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1  | INTRODUC TION

It is well known that the pregnancy and delivery rates following ART 
for women under 34 years old are over 40%. However, these rates 
start to decrease rapidly among patients from around 37 years old and 
the former becomes less than 15% per embryo transfer and the latter 
is almost zero in patients over 43 years old. On the other hand, the mis‐
carriage rate increases rapidly from 35 years old and rapidly exceeds 
50% at 43 years old (80% at 48 years old) (Figure 1). This clarifies the 
direct relationship between human fecundity and patients age.1

The frequency of fetal cytogenetic abnormalities in miscar‐
riages has been reported to be between 46.3% and 76.7%2,3 and 

increases according to female age, surpassing 90% in women over 
40 years old. Almost all of the cases are autosomal trisomy,4,5 this 
is because monosomy embryos disappear at the early developmen‐
tal stage. Such aneuploidy is mostly produced by the chromosomal 
pre‐division or nondisjunction, whereby homologous chromosomes 
fail to pair or separate appropriately at the meiotic metaphase, re‐
sulting in disomic and nullisomic gametes.6-9 All living organisms 
age and eventually die. When aging occurs in an ovary, both nu‐
clear and cytoplasmic functions of all the cells contained decrease 
resulting in ovarian dysfunction and lower fecundity. Nothing can 
stop this unavoidable process, aging. However, scientists con‐
tinue to pursue the dream to rejuvenate the aged oocytes. For 
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Abstract
Background: The pregnancy and delivery rates following assisted reproductive tech‐
nology (ART) start to decrease and that the miscarriage rate increases rapidly from 
35 years old. The miscarriage rate exceeds 50% at 43 years old. The number of ane‐
uploid fetuses in miscarriages increases according to female age, reaching more than 
90% when women are over 40 years old.
Methods: Different cytoplasmic donation technologies used to rescue aged oocytes 
with high percentage of aneuploidy were analyzed, and their efficacy compared.
Main findings (Results): Germinal vesicle transfer (GVT) might be superior to spindle 
chromosome transfer (ST) theoretically from the point of higher capability of rescu‐
ing the disjunction at meiosis I which cannot be helped by ST. However, actually, in 
vitro maturation (IVM) of oocyte after GVT has not yet been totally completed. ST 
among other nuclear donations showed the higher possibility to rescue them, due to 
the fact it does not require in vitro maturation and it has an ethical advantage over 
pronuclear transfer (PNT) which requires the destruction of an embryo.
Conclusion: Spindle chromosome transfer has the potential to rescue aged oocytes 
to some extent, but we have to continue the basic study further to establish the clini‐
cal application of cytoplasmic donation to rescue aged oocytes.
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age‐related decreasing fecundity, the novel treatment of ooplasmic 
transfer (OT) was introduced in 1997 by Cohen et al10 to rescue the 
aged oocyte for the first time in the world and was then followed 
by germinal vesicle transfer (GVT), pronuclear transfer (PNT), and 
spindle chromosome transfer (ST). There have been many reports 
which supported these procedures, but some scientists remain 
skeptical.11-24 In this manuscript, we would like to review whether 
the different cytoplasmic donation methods (OT, GVT, PNT, ST) are 
effective options to rejuvenate the aged oocytes or not.

2  | CHAR AC TERISTIC S OF OOCY TE AGING

We would like to analyze the mechanism of oocyte aging from the 
following three points of view, chromosomal abnormality (ane‐
uploidy), mitochondrial dysfunction, and epigenetic alteration.

2.1 | The origin of human aneuploidy

2.1.1 | Age‐associated increase in aneuploidy

Aneuploid oocyte results from meiotic chromosome mis‐segrega‐
tion, which might be caused by impaired regulating mechanisms 
for maintaining the sister chromatid cohesion or defective regula‐
tors of chromosome distribution. The regulators mentioned above 
might suffer from deterioration caused by numerous factors dur‐
ing the storage period of the immature GV oocytes until they are 
released into the reproductive cycles in humans. In mammalian GV 
oocytes, the most remarkable features of the termer regulators 
are that the bivalent chromosomes form crossover by chiasmata 

between homologous arms, and that their cohesion is also main‐
tained with physical linkage rings.24 In the latter process, the 
cohesin protein subunits play a crucial role25,26 localizing at the 
chromosome centromeres and arms and holding sister chromatids 
together. Therefore, it is easy to suppose that sister chromatids 
tend to separate prematurely when cohesion ring joints are dislo‐
cated with advanced age.

