (2020) overcame this
limitation by introducing a directed design of a copolymeric
structure with branches and tailored sequences of monomers
represented by CG beads. Sequentially, ML tools generated a
surrogate prediction and target design for polymers with specific
configurations based on the CGMD training dataset.

This study aimed to achieve two most important goals:
prediction and inverse design of polymer chains. For the
former task, a DNN model took features from more than 1000
CG class I polymeric sequences as input to predict the value of the

FIGURE 7 | Predicting optical spectra for polymers using CG models coupling RNNs. (A) Scheme of ML method to predict spectra from CG representations of
conjugated polymers, compared to the traditional approach using all-atom quantum calculation. (B) CG representations are back-mapped in order to obtain inter-
monomer dihedral (φ) information. The sequence of cos φ along the backbone of the polymer is used as input of an LSTM-RNN model to predict the values of excited-
state energies, then compared to all-atom quantum calculations. (C) Predictions of energies for the ground-to-first excited S1 state transition (E01) are validated in
four distinct clusters (four distinct torsional subsets in the dataset) with the Pearson coefficient is ∼0.94 for all clusters (i.e., highly accurate prediction). (D) A comparison
of spectra obtained using quantum chemistry from atomistic representations (green) and the LSTM-RNN model using inter-monomer dihedrals information (black):
dashed line for raw statistical data and solid line after using Gaussian fits. Figure was reproduced from Ref. (Simine et al., 2020) with permission.
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radius of gyration (Rg) for both classes I and II polymers. For the
latter one, the Tree-structured Parzen Estimator (TPE) algorithm
(a Bayesian Optimization approach) was used to generate novel
candidate sequences of class III polymer for target values of Rg
based on sequential model-based optimization technique
(SMBO-TPE) (Bergstra et al., 2011). The MD simulation
model for polymer was a generic one in which the polymer
interactions were described by summation of typical bonded and
nonbonded potentials. The bonded interactions include
stretching energy (FENE), harmonic angle bending and
torsinal energies. In the DNN model, the featurization input
could be simple one-hot encoding (OHE) or property coloring. In
the OHE approach, each constitutional unit (CU) was
represented as a 10-bit vector (10 different constitutional units
or CUs) with a single high element corresponding to a specific CU
type (Figure 8A). In all cases, featurized input was based on either
a repeating subunit of the polymer or the entire polymer
sequence. For example, class I polymers could be defined
using a constitutional repeating unit of four CUs, which is
represented as a 40-bit OHE vector. However, for stochastic
sequences of polymers (class II), featurizing the entire
sequence was required. In the colored-property approach, the
featurization is more flexible where the entire polymer chain was
encoded as an image, with each bead of polymer represented by a
pixel with coloring determined by local properties. The image was

afterward used as input for a CNN model to generate featurized
input vectors for particular polymer sequences. All regression
models used two hidden, fully connected layers with 20 nodes
followed by a single output node for the Rg predictions. By doing
so, the ML model could accurately predict the Rg values for both
classes I and class II polymers (Figure 8B). For the target design
on class III polymers based on Rg, the TPE algorithm generated a
candidate sequence, compared the estimated mean square value
of the radius of gyration 〈Rg〉 from the ML model to the target,
and then proposed a new sequence based on historical
performance. The targets included globular, swollen, and rod-
like polymeric structures. For each target, 20 candidate sequences
of the class III polymer type were created, and their radius of
gyration Rg values was subsequently validated using CGMD
simulations (Figure 8C). By combining CG modeling, ML,
and model optimization, the methodology could certainly
predict structural properties with limited sequence information
and further successfully design the targeted polymer sequences
(globular, swollen, or rod-like behaviors). This powerful
integration addressed the challenges related to soft material
inverse design, where chemical and topological information is
broad and puzzling to be computationally manageable. This work
also highlighted its significant potential for designs of novel
polymer-based materials or sequence-specific systems in a
tailored region of the polymer genome (Kim et al., 2018).

