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Gastric cancer (GC) is one of the most widespread causes of cancer-related death
worldwide. Recently, emerging implied that gastric cancer stem cells (GCSCs) play an
important role in the initiation and progression of GC. This subpopulation comprises cells
with several features, such as self-renewal capability, high proliferating rate, and ability to
modify their metabolic program, which allow them to resist current anticancer therapies.
Metabolic pathway intermediates play a pivotal role in regulating cell differentiation both in
tumorigenesis and during normal development. Thus, the dysregulation of both anabolic
and catabolic pathways constitutes a significant opportunity to target GCSCs in order to
eradicate the tumor progression. In this review, we discuss the current knowledge about
metabolic phenotype that supports GCSC proliferation and we overview the compounds
that selectively target metabolic intermediates of CSCs that can be used as a strategy in
cancer therapy.
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INTRODUCTION

Gastric cancer (GC) is recognized as the fifth most common cancer in the world (5.7% of all cancers)
with a higher prevalence in males compared to females, and it is the fourth leading cause of cancer
death (1). Lifestyle variations, especially in dietary habits such as high salt intake, iron depletion and
alcohol consumption, along with genetic background, have led to a discrepancy in GC incidence in
different regions of the world with Europeans and Latinos less affected than Asians (2–4). The high
mortality rate could be accounted by the absence of early-stage symptomatology, by the lack of early
diagnosis and poorly effective treatments (5). Gastric cancer is classified as a multifactorial disease
that results from a combination of specific genetic alterations such as gene mutations, somatic copy
number alterations (sCNAs), epigenetic changes (6–8), and environmental factors (9). The latter has
a critical role in the GC onset, with major risk factors beingHelicobacter pylori infection (10). At the
present, H. pylori infection is a strong risk factor for the adenocarcinoma that arises within the
stomach (11), and it was classified as a class I carcinogen by the International Agency for Research
on Cancer (12). H. pylori colonizes the gastric mucosa, where it expresses an array of proteins that
lead to persistent inflammation (13, 14). All these factors together promote cancer stem cells
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insurgence even if it is unclear whether this mechanism is due to
a somatic cancer cell that acquires stemness feature, or to a
normal stem cell which acquires cancer properties.

Hallmarks of Cancer Stem Cells (CSCs)
Cancer stem cells (CSCs) represent a small subpopulation within
the tumor that is involved in the initiation and progression of
carcinomas (15–17). According to the CSCs theory, the
tumor bulk is composed of a plethora of heterogeneous and
differentiated cancer cells which is fueled by a rare population of
CSCs characterized by self-renewal and differentiation
capabilities (18, 19).

The molecular features displayed by CSCs are not universal
and many of the genes, discovered as markers of these cells, were
first identified in embryonic stem cells (ESCs). The core
regulatory network for embryonic stem cell maintenance and
self-renewal OCT4, SOX2, KLF4, NANOG, and SALL4 are
abnormally expressed in human tumor samples suggesting the
presence of cancer stem cells (20). The overexpression of these
pluripotency genes in gastric cancer tumor tissues versus the
paired adjacent normal tissues positively correlate with tumor
size, tumor grade, TNM stage, and shortened overall survival
time (21). Zscan4, a transcription factor (TF) firstly identified as
exclusive of murine 2-cell embryos (22) and murine ESCs
(mESCs) (23), is also been associated with stem cell phenotype
in human head and neck squamous cell carcinoma (HNSCC)
(24). ZSCAN4 is indeed enriched in HNSCC cells which are able
to form tumorspheres, and its overexpression is associated with
elevated histone 3 hyperacetylation at NANOG and OCT4
promoters. The TF c-MYC is one of the most studied
oncogenes, and originally part of Yamanaka cocktail together
with OCT4, SOX2 and KLF4 (OSKM), to reprogram somatic cell
to a pluripotent cell (25). The reactivation of MYC in mammary
epithelial cells is able to downregulate lineage specific TFs to
reprogram the cell to a stem cell-like state favoring tumor
initiation and progression (26). As the CSCs could be
considered normal stem cells which have lost control over
regulation mechanisms, they can also take advantage of other
protective mechanisms typical of stem/progenitor cells. The
adenosine triphosphate–binding cassette (ABC) transporters
are efflux pumps expressed at high level on progenitor cells
membrane and are responsible for the protection of the stem cell
population from toxic molecules (27). Although the expression
of ABC transporters strongly fosters multidrug resistance (MDR)
(28), the capacity of CSCs to resist chemotherapeutic treatment
is a multifactorial feature achieved by a highly efficient DNA
repair machinery that is employed to overcome the DNA
damage induced by therapeutic treatment (28) as well as
increasing the autophagic process to obtain nutrients necessary
to support cell survival (28, 29). Also, upon drug treatment, other
molecular pathways may take action in sustaining the survival of
CSCs. VEGF/VEGFR-1(Flt) autocrine signaling is activated in a
subpopulation of highly tumorigenic cells in response to cisplatin
treatment (CDDP) and is characterized by the expression of the
pluripotency genes OCT4, NANOG and BMI1 (30). The drug
exposure can therefore enhance the tumorigenic potential of the
CSCs hence revealing the need to use combined therapies in
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order to target different molecular pathways and reduce the
chance of cancer relapse.