In fact, cohesin deficiencies result in loss of chromosomal cohe‐
sion and increased chromosome mis‐segregation during maternal 
aging.27,28 Furthermore, some studies showed that the aging‐asso‐
ciated chromosome mis‐segregation is followed by a decrease in 
Shugoshin 2,29,30 which plays a role to protect cohesin dissociation 
at the centromeric region until sister chromatid separation.31,32 
Cohesin loading for the chiasmata maintenance and meiotic di‐
visions starts in the initial meiotic stages of oocytes,33,34 and its 
deterioration without replenishment33,35 due to maternal aging 
is accountable for the increase in chromosomal abnormalities. 
Similarly, some researchers have reported that cohesion between 
centromeres of sister chromatids becomes fragile in human oo‐
cytes during maternal aging.36 Spindle assembly checkpoint pro‐
teins regulate meiotic segregation of homologous chromosomes in 
mouse oocyte37-43 and control mitosis upon fertilization.41,44 Gene 
expression in young and aged human oocytes indicates that there is 
a difference in gene products related to cell‐cycle regulation, spin‐
dle formation, and organelle integrity, thus contributing to frequent 
chromosomal segregation errors in meiosis. The observations sug‐
gest that mitotic centromere‐associated protein is necessary for 
spindle formation, chromosome assembly, and cell‐cycle progres‐
sion. Its mRNA and protein reductions in a context of permissive 
spindle assembly checkpoint are a risk factor of aneuploidy.

F I G U R E  1   Pregnancy and delivery rates decrease but miscarriage rate increases as female patients grow older
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2.1.2 | Non–age‐associated increase in aneuploidy

In older women, the production of aneuploidy is accelerated by chro‐
mosomal pre‐division that results from age‐related deterioration of 
cohesin localized on meiotic chromosomes, as described above.45 
However, about 60% of human aneuploidy appears to be trisomy 
which is caused by nondisjunction.46 Three main characteristics of 
human nondisjunction have been identified: The first one is that in 
all somatic and sex chromosomes, most trisomies originate during 
oogenesis. The second one indicates that maternal meiosis I errors 
contribute more commonly to trisomy than maternal meiosis II er‐
rors. This thought is based on the phenomenon that the oocyte first 
meiotic division commences in the early fetal ovary and it is arrested 
at the prophase for more than 10 years until the time of ovulation. 
The third characteristic is that there also appear to be mechanisms 
that differentially influence specific chromosome groups. For ex‐
ample, nondisjunction patterns are similar among the acrocentric 
chromosomes (chromosomes 13, 14, 15, 21, and 22) that contain 
long heterochromatin region on the short arm. Furthermore, some 
patterns of nondisjunction appear to be chromosome‐specific. All 
trisomy 16 cases are derived from maternal MI errors, while MII er‐
rors are significantly dominant in trisomy 18. However, there is a 
possibility that the cases may result in selective survival or abortion 
with disomic homogeneity. Besides the three characteristics men‐
tioned, altered recombination is also a known important causal fac‐
tor on the human trisomy. This is mostly due to failure of crossover 
between homologous chromosomes, and it results in random seg‐
regation at metaphase I and an increase of 50% in the incidence of 
nondisjunction.47 However, some homologues are in a more compli‐
cated situation whereby crossovers for nondisjunction are formed 
on unusual positions of chromosomes. Trisomy 21 is a compelling 
evidence of this, though it also typically increases with the age of 
the mother.48,49 Among younger women, telomeric exchanges domi‐
nantly contribute to these aneuploidy cases derived at maternal MI. 
However, these exchanges are not serious among older women. For 
MII trisomies, pericentromeric exchanges happen commonly in older 
women. In addition, other types of abnormal recombination account 
for about 50% of maternal MI errors in both young and old women. 
Therefore, it might be concluded that non–age‐associated factors 
become more important than advanced maternal age.