FIGURE 8 | Inverse design for target polymeric configurations. (A) CGMD/ML coupling is used for the prediction of copolymeric radius of gyration (Rg value): (i)CG
bead types used in MD simulation include backbone types (α or β) and pendant types (γ or δ). The allowable combinations of backbone and pendant beads yield 10
unique constitutional units (CUs); (ii) three classes of polymers are studied including class I, II, and III represented by different sequences of CUs: class I represents regular
copolymers with a repeat pattern of four CUs, class II includes random polymers constructed from four CUs and class III constructed with a repeat pattern of eight
CUs; (iii) Scheme of ML model for predicting polymer properties or Rg values. The entire polymer sequence or a repeat unit of it is featurized and used as input to a DNN
model, which establishes the structure-property relationship of the polymer. (B) Performance of MLmodel for prediction of the mean square radius of gyration, 〈Rg2〉, for
class I and class II polymers: (i) the prediction for class I is validated by CGMDmodeling with the r2 of 0.953, and the mean absolute error (MAE) of 111.32; (ii) the model
trained on class I is applied for class II prediction with the r2 of 0.895, and the MAE of 130.34. (C) Targeted sequence design of class III polymers using the Tree-
structured Parzen Estimator (TPE) algorithm. The result presents three sets of recognizable predictions, with the globular polymers (first 20 polymers from the left)
separated from the swollen targets (next 20 targets), which are easily distinguishable from the rod-like structures (last 20 targets) as well as fit with the statistical
distribution of Rg

2 obtained from CGMD validations (in the form a violin plot). Figure was reproduced from Ref. (Webb et al., 2020) with permission.
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Peptide design is somehow similar to sequence-defined
polymer inverse design in which the targeted properties
depend on the arrangement of amino acids. For example,
the self-assembling behavior of π-conjugated peptides
influences its optical and electronic properties in biological
environments (Kim and Parquette, 2012; Guo et al., 2013;
Pinotsi et al., 2016). The self-assembling activity of these
peptides is particularly governed by tunning its molecular
chemistry of the π-core and the sequence of amino acids of
the wings (Mansbach and Ferguson, 2017). However, this task
still faces challenges because the sequence-structure-function
relation of the peptide remains poorly identified, due to the
great extent of the number of possible sequences for evaluation
(Shmilovich et al., 2020). In this work, Shmilovich et al.
considered a design of a peptide family of DXXX-OPV3-
XXXD in which there were 8,000 possible sequences. The
biggest question that arose was how to achieve a targeted
design from such a vast size of chemical space efficiently?
Trial-and-improvement experimentation is essentially
intractable due to the significant time and labor costs
associated with peptide synthesis and testing. On the other
hand, brute-force simulation of all possible structures is
unfeasible, even though CGMD is known to be
advantageous for macromolecular characterization.
Therefore, the coupling of CGMD with ML technique can

tackle that issue by only focusing on the most promising
candidates within the peptide family.

Among ML techniques, Bayesian optimization is one of the
most common active learning method. It is able to steer the
experiments or simulations toward “next-best” candidates based
on historical measurements (Chen et al., 2008; Ling et al., 2017;
Gómez-Bombarelli et al., 2018; Barrett and White, 2021). The
first step is to define a fitness function that evaluates a particular
property. In this study, in order to evaluate the self-assembled
aggregate capacity, a metric called “optical distance” was used,
defined as the minimum center of mass distance between
aromatic cores of every two molecules in a peptide aggregation
(total of 96 peptide chains) obtained from CGMD simulations. In
this chemistry-defined MD simulation, the popular Martini
potential was used to described the interactions, including
bonded and nonbonded between CG beads. The ML technique
was supposed to find the best candidate with maximized fitness
function or optical distance that promotes the peptide
optoelectronic functions (Figure 9A). The next step was to use
variational autoencoders (VAE) in order to convert the original
peptide configurations into a latent space to make the
optimization more robust and efficient (Gómez-Bombarelli
et al., 2018). The peptide was represented based on XXX CG
bead and specified using adjacency matrix Ai which indicates the
connectivity of beads and a one-hot encoded vector Ti which