Cancer Stem Cells Metabolism
The metabolic hallmarks of the CSCs have been the subject
of intensive investigation in different types of tumors (31, 32).
A common feature of CSCs is the reprogramming of
cellular metabolism with glycolysis preferred over oxidative
phosphorylation (OXPHOS) as the primary source of ATP
molecules even in presence of oxygen. This metabolic switch,
known as the “Warburg effect” or aerobic glycolysis, provides
ready-to-use energy that is essential to meet the need of high
energy demand associated with a high proliferative state (33).
Although this mechanism is energetically unfavorable, as the
amount of ATP generated by glycolysis is lower than the quantity
deriving from OXPHOS, CSCs overcome the energy limitation
enhancing glucose uptake and upregulating some intermediates of
the glycolytic pathway. On the other hand, in normal cells or
quiescent somatic cells, mitochondria produce the primary energy
through the tricarboxylic acid cycle (TCA) deriving from glucose via
glycolysis, or fatty acid via b-oxidation associated with OXPHOS
(Figure 1) (35). All these metabolic changes allow the CSCs
adaptation to the tumor microenvironment leading to tumor
progression, metastases formation and chemo-resistance (36).

In T-cell leukemia the activation of MYC leads to HIF2a
induction that is facilitated by the pluripotency factors NANOG
and SOX2. This results in a change of redox balance of CSCs as
HIF2a negatively regulates p53 activation and positively
regulates glutathione (GSH) production (37). Furthermore,
several studies reported that an aberrant activation of WNT
signaling plays an important role in the metabolic switch from an
oxidative metabolism to aerobic glycolysis supporting cancer
stem cells. This shift could be partly explained by the production
of reactive oxygen species (ROS) as they are capable of altering
the self-renewal capacity of cancer stem cells (38). As a matter of
fact, WNT has been shown to regulate pyruvate dehydrogenase
kinase, PDK1, by phosphorylating and inactivating the pyruvate
dehydrogenase (PDH) enzyme complex, responsible for the
conversion of pyruvate into Acetyl-CoA (39). A decreased
entry of Acetyl-CoA into TCA and oxidative phosphorylation
leads to a reduced mitochondrial respiration and, therefore, to
lower ROS levels. The role of WNT in supporting the stemness of
CSCs was further confirmed by the use of a WNT antagonist,
secreted frizzled-related protein 4 (sFRP4). This protein, through
its binding to WNT receptor, is able to reduce the CSCs viability
even in the presence of a variable concentration of glucose (40).

Moreover, Notch1 signaling plays a role in the regulation of
metabolism in CSCs. In particular, upon binding to Jagged1 ligand,
Notch1 activates a downstream cascade that, through the
interaction with PTEN-induced kinase 1 (PINK1), results in
mTORC2/AKT activation (41). In CSCs, mTORC2 regulates
different mechanisms through the AKT activation which, in turn,
phosphorylates SOX2 and OCT4 and, therefore, it positively
contributes to the stemness maintenance. Furthermore, mTORC2
activation is also implied in metabolic regulation as it is involved in
the repression of the FoxO3, a transcriptional factor that is
responsible for the inhibition of the glycolytic pathway (42).
June 2021 | Volume 11 | Article 698394
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Besides, Hedgehog signaling (Hh) plays an important role in
CSCs sustenance. A recent study describes a role of this pathway
in the activation of SOX2, NANOG and OCT4 stemness genes
following a stress caused by depletion of folate in colon cancer
cells (43). Furthermore, in breast cancer, Hh signaling regulates
the ability of stem like cells to generate tumor bulk (44).

The activation of this pathway is further associate with lipid
metabolism. Indeed, defects in cholesterol biosynthesis results in
Hh signaling arrest in embryonic development (44).
METABOLIC PROFILE OF GASTRIC
CANCER STEM CELLS (GCSCs)

Gastric cancer stem cells (GCSCs) show a distinct expression of
several surface markers. These include: CD44 (cluster of
differentiation 44), EpCAM (epithelial cell adhesion molecule),
Frontiers in Oncology | www.frontiersin.org 3
LGR5 (leucine-rich, repeat-containing, G-protein–coupled
receptor 5), ALDH1 (aldehyde dehydrogenase 1), CD133 (cluster
of differentiation 133), and SOX2 (sex-determining region Y-box 2)
(45–47). The positivity to these markers is associated with vascular
and lymph node invasion, tumor size and response to
chemotherapeutic drugs (48). Interestingly, CSCs metabolism has
become an active field of innovative research to target cancer
progression (32). Here, we reviewed the current knowledge about
GCSCs metabolism and the therapeutic strategies that can be
employed to target metabolic pathways.