2.2 | The connection between human 
aneuploidy and mitochondrial dysfunction

One of the changes recognized in mature oocytes is the appear‐
ance of the meiotic spindle that is formed with microtubules. 
Microtubule organizing centers (MTOCs) are necessary for the 
assembly and disassembly of the spindle microtubules. The mi‐
crotubule motor proteins depend on the association with micro‐
tubules between the chromosomal kinetochore50 and MTOC or 
centrosomes at the MII or the first cleavage metaphase, respec‐
tively.51 These motor proteins actively move on the microtubules 
and participate in the arrangement and stability of the spindle 

structure. In aging human oocytes, lack of integrity in the micro‐
tubule network has been reported.52 The process of chromosomal 
disjunction, whether in meiosis I or meiosis II, is dependent on ATP 
energy to pull and separate the tetrad (in MI) and diad chromatids 
(in MII) to the opposite ends of the spindle.53,54 The mitochondrial 
DNA (mtDNA) mutations accumulated during aging could harm‐
fully influence the potency of ATP production in the oocyte. In 
addition, the mitochondrial respiratory is the main source of free 
radicals in the body. Therefore, defects in mtDNA integrity could 
be associated with damage by reactive oxygen species.

2.3 | Mitochondria dysfunction during 
oocytes aging

Hamatani et al11 compared the mRNA expression profiles be‐
tween MII oocytes from young (5‐ to 6‐week‐old) and aged (42‐ to 
45‐week‐old) C57BL/6 female mice using microarray analysis, and 
found that out of about 11 000 gene transcripts detected in mature 
oocytes, only 5% (530) were affected by maternal aging. The results 
showed that gene expression is not likely to be affected so much 
by oocyte aging. Therefore, organelle dysfunction seems to be an 
important factor for the problems associated with aged oocytes. It 
is well established that the development of oocytes requires syn‐
chronous coordination between nucleus and cytoplasm. In the oo‐
cyte cytoplasm, there are numerous organelles and molecules that 
are used for early development. Any dysfunction of organelles and 
biochemical reactions, for example, mitochondrial malfunctions, 
mtDNA mutation, insufficient protein synthesis or untimely protein 
resolution, and oocyte plasma membrane degradation will decrease 
the oocyte developmental potency, resulting in a detrimental effect 
on embryo quality.55,56

Relationship between mitochondria malfunctions and advanced 
maternal age has been reported in oocytes. Variations of ATP con‐
tent imply distinct oocyte quality.57,58 Moreover, mitochondria 
seem to be responsible for aberrations in spindle assembly, chro‐
mosome segregation, and cell‐cycle regulation, as shown in oocytes 
from aged women and mice.59,60 In addition, Keefe et al61 reported 
that 93% of oocytes from patients aged >37 years undergoing IVF 
treatment contained detectable mtDNA deletion, compared with 
only 28% of oocytes from younger women,61-63 suggesting that oo‐
cytes obtained from older women may contain a reduced number of 
mtDNA copies than those in oocytes from younger women. Hence, 
it is considered that a bioenergetic deficit caused by mitochondrial 
dysfunction is a major factor leading to reduced IVF outcomes, and 
in older women in particular.

2.4 | Epigenetic changes in aged oocytes

Oocyte quality is dependent on both genomic and epigenetic 
changes during oocyte storage in the ovary. Epigenetic changes are 
nonheritable phenotypic changes that result from alteration of gene 
expression, accompanied by genomic mutation. There are at least 
three systems including DNA methylation, histone modification and 
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noncoding RNA‐associated gene silencing that are known to initiate 
epigenetic changes.

DNA methylation is the main cause of genomic imprinting, and 
it is a necessary process for proper oocyte maturation and em‐
bryonic development in humans and other mammalian species. 
Reprogramming of DNA methylation starts at different growth 
stages in the male and female germlines, and the differences in 
their reprogramming pattern cause the distinct gene expression 
pattern between the maternal and paternal genome in embryos. In 
the mouse female germline, methylation reprogramming begins in 
growing oocytes after birth and finishes before entry into the first 
meiotic metaphase. DNA methylation is mainly catalyzed by DNA 
methyltransferase 3 s (DNMT3s),64 which are allowed to bind the 
amino‐terminal tail of histone H3 with histone modification before 
interaction with the associated DNA strand. In mammalian oocytes, 
the reprogramming of histone modification also occurs during 
oogenesis.