FIGURE 9 | Target design of self-assembling π-conjugated peptides using active learning algorithm. (A) Scheme of active learning approach (Bayesian
optimization) in search of DXXX-OPV3-XXXD peptides with optimally self-assembling behaviors: (1) CGMD simulations are performed on 90 randomly selected
candidates of the family and their self-assembling abilities are measured based on fitness function f; (2) The self-assembled aggregates from high-dimensional chemical
space are projected into a low-dimensionality manifold (latent space) using a variational autoencoder (VAE). The dimensionality of the latent space is optimized after
each cycle via minimizing the VAE loss function; (3) A Gaussian process regression (GPR) model establishes a relationship between the latent space coordinates of
peptides and their fitness function f which indicates the self-assembled property of peptides. The GPR model improves every cycle (with an additional training point); (4)
An acquisition function is used to predict the “next-best” DXXX-OPV3-XXXD candidates for which to run CGMD simulations to direct sampling toward the most
promising candidates. The active learning loop is cycled until the GPR surrogate model has no more updates with the additional training data points. Eventually, the top
candidates predicted from the active learning will be validated using explicit MD simulations. (B) The representation of each XXX tripeptide (e.g., Trp-Val-Tyr) to the VAE
includes an adjacency matrixAi indicating the connectivity of Martini beads within the tripeptide and a one-hot encoded composition vector Ti representing the identity of
the beads. The couple (Ai, Ti) is then used as the input of the VAE embedding. (C) Snapshots are harvested from all molecular simulations (558,000 in total) projected into
the ψ2-ψ4 plane (top three nontrivial diffusion map eigenvectors). The result showcases natural categorization for self-assembling behaviors represented by colored
points (green for good assemblers, red for intermediate assemblers, and orange for poor assemblers), which demonstrates design rules to promote good assembly
behaviors. Figure was reproduced from Ref. (Shmilovich et al., 2020) with permission.
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demonstrates the composition of the CG beads in the peptide
(Figure 9B). The couple of (Ai, Ti) was used as input for the VAE
which includes two parallel networks to extract input features.
The decoding part then strove to reconstruct the (Ai, Ti) from the
latent coordinate zi using two parallel networks. The VAE would
be trained to minimize the VAE loss, including a reconstruction
term and a Kullback−Leibler divergence term (Prokhorov et al.,
2019). After that, a Gaussian process regression (GPR) surrogate
model was used to predict the fitness function fi of all unsimulated
sequences depending on their local positions in the VAE latent
space. A Gaussian process was employed to define a Bayesian
prior distribution over the regression functions fitting the existing
data points. The posterior distribution over those functions was
updated as additional training data were sampled. After that, the
next sampling was guided toward the next-best candidates based
on an acquisition function embracing the current surrogate
model to identify peptides with a high chance of being better
than the current dominator in the training data. Here, the
expected improvement function (EI) was used to provide a
trade-off between exploitation (the area with the large
posterior mean) and exploration (the area with the large
posterior variance). The candidate with the highest value of EI
would be selected next to perform CGMD simulation or some
other expensive evaluations. The active learning was looped until
that the GPR model was no longer better with the additional
sampling. By doing so, the authors could identify top candidates
that were predicted to exhibit dominating assembly by carrying
out CGMD simulations for only 2.3% of the entire design space
(Figure 9C). Their workflow reflected potential savings in time
and labor afforded. This platform is promising for the design of
other peptides, peptide-like, and sequence-defined polymer
systems with optimized or desired properties, where only
small numbers of top-performing candidates are identified.

In many real applications, scientists and engineers often
encounter the challenge of how to optimize several
independent objective functions simultaneously due to the fact
that optimizing one objective alone can be incompatible with
others (Clancy, 2020). To address this tricky question, they
usually attempt to search for a set of materials where their
performances on all of the objectives are superior to others in
the entire design space. This material set is called Pareto-optimal
solutions (or a Pareto front). To efficiently identify the Pareto
front at low cost, i.e., by evaluating as few designs as possible,
ϵ-Pareto active learning (ϵ-PAL) algorithm is exemplified to be
competent for this task in which the usage of parameter ϵ allows
us to control the accuracy of the prediction produced by the
algorithm (Zuluaga et al., 2016). Recently, ϵ-PAL was
implemented by Jablonka et al. to compute a set of Pareto
optimal materials with multiple objectives and desired
accuracy for a dispersant inverse design application (Jablonka
et al., 2021).