Glycolytic Metabolism
Glycolysis is the central pathway for glucose catabolism which can
occur both in the presence of oxygen (aerobic) and in the absence of
oxygen (anaerobic) (49, 50). In a hypoxic microenvironment,
GCSCs reprogram their metabolism to adapt to lower oxygen
levels through the upregulation of hypoxia-inducible factors
FIGURE 1 | Comparison of normal stem cells versus cancer stem cells metabolism. In normal cells, glucose is converted to pyruvate and then oxidized to Acetyl-
CoA in the mitochondrial TCA cycle. Other substrates, including lipids and nucleotides, are produced from these catabolic reactions. The majority of ATP is
produced by oxidative phosphorylation (OXPHOS) (not shown in the figure). In cancer cells, glucose uptake and glycolysis are strongly increased. Part of pyruvate is
converted to lactate, while the remaining is converted to Acetyl-CoA to enter in the TCA cycle where it is converted to citrate. The produced citrate is secreted from
the mitochondria for fatty acid synthesis that are necessary for structural maintenance of the membrane. TCA, tricarboxylic acid cycle; aKG, a-KetoGlutarate; GSH,
glutathione; BCAAs, branched-chain amino acids. Figure modified from De Berardinis et al. (34).
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(HIFs) (51). These factors regulate the expression of genes involved
in glucose uptake and in the glycolytic pathway (52). Among these,
GLUT transporters permit glucose entry through the plasma
membrane allowing the cells to survive in low oxygen conditions
(53, 54). Indeed, Yamada A. et al. reported that high Glut1
expression occurred at an early stage of gastric cancer where it
facilitates 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) uptake
(55), and it is responsible for gastric cancer progression by
activating the AKT pathway (56), which plays a key role in
glucose metabolism. However, the employment of specific
inhibitors of Glut1 transporters, such as WZB117, has been
demonstrated to affect tumor insurgence through the
downregulation of stemness-associated genes, such as SOX2,
NANOG and BMI1 in different cancers including pancreatic,
ovarian and glioblastoma cancer (57). This allows them to be
utilized as a possible therapeutic strategy even in gastric cancer
treatment. Subsequently to the higher intracellular glucose levels,
Hexokinase 2 (HK-2), the first enzyme of the glycolytic pathway, is
consistently overexpressed in gastric tumors and is associated with
poor survival in patients with digestive system malignancies (58)
(Figure 2). Recently, a novel molecular mechanism of metabolic
regulation linking a key embryonic stem cells (ESCs) pluripotency
factor SALL4 to HK-2 has been described in GC cells (59).
Particularly, Shao et al. demonstrated that knockdown of SALL4
results in inhibition of glucose uptake and HK-2 activity.
Conversely, SALL4 overexpression promotes cancer metabolic
phenotype which can be reversed by HK-2 knockdown suggesting
that this glycolytic enzyme is a downstream effector of the
transcriptional factor SALL4. Indeed, targeting HK-2 in leukemic
cells, with 3-bromopyruvate, leads to the dissociation of HK2 from
mitochondrial membrane which is responsible for the enhanced
sensitivity to the first-line chemotherapeutic drug (60). This
approach could be used as a potential strategy to target GCSCs
with high HK-2 activity.

Additionally, the overexpression of glycolytic enzyme Enolase 1
(ENO1) regulates stem cell-like characteristics of tumor cells and it
is related to poor prognosis of GC (61). ENO1 overexpression
promotes cisplatin resistance through a higher glycolytic activity.
Moreover, the glycolytic phenotype can be modulated by Pyruvate
kinase isozyme M2 (PKM2), an enzyme that has been proposed to
be crucial for maintaining cell homeostasis. In GC, GCSCs,
expressing CD44 surface marker, show an upregulation of PKM2
upon induction with CagA deriving fromH. Pylori infection (62). It
has been demonstrated that PKM2 overexpression plays a role in
the stabilization of the transcriptional factor NF-kB that, through its
binding to Bcl-xL anti-apoptotic protein, promotes GC
development and progression (63). Inhibition of PKM2 achieved
by shikonin hinders glycolysis in breast cancer cell lines making this
compound a good candidate for other tumors (64).