Genomewide analysis has shown that global genomic methyl‐
ation is altered with aging. Small noncoding RNA (miRNA), whose 
expression is also regulated by DNA methylation,65 negatively in‐
terferes in gene expression through binding to target gene mRNA. 
The function of miRNAs is post‐transcriptional regulation of gene 
expression through recruitment into miRNA protein complexes,66 
although suppressed altogether during oogenesis. Recently, altered 
expression of miRNAs in aged mice and human organs has been 
found.67-69 Therefore, age‐related difference in miRNA expression 
seems to affect epigenetic process. The facts indicate that severe 
spindle and chromosomal segregation defects resulted from miRNA 
dysfunction in mouse oocytes.70

An alteration of mRNA expression in human mature oocytes 
has also been widely confirmed with female aging.71,72 In addi‐
tion, mouse oocyte aging changes the mRNA and protein expres‐
sion. Dysfunctions of the aged ovary may be responsible for the 
changes.73,74 For maintenance of DNA methylation, DNMT1 is ex‐
pressed in mouse oocytes, but its defect disturbs the expression 
of imprinted genes during early embryonic development.75,76 The 
change of DNMTs expression in oocytes from individuals of ad‐
vanced maternal age11,71 might be the direct reason for causing the 
DNA methylation alterations. These findings appear to conclude 
that alteration of the epigenetic modifications in oocytes with ma‐
ternal age appears to cause an increase in the miscarriage rate.

In mammalian oocytes, histones are widely deacetylated during 
meiosis. Aoki et al found that an inhibition of meiotic histone 
deacetylation is followed by an increase of aneuploidy in mice em‐
bryo. Histones that remained acetylated in the oocytes from older 
(10‐month‐old) female mice were responsible for embryonic death, 
suggesting that histone deacetylation is needed for normal embry‐
onic development. Histone deacetylation may be involved in the dis‐
tribution of meiotic chromosomes. This means that an increase of 
aneuploidy in the human embryos may be dependent on inadequate 
histone deacetylation during meiosis.77

Furthermore, a new study has reported that an abnormal phe‐
notype of CD9‐deficient mouse oocytes is rescued by injection of 
mouse CD9, human CD9, or mouse CD81 miRNA. The phenotype 
observed in CD9‐deficient mice was a defect in the sperm‐egg fu‐
sion process. This result suggests that the heterogeneous mRNA 
transferred to the nucleus produces functional protein. It also 
means that transferred cytoplasm with healthy and abundant mRNA 

TA B L E  1   History of cytoplast donation
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2015 UK approves laws to allow the clinical application of nuclear transfer in 2015

2017 J. Zhang reported the first successful birth of human being following the nuclear transfer at M‐II stage in the ASRM 2017
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compensate normal embryonic development in the oocyte recon‐
structed with different nucleus and cytoplasm.78

3  | HISTORY OF CY TOPL A ST DONATION

3.1 | Cytoplasmic Transfer (CT)

Cohen et al10 reported the first case of cytoplast donation into 
human oocyte to rescue women having repeated implantation fail‐
ure (Table 1). A 39‐year‐old woman, with a history of 6.5 years of 
infertility and failed IVF treatments, was able to conceive by cyto‐
plast donation from a 27‐year‐old egg donor. They placed the aspi‐
rated donor ooplasm and husband sperm in the patient’s egg close 
to its metaphase chromosome. Then, a baby girl was born at term 
weighing 4356 g. By 2004, more than 30 children had been born 
following the cytoplast injection of young, donor oocytes into re‐
cipient oocytes with an ICSI technique .10,79-81 About 5%‐15% of 
cytoplast from a young donor oocyte is transferred into a recipient 
one directly to improve pregnancy rate in advanced‐age women. 
The precise components of cytoplasm are most likely to involve the 
healthier mitochondria, mRNAs, and proteins.81,82 In addition, in‐
jecting healthy mitochondria into recipient oocytes increases cyto‐
plasmic ATP content and avoids apoptosis in aged oocytes.83,84 This 
newly developed treatment was highly expected to rescue the ma‐
ternal infertility because of aging. However, CT was prohibited in the 
United States by the FDA due to mitochondrial heteroplasmy with 
two types of mtDNA. Cohen et al reported that 2 of 15 babies born 
following CT showed the heteroplasmy of two kinds of mtDNA85 
resulted in three different DNA: nuclear DNA, recipient mtDNA and 
donor mtDNA. Heteroplasmy is likely to cause mitochondrial mat‐
uration and transmit to the next generation.86,87 Furthermore, we 
should be warned about the heterogeneous mtDNA potential to in‐
duce epigenetic changes upon maternal and paternal genomes.81,88