The set of Pareto front in multi-objective dispersant design
was supposed to dominate the others in three key properties
obtained fromCGMD simulations: 1) single-molecule free energy
of adsorption onto a model surface (ΔGads), 2) dimer repulsion
energy (ΔGrep), and 3) radius of gyration which is an indicator of
polymer viscosity (Rg). The MD simulation model for polymer

was a generic approach in which the interactions between
monomer beads were described using a DPD approach
including soft repulsive force, dissipative force, random force
and an additional spring force term. In principle, the Pareto
classification was expected to predict a Pareto set from a total of
3125 CG linear polymer structures (full design of space) based on
the uncertainty estimate (σ) derived from a GPR surrogate model.
As shown in Figure 10A, the model was started with a set of
diverse experiments with measured objectives (experimentally or
computationally), and then an initial model for every objective
would be trained using a GPR model (a design—objective
surrogate model). All the polymer points would be placed in a
multi-objective space. For each point, the hyperrectangles were
constructed from the surrogate model with a width proportional
to the uncertainty σ corresponding to the points, i.e., an
unsampled point would have a larger hyperrectangle than a
sampled one. The points were then identified as those that
could be discarded with confidence and those of which were
with high-probability Pareto optimal based on a Pareto
classification criterion (Jablonka et al., 2021). The loop was
repeated until there were no unclassified points in the entire
design space. The algorithm demonstrated its strong capability to
identify the set of optimal points quickly in a multi-objective
space with confidence and time-and-cost efficiency (∼89% fewer
iterations) compared to the random exploration method (Figures
10B,C). This work can help significantly accelerate the process of
exploring or optimizing materials for multi-task designs. The
vision behind this approach is the applications for multiple-
objective drug and polymer designs in the future, while
simultaneously giving us insights into structure-property
relationships and being robust under the circumstances of
missing data or very expensive evaluations.

The final case study in this review will help to answer the
question of whether the integration of CGMD simulations and
ML algorithms can be applied in real polymeric systems.
Different from the aforementioned works which focused on
the monomer sequence-specific inverse designs, this study
investigated the influence of various compositions of polymers
and other design parameters on the performance of an organic
photovoltaic (OPV) device for solar energy conservation (Munshi
et al., 2021). The OPV is considered an efficient alternative for
solar energy materials (Scharber and Sariciftci, 2013). The device
contains a phase-separated mixture of two organic molecules
which accelerates with the exciton conversion and electron
transport. However, the maximum of the OPV performance is
at 15–20% and thus restraining its potential of solar energy
(Balasubramanian et al., 2021). Therefore, solving an OPV
design problem to make them more efficient is still a
challenge, but also an attractive target for exploration. The
biggest concern is about the existence of various design
variables such as active layer thickness, the composition of
polymers along multiple targeted properties, e.g., light
absorption, charge diffusion and collection need to be
optimized simultaneously. Even though, Balasubramanian
et al. previously narrowed down the largest effects on the
OPV’s overall efficiency to mostly two design variables
including the annealing temperature and the proportion of the
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polymers in the design (Munshi et al., 2019), yet it is still an issue
to efficiently optimize the OPV design with the fundamental trial-
and-error approach. To tackle this bottleneck, Joydeep Munshi
et al. coupled an ML searching algorithm with CGMD data
generation which could help to robustly accelerate the design
process for this solar energy device (Figure 11A). The authors
attempted to optimize concurrently the compositions of the
donor and acceptor polymer materials, and the annealing
temperature for the highest power conversion efficiency (PCE).
Particularly, the used material was a mixture of poly-(3-
hexylthiophene) (P3HT) as an electron donor and phenyl-
C61-butyric acid methyl ester (PCBM) as an electron acceptor
(Figure 11B). Previous works have demonstrated a correlation
between polydispersity index (PDI) of this polymer system
resulted in various material performances (Munshi et al., 2019;
Balasubramanian et al., 2021). Focus on finding the relationship
between these key design variables (PDI and annealing
temperature) that contributes to an improved PCE, this
integration of ML and CGMD data generation allowed us to
acquire a set of Pareto solutions for simultaneously enhanced

charge transport probability and ultimate tensile strength of the
material.