The final step of glycolysis provides pyruvate molecules which
can be converted in lactate through lactate dehydrogenase (LDH)
or in Acetyl-CoA by pyruvate dehydrogenase (PDH) enzymes.
The activity of PDH is negatively regulated by pyruvate
dehydrogenase kinase 1 (PDK1) which is responsible for the
interruption of the link between glycolysis and the TCA cycle,
enhancing the conversion of pyruvate in lactate (65).
Frontiers in Oncology | www.frontiersin.org 4
Alteration in the glucose metabolism by PDK1 activity is
associated with a poor prognosis in gastric cancer. Targeting
PDK1 with dichloroacetate (DCA) has been reported to induce
metabolic changes that increase the cell sensitivity to chemotherapy
(Figure 2) (66). As previously highlighted, although CSCs mostly
utilize the glycolytic pathway, part of the energy is still produced by
the OXPHOS pathway. To date, several drugs are available to
reduce energy production via OXPHOS such as Metformin and
Phenformin treatment (67, 68). These compounds inhibit the
mitochondrial respiratory complex I delaying cancer growth in
vivo and inducing apoptosis of CSCs (68). Furthermore,
mitochondrial metabolism can be impaired by targeting
mitochondrial protein biosynthesis and maturation. Indeed,
treatments with tetracyclines, which hamper ribosomes, and
Gamitrinib, an inhibitor of TRAP1 chaperone, result in OXPHOS
reduction (69, 70). However, due to themetabolic plasticity of CSCs,
dual inhibition of the glycolytic and OXPHOS pathways may
represent a promising approach for CSCs targeting and
tumor treatment.

Lipid Metabolism
Lipids are essential components of the cell, both structurally and
functionally, as they regulate the fluidity of the plasmatic membrane
and they are involved in different cellular activities including cell-cell
recognition, energy supplies and signaling transduction (71).
Indeed, their metabolism is finely regulated by the cell through
anabolic or catabolic pathways modulation, according to the
availability of carbon source for de novo lipogenesis (44).
Although an increase in lipid metabolism is already attributed to
stem cells during somatic cell reprogramming (72), several reports
describe the lipid metabolism rewiring of CSCs as a mechanism
necessary to avoid death under unfavorable conditions (35). Recent
studies show that exogenous absorption or endogenous synthesis of
lipids plays a primary role in supporting CSCs’ self-renewal during
the tumorigenesis process. Indeed, many of the enzymes responsible
for lipid synthesis, such as ATP-citrate lyase (ACYL), acetyl-CoA
carboxylase (ACC) and fatty acid synthase (FASN) are highly up-
regulated in cancer (Figure 3) (44, 71). Likewise, inhibition of ATP-
citrate lyase, the enzyme responsible for the conversion of cytosolic
citrate to acetyl-CoA results in the downregulation of the
transcriptional factor Snail, a key regulator of stemness phenotype
in cancer stem cells (73). In particular, FASN, a key lipogenic
enzyme that converts Acetyl-CoA and malonyl-CoA to palmitate, is
drastically upregulated in many cancers such as breast, colon, lung,
bladder, gastric, endometrial, ovary, kidney, pancreatic, head and
neck, prostate, brain and melanoma (74–76). Inhibition of FASN
activity with cerulenin induces regression in the formation of
tumorspheres with a reduction in the expression of stemness
markers, such as Nestin and CD133, and an increase in the
expression of differentiation markers (77). Furthermore,
comparative studies of metabolomic profiles between CSCs and
non-tumor counterparts have shown that CSCs support their
stemness by synthesizing a greater amount of monounsaturated
lipids (MUFAs) (78). Lipid desaturation, or the conversion of
saturated lipids into unsaturated lipids, is mediated by specific
enzymes, such as stearoyl-CoA desaturase-1 (SCD1). In gastric
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FIGURE 2 | Schematic representation of glycolytic pathway. In CSCs, glucose from the extracellular environment is mainly metabolized through glycolysis. In
particular, upregulation of several intermediates of this catabolic pathway, such as Hexokinase 2 and ENO1, leads to an increase in lactate production. Moreover, the
inactivation of pyruvate dehydrogenase (PDH) by PDK1 is responsible for failure in the conversion of pyruvate to Acetyl-CoA and this results in increased lactate
production. ENO1, Enolase1; HIF1a, hypoxia-inducible factor; LDH, Lactate Dehydrogenase; PKM2, Pyruvate kinase isozyme M2; PDH, Pyruvate dehydrogenase;
PDK1, Pyruvate dehydrogenase kinase 1; DCA, dicloroacetate.
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cancer, SCD1 has found to be upregulated and this results in poor
survival rates. Furthermore, this enzyme is able to induce
tumorigenesis, drug resistance and metastasis by regulating
GCSCs proliferation through the Hippo pathway (79). Hence
CSCs, compared to their differentiated tumor counterparts, show
an enhancement of lipid synthesis de novo, which is also reflected in
the accumulation of intracellular lipids. An important role of lipid
droplets (LD) located at the cytoplasmic level in supporting the
excessive metabolic demand of CSCs has also been advanced. LD, a
source of accumulation of fatty acids in the form of triglycerides, act
as a reservoir of energy for the sustenance of CSCs in glucose
deprivation condition (80). Moreover, another strategy that CSCs
activate in a low glucose condition is represented by the b-oxidation
of free fatty acids (44). Thus, Nanog, a stem cell marker, reprograms
the metabolism of tumor-initiating stem-like cells (TIC) by
repressing the expression of OXPHOS genes and activating the
fatty acids oxidation (FAO). This allows tumor-initiating stem-like
cells to maintain self-renewal and drug resistance (81). It has been
demonstrated that, in GC, mesenchymal stem cells (MSCs)
Frontiers in Oncology | www.frontiersin.org 6
promote the synthesis of MACC1-ASI, a lncRNA that is
responsible for FAO-dependent stemness and chemo-resistance
insurgence. Furthermore, it has been found that the
downregulation of CPT1, the FAO rate-limiting enzyme, reduced
stemness and resistance to 5-FU and oxaliplatin. Accordingly,
inhibition of CPT1 with Etomoxir allows reversing the resistance
that mesenchymal stem cells show to the FOLFOX therapeutic
regimen (Figure 3 and Table 1) (82). However, a recent report
describes a lipid metabolism shift that occurs when stem cells switch
from a quiescent state to a proliferative state (88). This represents a
paradox because, in a quiescent condition, cells rely on b-oxidation
to produce energy for the cell viability and stemness phenotype
maintenance as the citrate is first converted to succinate and, then,
to malate. The selective inhibition of this catabolic pathway resulted
in a loss of the quiescence state and in the acquisition of a
differentiated phenotype (88).