3.2 | Germinal vesicle transfer (GVT)

Theoretically, the transfer of a germinal vesicle (GV) of an aged 
woman to another enucleated oocyte of a young woman makes it 
possible to rescue aneuploidy caused by aging. This technique was 
first reported by Zhang et al in 1999, and human GV oocytes from 
ICSI cycles were collected after consent from ICSI patients who par‐
ticipated in a study.89 Newly constructed age‐related oocytes were 
in vitro matured, but a successful maturation has not been achieved 
to this date. On the other hand, this method showed more successful 
results in mice.90,91

The strong point of GVT is that it can be carried out before the 
start of M‐I. A large number of aneuploidies derive from nondis‐
junction, and chromosome misalignment – during M‐I.8,46,51,92-94 
The chromosomal misalignment at M‐I could induce nondisjunc‐
tion, due to a decreased number of chiasmata or incomplete sep‐
aration of univalents in aged oocytes.95,96 An obvious relationship 
between oocyte aging and malsegregation due to the nondis‐
junction of bivalents during M‐I was reported.93 So, GVT may be 

a promising treatment to correct abnormal nondisjunction at M‐I 
or M‐II.

One of the benefits of GVT is related to the interaction with 
mitochondria. It is reported that mitochondrial damage has a detri‐
mental effect on oocyte maturation, chromosomal segregation, and 
spindle formation.97 This damage was overcome by GVT and chro‐
mosomal analysis showed that almost all of these reconstructed oo‐
cytes had a normal number of chromosomes, and they regained the 
former reproductive capability.

Palermo et al showed that a healthy mouse ooplasm could rescue 
the damaged mitochondrial function of GV stage caused by photo‐
irradiation and that 62% of these reconstructed oocytes matured to 
metaphase II.98

On the other hand, there is a report that indicates that ooplasm 
from young mice could not rescue aging‐related chromosomal ab‐
normalities.15 This might have been caused by noncytoplasmic fac‐
tors in GV stage that affect chromosome segregation. This objection 
is based on the results with a mouse experiment exchanging GVs and 
ooplasms of varying ages.15 The chromosomal abnormality rate in 
newly reconstructed oocytes was found to be much higher (57.1%) 
when the GV of an aged mouse was transferred to the enucleated 
oocyte of a younger one. On the other hand, it was 16.7% when the 
GV of a younger mouse was transferred to enucleated aged oocytes. 
Whether GVT could rescue chromosomal abnormalities in aged oo‐
cytes needs further examination.

3.3 | Pronuclear transfer

Pronuclear transfer (PNT) is essentially the same procedure as GVT, 
except for the removal of pronucleus after fertilization and it has had 
some successful normal births.17,99-101 Craven et al 102 performed 
human PNT and reported that the volume of carryover of donor 
mtDNA was minimal and the reconstructed embryo developed to 
blastocysts.

There are two advantages in PNT. First, the PN is easily visual‐
ized, so the extraction of PN is easier than ST.102 It is difficult to ex‐
tract the metaphase chromosome intactly as the M‐II chromosomes 
are not clearly visible to the naked eyes.51 Second, PN has superior 
embryonic development potentiality. If oocyte dysfunction is de‐
rived from cytoplasmic factor, PNT will have higher potentiality to 
develop normally than the other alternative cytoplasmic donations: 
CT, GVT, and ST. On the other hand, PNT has some shortcomings. 
First, the exchange and fusion of two PN is accompanied by techni‐
cal difficulties due to large volume. Second, the volume of mtDNA 
carried over into the recipient oocyte is the largest among all alter‐
natives, resulting in the densest mitochondrial heteroplasmy. Lastly, 
this procedure requires the destruction of an embryo, which makes 
it difficult to apply clinically because of ethical concerns.