The input of the ML model was generated from the CGMD
simulations. Initially, a mixture containing randomly P3HT and
PCBM CG beads with different PCBM weight fractions was
inserted in a simulation box of 20 × 20 × 80 nm3. The solvent
evaporation and thermal annealing modeling were subsequently
performed to obtain the phase-separated polymers with bulk-
heterojunction (BHJ) morphology with a total simulation time of
∼3 µs (Figure 11B). Since this MD simulation was also a
chemistry-specific approach, the Martini force field was
adopted to model the intermolecular interactions between
beads in the polymer system. The CGMD morphology
evaluations were then performed by calculating the exciton
diffusion to charge transport probability (CTP) and the
ultimate tensile strength (UTS) under an applied deformation.
The details of these calculations are given in the main manuscript
and the supplemental information of Ref. (Munshi et al., 2021).
The values of CTP and UTS were used as the objective functions
for this CGMD/ML scheme. The output of the model was the

FIGURE 10 | Active learning algorithm uses the Pareto dominance relation for dispersant inverse design applications. (A)Overview of the workflow. Representative
samples are enumerated in the design space of sequence-defined polymers containing four different bead types: the “[W]” bead represents a polymer in a good solvent,
the “[R]” bead to a polymer in a bad solvent, the “[Ta]” and “[Tr]” beads correspond to polymer in a theta solvent but differ from each other in their ability to interact with the
surface. The entire design space consists of 3,125 polymers in total. For this ϵ-PAL algorithm, 60 initial samples are imported into a Gaussian process surrogate
model to predict means and standard deviations that allow us to confidently discard points or classify them as Pareto optimal and especially decide which points should
be performed on the CGMD simulations next to maximally reduce the uncertainty for the unclassified points near the Pareto front. The loop is cycled, and the Gaussian
surrogate model is updated until there are no longer unclassified points in the design space. (B) Representation of polymers in property space: all data points in the entire
experimental design space are determined with three key properties including the adsorption free energy (ΔGads), the dimer free energy barrier (ΔGrep), and the radius of
gyration (Rg). The predicted Pareto front (blue) is well fit to the true Pareto front derived from brute-force simulations (yellow) demonstrating the effectiveness of this ϵ-PAL
algorithm. (C) Classified points and hypervolume error as a function of the number of iterations. (i) illustrates the working principle and effectiveness of the algorithm: this
method is able to classify the polymer as a Pareto optimal or a discarded point as fast as possible. After only ten iterations, the model can confidently discard a large
number of polymer (orange) as well as effectively find many ϵ-accurate Pareto-optimal points (blue) in the design space. The number of unclassified points is reduced
significantly at the same time (yellow); (ii) The performance of this algorithm is much faster (use much less iteration number) when compared with a random search using
hypervolume error to quantify the convergence of Pareto front classifying. Especially when using a single surrogate Gaussian process model (for multiple-objective
prediction) the model is able to perform better (compared to using multiple surrogate Gaussian process model) in case one of the objectives is missing while all other
properties are present for a given data point. Figure was reproduced from Ref. (Jablonka et al., 2021) with permission.
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global solution with optimized single- or multiple-objective
(Pareto solutions) design which utilizes the BHJ morphology
prediction from CGMD modeling. The cuckoo search (CS)
optimization (Yang and Suash, 2009) with an ML-guided
regression approach was used to steer the selections of
promising eggs (solutions) during each optimization
generation. The CS algorithm generated different nests per
cycle in which the design variables (such as polymer mass
fraction) were varied prior to implementing the CGMD
simulations on these variables. A support vector machine
(SVM) with radial basis function (RBF) fitting was used to
pick the best candidate based on the CTP and UTS
evaluations among CGMD simulation morphologies from all