Along with the metabolism of fatty acids, cholesterol
metabolism is also a hallmark of cancer. In particular, an
increase in the levels of SREBP2, a transcription factor
FIGURE 3 | Representation of lipid metabolism. Rewiring of lipid metabolism including increased lipid uptake, lipid desaturation, de novo lipogenesis, lipolysis and
FAO is necessary for supply GCSCs with energy. Extracellular FFAs are transported into cells and catabolized in mitochondria to produce acetyl-CoA which is
converted in citrate and it enters in TCA cycle for the oxidation. Alternatively, de novo fatty acids synthesis begins with acetyl-CoA that is converted in malonyl-CoA
and then in palmitate. Lipid catabolism can even occur through fatty acids esterification that allow them to be stored as triglycerides in lipid droplets. In addition,
saturated fatty acids can also be converted into mono-unsaturated fatty acids by SCD1, an enzyme upregulated in gastric cancer. ACC, acetyl-CoA carboxylase;
ACYL, ATP citrate lyase; FASN, fatty acid synthase; MUFAs, mono-unsaturated fatty acids; SCD1, stearoyl-CoA desaturase 1; CPT1, carnitine palmitoyltransferase
1; TCA, cycle, tricarboxylic acid cycle; LD, lipid droplet.
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responsible for cholesterol biosynthesis and homeostasis, is
correlated with an increase in the tumor stem cell bulk
population (89). De novo lipidic synthesis and the oxidation of
fatty acids represent the new metabolic targets to inhibit CSCs
self-renewal and identifying new inhibitors of the key players
involved could slow down the growth of the tumor mass (90).