In 2003, Zhang et al103 reported the first clinical application of 
PNT. A 30‐year‐old nulligravida female had two failed IVF cycles, and 
7 out of 20 2PN zygotes were successfully reconstructed by PNT 
with recipient 2PN oocytes. Out of the seven reconstructed, five 
zygotes were transferred to the patient’s uterus. A triplet pregnancy 
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was then achieved and resulted in immature births after fetal reduc‐
tion. Nuclear genetic fingerprinting showed that the nuclear DNA 
was identical to that of the patient’s. mtDNA profiles in fetuses were 
similar to those from donor cytoplasm with no detection of patient’s 
mtDNA.

3.4 | Spindle chromosome transfer (ST)

Cytoplasmic transfer (CT) and germinal vesicle transfer (GVT) both 
drew attention at one time. However, in the former, it is difficult to 
verify whether a small volume of injected cytoplasm has improved 
the quality of cytoplasmic organelles (mtDNA, mRNA, cytoskeleton, 
etc). Concerning the latter, theoretically the newly reconstructed 
oocyte by GVT has higher potentiality to normalize the quality of 
cytoplasm than ST, but it has not yet been successful in vitro culture 
to M‐II oocyte .104

In 2006, Zhao‐Dai‐Bai et al105 reported the higher embryonic 
developmental potential of aged oocyte rescued by nuclear transfer 
in mice. In their investigation, blast formation percentage of recon‐
structed oocytes with young nucleus and aged cytoplasm was low 
(15.0%). However, blastocyst development was surprisingly higher 
(86.2%) with aged nucleus and young cytoplasm and three viable 
pups have been obtained after embryo transfer. These observations 
validated that cytoplasm plays a more determinant role than the nu‐
cleus in improving the quality of aged oocyte and might partly rescue 
nucleus apoptosis from aging.

In 2009, Yoshizawa et al106 reported the higher embryonic de‐
velopment and production of pups by transferring karyoplasts at 
the stage of M‐II of senescent mouse oocytes into cytoplasm of 
healthy mouse oocytes. They investigated the effects of reciprocal 
transplantation of M‐II karyoplasts between senescent and healthy 
mouse oocytes and evaluated the effectiveness of ST by the rate of 

blastocyst development. The reconstructed oocytes that consisted 
of aged karyoplasts and healthy cytoplasts showed significantly im‐
proved embryonic development and development to term as com‐
pared with the oocytes reconstructed with young karyoplasts and 
aged cytoplasm. That study showed successful rejuvenation for age‐
related infertility using exchange of M‐II karyoplasts in mouse mod‐
els. They reported that no genetic or epigenetic abnormalities were 
found in their study and suspected an exchange of M‐II karyoplast 
accompanied by very small volume of mtDNA heteroplasmy.107 They 
concluded that their study showed successful rejuvenation of age‐
related infertility in mouse model using M‐II karyoplasts exchange.

In 2009, Tanaka et al108 reported the usefulness of Metaphase 
II karyoplast transfer in humans to rescue aged oocytes. It is well 
known that in vitro culture of immature oocytes from IVF patients 
developed to M‐II oocyte after a one‐night in vitro culture. They 
found the similarity of chromosomal karyotype of in vitro M‐II 
oocytes and aged oocytes.109 Both of them show high incidence 
of premature splitting of chromosomes (PSC). They performed ST 
between donor fresh M‐II oocyte collected from ICSI patients who 
consented to participate in that study and recipient patient’s in vitro 
matured M‐II oocyte. Karyoplast fusion was performed by electrical 
stimulation, and they reported that fertilization, cleavage, and blas‐
tocyst formation rates following ICSI were 76.0%, 64.0%, and 28.0% 
respectively for reconstructed oocytes and significantly lower rates 
respectively for control oocytes (Figure 2). Five embryos developed 
after ST and ICSI showed normal diploid sets of 46 chromosomes 
without PSC (Figure 3).