the nests. The best solution was next used to replace one of
the worst-performing nests from the previous generation. By
looping the process, the coupling of ML and CGMD could
generate and compare different solutions amongst the different
nests and retain a set of the best candidates. Ultimately, all the
poor-performing solutions were replaced with better ones in the
design space. Compared to the traditional searching method
(without using SVM for guiding the solution selection), this
integration could converge much faster (Figures 11C (i)) to
identify the optimal conditions of the annealing temperature
and PCBM weight fraction for maximizing a single objective
(such as CTP or UTS). More interestingly, this methodology
established a set of Pareto solutions in which multiple objectives

FIGURE 11 | A coupling of ML and CGMD for a design of an organic photovoltaics (OPV) device. (A) Flowchart showcases the coupled ML—CGMD algorithm for
OPV design. During each optimization generation, CGMD/ML compares different solutions among different nests and keeps the best candidates. Bad solutions are
replaced with newer ones in the design space. The ML augmentation guides the design to the regions of interest (ROI) to replace the worst nests with the better
candidates during each optimization cycle. The training dataset is also updated with new CGMD data after each optimization run. The support vector machine
(SVM) works as a steerer for the CGMD simulation towards to best candidates. It plays a similar role to the Bayesian optimization as discussed earlier. (B) CGMD
representation of phase separation of the mixture of poly-3-hexyl-thiophene (P3HT) (red) and phenyl-C61-butyric acid methyl ester (PCBM) (blue) solvated in
chlorobenzene (CB) (gray) from the initial state to partial evaporation of the solvent (t � 0.6 µs), solvent-free (t � 1.2 µs) and thermally annealed (t � 3 µs). CB, P3HT, and
PCBM molecules are presented following Martini force field coarse-grained beads. (C) Performance of the integration of ML and CGMD for OPV application. (i) A
bivariate optimization of PCBMweight fraction and annealing temperature for improved exciton transport probability. The SVM assisted—CGMD convergedmuch faster
than the traditional approach after only 3 cycles; (ii) Landscape of the Pareto solutions from ML-CGMD integration for multi-objective OPV design: improved charge
transport probability and increased ultimate tensile strength which are evaluated using CGMD simulations. Figure was reproduced from Ref. (Munshi et al., 2021) with
permission.
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(CTP and UTS) were superior at the same time in a range of
optimal conditions of the annealing temperature and the polymer
mass fraction (Figures 11C–11C (ii)). This work highlights the
capability of the CGMD/ML toward more practical polymer
blend design, such as solar energy conservation, battery
electrodes, nanocomposite materials, etc. where there are
numerous design parameters as well as multiple objectives to
be taken into account. This methodology may provide better
guidance for experimentalists compared to conventional
approaches with significantly reduced cost and time.

5 CHALLENGES AND FUTURE
DIRECTIONS

Although the applications of ML algorithms and CGMD
simulations for polymer chains have been advanced recently,
many questions remain to be addressed. From our perspective,
four main topics as follows are considered as the most
challenging:

5.1 Molecular Featurization
Homopolymers are usually characterized using a single repeating
unit, and there are standard featurization methods such as
substructure fingerprints (Morgan fingerprint) and
physiochemical descriptors (Tao et al., 2021b). However, when
converting copolymers that have multiple components into
numerical vectors for ML models, it is not straightforward in
terms of how to integrate the contributions of all components
properly, particularly considering their sequence on a polymer
chain. If based on each constitutional unit’s featurization like
Morgan fingerprint, the most straightforward way is to use the
weighted summation of their featurization vectors based on their
composition proportions in the copolymer (Pilania et al., 2019).
This strategy leads to a total vector that is invariant to the
arrangement of monomer components in copolymers, which is
only applicable to random polymers where no sequence order is
involved (Kuenneth et al., 2021). For maintaining such feature
invariance for different component permutations in random
copolymers, the weighted summation method can be replaced
by DNN networks to do mixing and aggregating, and the
standard fingerprint can be changed to embedding networks
to do feature representation learning (Hanaoka, 2020). For
more applications where CG bead sequence affects the
properties of copolymers (sequence-defined copolymers),
explicit-sequence featurization strategies are preferred. One
solution is to use an adjacency matrix that is able to represent
the polymer connectivity and sequence, in the context of a graph
representation of copolymers. Another solution is to arrange the
feature vector of each component in order to form a larger vector,
then a CNN model’s sliding kernel is able to extract sequence-
level features (Patel et al., 2021). For CGMD/ML coupling, it is
crucial to employ a proper molecular featurization that is able to
consider the underlying chemical information of each
component, the feature invariance for random copolymers, or
the CG bead ordering for sequence-defined copolymers.
Considering other types of copolymers such as gradient

copolymer, block copolymer, or graft copolymer, whether
weighted summation method or CNN model is still
appropriate remains unknown. Incorporating CG bead
ordering in the ML model is a fundamental yet not fully
addressed challenge. More challenges lie in the combination of
the multiscale complexity of copolymers and the topology
complexity in the following.

5.2 Topology
Recent CGMD/ML coupling research focused mostly on the
monodispersity with being limited to the short and linear
polymer chains. However, experiments expect to see the
polydispersity in polymeric topologies that would eventually
affect the bulky self-assembly behaviors (Lynd and Hillmyer,
2005; Lynd et al., 2008; Vleugels et al., 2020). This polydispersity
will be a potential design parameter to drive certain self-assembly
pathways for copolymer structures and will need more
investigations in the near future. A single chain with a limited
number of monomers/particles has also been favorably used for
the inverse design problem. It raises a related issue whether this
CGMD/ML hybridization can be adapted for other complex
polymeric systems? One suggestion is that when chemical
complexity increases, more features are better to be
incorporated, combining atomic connectivity, chain-level
characterizations, degree of polymerization, morphological
descriptors, etc. Another consideration is to differentiate CG
backbone beads and pedant beads so that the linear and non-
linear topologies are better recognized. Furthermore, more
flexible ML approaches must be applied, such as using
property coloring schemes representation for polymeric
structures in two-dimensional (2D) convolution networks
(Gao et al., 2018; Yang et al., 2018), or the use of graph
convolutional networks (Coley et al., 2019; Korolev et al.,
2020) as well as more powerful tools to handle various types
of polymer chains, such as linear, branched, ring, star polymers.
With the increasing number of features at a different scale, the
CGMD/ML hybridization is expected to better reveal the
structure-property relationship of a complex polymeric system,
but it is not guaranteed. The performance of an ML algorithm
itself is problem-dependent, not to mention the interplay between
ML algorithm and CGMD configurations. Such complexity
requires careful consideration of the system’s topology and
consequently the features to be considered.

5.3 Model Accuracy and Transferability
Another tricky question is about the prediction accuracy of these
models when being applied in unexplored corners of sequence
space. It needs more investigation in the future on the relation
between training data bias (data diversity) and the systematic
prediction errors of models. For inverse designs, another
challenge is whether the existing CG force fields are able to
represent the polymeric structures accurately with enough
chemical insights for real-life polymeric design applications (Li
et al., 2013). This might require model parameterization as part of
the design workflow to enhance the capabilities and accuracy of
CG models to generate comprehensive training datasets for ML
tools. On the other hand, back mapping of the CG model to the
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all-atom model might preserve information related to the
molecular compositions of these polymers (Li et al., 2020a).
One more related issue is how many CGMD data points will be
sufficient for the ML training process? It has been known that
active learning tools such as Bayesian optimization or Pareto
searching algorithms can perform effectively on small datasets,
yet it is only for inverse design. How to deal with that problem
when it comes to the tasks of classification and feed-forward
property prediction? Therefore, it requires more efforts to
investigate the influence of the size of the training dataset
on the model accuracy as well as setting up the criteria for the
design of experiments (DOE) to acquire more effective
samplings. Since the chemical space for copolymer is almost
infinite, the evaluation of the model accuracy and
transferability are always limited to the chemical space that
is being investigated. Generating more data to cover a broader
area of the chemical space leads to a brute force solution so that
we can evaluate the model accuracy and transferability to the
most extent. More importantly, it is better to generate a dataset
as diverse as possible, with which the model accuracy and
transferability become more convincing. Last but not least, we
have known that CGMD still cannot fully represent the
experimental observations quantitatively due to the
challenges of length and time scales. Therefore, in order to
predict accurately experimental phenomena, the algorithm
and computing capability themselves need to be improved
as well (Li et al., 2020b).