Exploring the Role of
Glutamine Metabolism
Glutamine metabolism is an essential mechanism that CSCs display
to produce macromolecules, such as lipids, proteins and nucleic
acids, that are indispensable for proliferation (91). To date, no
evidence describes the role of this metabolism in gastric cancer stem
cells, however, given its importance as the carbon source in other
cancer stem cells, further investigation should be carried out to
understand the metabolic function of glutamine in gastric stemness.
In particular, in cancer stem cells glutamine is used as a pivotal
source of nitrogenous as it represents a good donor of reduced
nitrogen for building both purine and pyrimidine bases as well as
proteins (91). Furthermore, glutamine acts as a carbon source for
the TCA cycle through its conversion to alpha-ketoglutarate (a-KG)
(92). Specifically, glutamine is first converted to N-acetyl-
glucosamine by glutaminase (GLS), a MYC regulated enzyme,
then converted to a-KG by glutamate dehydrogenase (GDH) and
then it enters in TCA cycle for energy production. This mechanism
Frontiers in Oncology | www.frontiersin.org 7
is defined as oxidative glutaminolysis (93). Targeting these enzymes
could represent a good pharmacological strategy for potential
therapy in different types of cancer. Indeed, the use of a specific
inhibitor targeting GLS leads to an inhibition of MYC-induced B-
cell lymphoma and MYC-induced hepatocarcinoma (83), while,
GDH inhibition results in lower a-KG levels and high ROS
production, resulting in hindering of cancer cell proliferation and
tumor progression (94). Thus, this emerging evidence shows that
increasing glutamine metabolism promotes tumor growth despite
the regulation of redox homeostasis (84). However, beyond the
oxidative glutaminolysis, glutamine can follow a reductive
carboxylation pathway. Indeed, in a hypoxic microenvironment,
glutamine can also be converted to citrate by the reductive activity of
NADP+-dependent isocitrate dehydrogenase 1 (IDH1) leading to
Acetyl-CoA production that is used for fatty acid synthesis and it is
necessary to guarantee substrates for cell proliferation (91). This
makes glutamine metabolism a crucial point for the regulation of
survival, proliferation and differentiation of cancer stem cells.
Recent studies describe glutamine metabolism as a possible target
in cancer therapy. Several compounds are described being able to
modulate different intermediates of this metabolic pathway. The
first-line strategy to regulate glutamine metabolism could be the
inhibition of glutamine transporter ASCT2 with benzylserine to
prevent the uptake of this amino acid and its employment in
anabolic and catabolic pathways (85). Subsequently, intracellular
TABLE 1 | List of compounds targeting CSCs metabolism.

Compound Target Tested Tumor Type Reference

WZB117 Glut-1 PANC-1 CSLC
(pancreatic cancer)
A2780 CSC
(ovarian cancer)
GS-Y03 (glioblastoma)

(57)

3-bromopyruvate HK2 K-562
(leukemic cells)

(60)

Shikonin PKM2 MCF-7, MCF-7/Adr, MCF-7/Bcl-2, MCF-7/Bcl-x(L) and A549
(breast cancer)

(64)

Dichloroacetate (DCA) PDK1 MKN45, AGS
(gastric cancer)

(66)

Metformin/Phenformin Mitochondrial Respiratory Complex I Multiple Tumor
Cell Types

(67, 68)

Gamitrinib TRAP1 PC3
(prostate cancer)

(69)

Tetracyclines Ribosomal Subunit 30S Multiple Tumor
Cell Types

(70)

Cerulein FASN G144, Y10
(glioma)

(77)

Etomoxir CPT1 MKN45, AGS
(gastric cancer)

(82)

BPTES GLS P493
(B cell lymphoma)

(83)

R162 GDH1 Multiple Tumor
Cell Types

(84)

Benzilserine ASCT2 HGC-27, NUGC-3, MKN45, MGC-803, AGS, MKN74
(gastric cancer)

(85)

Mitoketoscins Unknown MCF7
(breast cancer)

(86)

Sulfasalazine xCT MKN28
(gastric cancer)

(87)
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glutamine is converted into glutamate through glutaminase (GLS)
activity; the inhibition of GLS with bis-2-(5-phenylacetamido-1,3,4-
thiadiazol-2-yl) ethyl sulfide (BPTES) is associated with DNA
replication arrest leading to cell death in the B lymphoma cell line
(83). Another targetable step is represented by the conversion of
glutamate into a -ketoglutarate acid through the activity of
glutamate dehydrogenase 1 (GDH1). Targeting GDH1 with R162
prevents glutamine entry in the TCA cycle increasing ROS levels in
several cancer cell lines (84). Also, ketone-bodies are used as a
substrate for energy production in cancer stem cells as they are
converted in Acetyl-CoA which enters in the TCA cycle providing
carbons for energy production. A new class of compound, named
“mitoketoscins”, has been found to impair this conversion leading
to the inhibition of breast cancer stem cells proliferation. However,
the molecular mechanism of mitoketoscins still remains unclear
(Figure 4) (86).
REGULATION OF REDOX STATE
IN GCSCs

GCSCs like normal stem cells, exhibit a tightly regulatedmetabolism
that governs their function. It is well known that, in stem cells,
intracellular levels of Reactive Oxygen Species (ROS) play a pivotal
role in the regulation of the balance between self-renewal and
differentiation (95, 96). Indeed, while mitochondrial ROS
production has been implied to have a role in muscle and
adipocyte differentiation (97, 98), low levels of ROS are actively
maintained in stem cells via aerobic glycolysis (99), and high activity
of antioxidant machinery. Also CSCs, like normal stem cells, display
strictly regulated ROS production through the metabolic switch and
upregulation of the radical scavenging system including the
members of the superoxide dismutase family (SODs) or
glutathione peroxidase family (GPXs) (100–102). Furthermore, it
has been demonstrated that increased ROS levels may enhance the
cell sensibility to drugs, reducing chemo-resistance, while, on the
other hand, low intracellular ROS levels may have a protective
function in tumor bulk (103, 104). A recent study demonstrated that
CD13, a CSCs marker, negatively regulates ROS levels, resulting in
increased stemness in liver CSCs (105). Further, in breast cancer,
CD24-/low/CD44+ initiating cells show low levels of radiation-
induced ROS that confer higher tumorigenicity and resistance to
radiation (106). This evidence endorses the association between low
levels of intracellular ROS and cancer stemness even if, as for
normal stem cells, the redox status of CSCs is not well-defined.
Glutathione (GSH) is an antioxidant peptide with a high abundance
in mitochondria of eukaryotic cells. GSH is involved in the
maintenance of redox balance through ROS detoxification, and in
the protection of phospholipids in the mitochondrial membrane
(107). Interestingly, high glutathione levels are found in embryonic
stem cells (108) and mesenchymal stem cells where they are
responsible for the maintenance of stemness (109). Likewise, high
GSH levels together with GSH-related enzymes are found in CSCs
from gastric (110, 111), liver (105) and breast cancer (112).
Conversely, little is known about the glutathione pathway in
CSCs. It has been demonstrated that pancreatic CSCs show high
Frontiers in Oncology | www.frontiersin.org 8
levels of GSH content and upregulation of several genes involved in
the GSH signaling (111). As for CSCs of other carcinomas, stem
cells from gastric cancer, marked by upregulation of a variant of
CD44 receptor (CD44v) (113, 114), display an enhanced capacity of
glutathione synthesis and defense against ROS. In particular, high
levels of intracellular GSH are due to the high activity of the plasma
membrane transporter xCT, a subunit of the cystine–glutamate
exchange transporter which is involved in the cysteine uptake,
essential for GSH synthesis (110, 115). It is well established that
cancer stem cells activate the p38 MAPK pathway to face oxidative
stress (116). In particular, ROS production induces ASK1 kinase
activation, which, through MAPK3/4/6 activation (117) leads to
phosphorylation and activation of p38. Phosphorylated p38 is
responsible for apoptosis activation and growth arrest, having so,
a negative role on tumorigenesis (118). In GCSCs, the interaction of
CD44v with xCT leads to an increased intracellular GSH which
results in ROS-p38 MAPK suppression and enhanced tumor
development (110, 115). Then, a specific therapy targeted to the
CD44v-xCT pathway may impair the ability of GCSCs to protect
themselves from oxidative stress, increasing the sensitivity to cancer
available treatments. Indeed, inhibition of xCT transporter by
sulfasalazine sensitizes gastric cancer stem cells to the drugs with
a positive effect on the clinical efficacy of chemotherapy (Figure 4
and Table 1) (87).
ROLE OF miRNAs IN THE METABOLIC
REPROGRAMMING OF GCSCs

MiRNAs are small single-stranded RNAs capable of binding to
the 3’UTR of mRNAs inducing inhibitory signals to the
ribosome which detaches from the mRNA blocking the
translation of the protein (119). It is already known that these
small non-coding RNAs are able to regulate the expression of
many genes involved in cellular homeostasis such as progression,
cell cycle, migration, apoptosis and cell differentiation (120). In
cancer cells, the expression of miRNAs is deregulated through
genetic and epigenetic modifications. Indeed, it has been found
that the overexpression of some miRNAs (oncomiR), due to
genomic amplification of their coding region, negatively
regulates the levels of tumor suppressor genes. Conversely,
deletions or loss of function mutations in miRNAs coding
regions, which regulate proto-oncogenes, leads to reduced
control over cell growth and differentiation, unlocking their
tumorigenic potential (121). The analysis of stem-like gastro-
spheres highlights deregulation of several miRNAs such as miR‐
21, miR‐10b, and miR‐146a which are responsible for
upregulation stem cell-related genes, clonogenicity ability and
chemotherapeutic resistance (122–124). Indeed, the comparison
between GCSCs and their non-stem cancer cell counterparts,
through RT-PCR analysis, has shown a differential expression in
miRNA, suggesting that the pathways governing these two cell
populations are different (125).