5.4 Combination With Experimental Results
Another concern is whether this methodology can be used in
real-life manufacturing where processes take into account
multiple parameters. In this situation, the existence of
experimental data plays an important role. Recent research
shows that integrating machine learning with experimental
data allows us to accurately predict the areal proportion of
each of the four morphologies in block-copolymer phase
separation, identify critical process parameters, and predict
the experimental outcomes (Tu et al., 2020). The experimental
data is considered as a small set of high-fidelity data (Chen
et al., 2021c), while the CGMD simulation provides a larger set
of lower-fidelity data. Therefore, the multi-fidelity
combination model is expected to enhance the performance
of ML tools in reality (Meng and Karniadakis, 2020).
Additionally, experimental data can also help to
parameterize the CG potentials for a more consistent and
reliable CGMD/ML methodology (Simine et al., 2020). It is
worth noting that special attention needs to be paid to the
experimental uncertainty. If experimental measurements are
not representative of polymers’ compositions, monomer
sequence, or topologies but are mostly affected by
experimental procedures and conditions, such uncertainty
will significantly sabotage the CGMD/ML analysis.

5.5 Future Directions
Ongoing experimental works attempt to generate and test the
candidates selected from the ML works to validate the current
inverse design from CGMD/MLmodels. Future computational

studies might pay more attention to extending the chemical space
and complexity (with varying chain lengths or more branched
structures) in the polymer and polymer-like systems for more
realistic applications, such as sequence-defined drug and
nanoparticle designs, cell-penetrating peptides, copolymer
designs with targeted self-assembly behaviors, etc. More efforts
should be focused on parameterization or fine-tuning of CG
potentials by including quantum-chemical or experimental data
in specific applications to increase the reliability and consistency of
this computational approach. Besides, polymer inverse design with
multiple objectives is still one of the most challenging topics which
can be leveraged inmany practical applications, but still need more
investigation on the model accuracy and transferability analysis
(Jablonka et al., 2021). The inverse design of polymers in terms of
both monomer chemical structures and monomer sequence is
more appealing, as the chemical space will be significantly
expanded from the hierarchical design. Moreover, only a few
polymeric properties at the chain level (mostly focused on the
value of the radius of gyration) have been explored in the current
feed-forward property prediction and inverse design models.
Hence, it is encouraged to consider diverse properties such as
thermal, mechanical, optical, electronic properties, etc., in future
research. Finally, while CGMD can capture the geometries of
multiple-chain structures, characteristics of bulk material
systems remain out of reach. It suggests developing methods to
connect chain level properties with bulk assembly behaviors using
broader critical parameter spaces such as polydispersity or
assembly pathways, etc., to these materials (DeStefano et al., 2021).

6 CONCLUSION

In this review, we have surveyed the most recent applications
of the hybridization of CGMD simulations with ML algorithms
to solve the challenging problems in polymer science at the
chain level, including configuration classification, feed-
forward property prediction, and inverse molecular design.
Throughout the manuscript, we also discussed some of the
most powerful ML tools with basic knowledge and how to
leverage these algorithms in further applications. Although
CGMD/ML coupling has been demonstrated as a highly
promising tool for polymer chain characterization and
design, key challenges and issues remain to answer, as

FIGURE 12 | Keywords of challenges and future directions in this field.
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shown in Figure 12, opening many opportunities for more
outstanding research in this field in the near future.
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