Little is known about the role of miRNAs in the metabolic
reprogramming of GCSCs. In CSCs, as already discussed, the
glycolytic pathway plays a pivotal role in energy production and
June 2021 | Volume 11 | Article 698394
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FIGURE 4 | Targeting of metabolic pathways in CSCs. Several compounds inhibit different metabolic intermediates in CSCs. Glut1 uptake can be inhibited by
WZB11 treatment resulting in a lower energy production. Also targeting the glutamine metabolism represents a potential strategy to apply in cancer treatment.
Indeed, inhibition of ASCT2 transporter with Benzylserine prevents the glutamine uptake while blocking the metabolic intermediates, such as GLS with BTES, hinders
glutaminolysis. Moreover, glutamate deriving from processed glutamine, together with intracellular cysteine, can participate in glutathione synthesis that is responsible
for low ROS maintenance. Another strategy to increase CSCs death is the reduction of cysteine uptake by inhibition of xCT transporter with Sulfasalazine. CSCs
survival can be also hampered by targeting the conversion of ketonebodies into Acetyl-CoA, a substrate necessary for TCA cycle. Moreover, also lipid entering in
TCA cycle can be inhibited using selective inhibitors of enzymes involved in lipid metabolism. Indeed, treatment of CSCs with Etomoxir, results in the CPT1 enzyme
inactivation resulting in the cytosolic accumulation of lipidic intermediates. TCA, tricarboxylic acid cycle; G6PD, Glucose-6-phosphate dehydrogenase; LDH, lactate
dehydrogenase; GLS, glutaminase; GDH1, glutamate dehydrogenase 1; ASCT2, Alanine/Serine/Cysteine-preferring Transporter 2; IDH1, isocitrate dehydrogenase;
xCT, cysteine/glutamate transporter; CPT1, carnitine palmitoyltransferase 1; MDH1, malate dehydrogenase; BPTES, bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)
ethyl sulfide.
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several miRNAs are described to be involved in this process. HK-
2, the first rate-limiting enzyme of glycolysis, can be modulated
by miR-181b which has a binding site in the 3′-untranslated
region of HK-2 transcript and found to be down-regulated in
gastric cancer tissues (126). Likewise, a comparison between
gastric cancer tissues and adjacent noncancerous gastric mucosa
tissues revealed the down-regulation of miR-422a expression
level which inversely correlates with tumor size and depth of
infiltration. He et al. pointed out how miR-422a is linked to
metabolism, since it represses PDK2 activity, restoring pyruvate
conversion in Acetyl-CoA through the PDH enzyme (127). A
different role is attributed to miR-200 which appears to have
conflicting effects in promoting stemness associated with
oxidative stress (128). Also in GC were found non-canonical
miRNAs that are independent from Drosha, an enzyme
responsible for miRNA processing. In particular, it has been
found that miR-6778-5p maintains the stem properties of GCSCs
by blocking the YWHAE/c-MYC axis responsible for the
reduced expression of SHMT1, a cytosolic isoenzyme involved
in the metabolism of one-carbon folate-dependent. Thus, an
increase in the expression of SHMT1 dependent on miR-6778-5p
promotes the maintenance of stemness and enrichment of
GCSCs (129). Furthermore, several studies show that lncRNAs
can be involved in the post-transcriptional regulation process by
interacting with miRNAs (130). As already mentioned, in GC,
lnc-MSCC1-AS1 promotes stemness and chemo-resistance
through the reprogramming of lipid metabolism. This role has
been attributed to antagonism with miR-145-5p which promotes
apoptosis of tumor cells through an increase in ROS levels and
drug-associated toxicity (82). Thus, given the growing
importance that has been attributed to miRNAs, it is necessary
to improve the current knowledge of these biomolecules and
their involvement in the metabolic reprogramming processes.
CONCLUSION

Over the course of this decade, substantial evidence suggested that
CSCs are accountable for the progression of various types of cancer,
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including GC. These cells have been shown to have a distinct
metabolic phenotype that depends on the microenvironment and
genetic background. Several reports suggest that the metabolic
rewiring is responsible for the conventional chemotherapy and
molecularly targeted therapy failure in GC patients, resulting in
poor clinical outcomes. As described, the OXPHOS and glycolysis
are the primary sources of energy even if several regulatory
pathways participate in this metabolic cycle for CSCs. Numerous
factors are involved in the regulation of metabolic shifting, and for
this reason, it is challenging to establish a targeted cancer therapy.
Therefore, revealing the molecular mechanisms accountable for
genetic mutation and epigenetic changes in GCSCs or the discovery
of new metabolic targets that regulate tumor development and drug
resistance might be a possible therapeutic opening for GC.
However, focusing on alternative approaches should be the best
way for patients’ benefits. These approaches include: to find out the
specific CSCs markers to establish an early diagnosis of GC; to
define the metabolic profile of tumor-inducing CSCs; to target the
metabolic pathways, which play a crucial role in triggering the
transitional states of normal to gastric cancer stem cells. We are just
at the beginning of understanding metabolic reprogramming from
normal stem cells to GCSCs. More studies should be done to
increase the knowledge about this mechanism in order to improve
the quality of life of GC patients.
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