The first successful report of ST in humans was delayed for 
3 years by Tanaka et al due to the difficulty to confirm the existence 
of metaphase II chromosome, though it was easily recognized as 
a chromosomal bump in mice. A polarized light (POL) microscope 
showed an obvious view of meiotic spindles,110 but identification of 

F I G U R E  2   A, Zona cutting with 
laser, spindle chromosome is visible in 
green circle. B, Aspiration of spindle 
chromosome. C, Insertion of spindle 
chromosome of aged oocyte, after 
immersion into inactivated Sendai virus, 
into enucleated donor cytoplasm. D, 
Inserted karyoplast of aged oocyte in 
yellow circle

(A)

(C)

(B)

(D)
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the M‐II spindle in living human oocytes was possible only in at most 
80%. In addition, the micro‐manipulation of oocytes with POL was 
not easy because the procedure was carried out watching a video 
screen and not under a microscope. Therefore, a new method to re‐
move M‐II karyoplast under an inverted microscope with Normarski 
differential interference contrast system without any special de‐
vices on staining was developed111 (Figure 4). On the other hand, 
Tachibana et al continued to develop the original POL system and 
several years later after the first report of POL by Oldenbourg; they 
established the complete system to find and remove spindle‐chro‐
mosomal complex. This system’s disadvantages are that a Laser 
apparatus is necessary to cut the envelope and that the identifica‐
tion of spindle is susceptible to room temperature and not always 

perfect. However, this method is believed to be the best procedure 
for ST.

In 2008, a Newcastle University team in the UK reported the 
possibility of PNT for treatment of mitochondria disease, in an article 
titled “Pronuclear transfer in human embryos to prevent transmis‐
sion of mtDNA disease.” However, blastocyst formation after PNT 
was less than 1%.102

In 2009, Tachibana et al86 reported the first successful ST using a 
POL microscope in nonhuman prime oocyte (Macaca mulatta). They 
demonstrated that the mtDNA could be effectively exchanged in 
Macaca mulatta oocytes by ST from one egg to an enucleated egg. 
The reconstructed oocytes showed normal embryonic development 
with fertilization: 95%, 8‐cell: 93%, Morula: 78%, Blastocyst: 61%, 

F I G U R E  3   Chromosomal analysis of in vitro matured M‐II oocyte and blastomere after karyoplast transfer. A karyotype of in vitro 
matured M‐II oocyte showed high frequency of premature splitting of chromosomes (PSC) before spindle chromosome transfer (ST) but 
showed normal frequency after a karyoplast transfer into enucleated fresh oocyte

F I G U R E  4   Spindle chromosome of 
aged oocyte was transferred into the 
enucleated fresh oocyte
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and healthy offspring was born. No spindle donor mtDNA was de‐
tected in offspring or in newly generated embryonic stem cell lines. 
This method proposed a new way to prevent mutant mtDNA trans‐
mission and to save aged oocytes.

In 2013, Tachibana et al112 reported the results of reciprocal ex‐
change of human ST. Fertilization rate was 73%, almost the same as 
the controls, but about a half of fertilization was 3PN. Among 2PN 
embryos, blastocyst rate was 62% and embryonic stem cell isolation 
(38%) rates were comparable to controls. All embryonic stem cell 
had exclusively donor mtDNA. The high percentage of abnormal fer‐
tilization might be derived from the lack of synchronization between 
nucleus and cytoplasm. Human M‐II oocytes seem to be more sensi‐
tive to spindle manipulations.

In 2013, Paull et al113 reported that nuclear genome transfer 
did not reduce developmental efficiency to the blastocyst stage. 
Transferred mtDNA at ST was initially detected at levels below 1%, 
decreasing in blastocysts and stem cell lines to undetectable levels, 
and remained undetectable after more than one year. In this study, 
they also reported no significant differences of respiratory chain en‐
zyme activities and basal oxygen consumption were found among 
stem cell line‐derived fibroblasts and oocyte donor skin fibroblasts.

In 2015, the UK parliament approved the clinical application of 
ST but only for the treatment of mitochondrial disease. However, 
the actual road map for clinical application for the treatment of mi‐
tochondrial disease has not proceeded due to insufficient consensus 
(personal correspondence).

In 2016, Zhang et al114 reported the first successful birth of 
human baby following the nuclear transfer at M‐II stage. The patient 
was a 36‐year‐old with a history of four pregnancy losses and two 
deceased children at age 8 months and 6 years from Leigh syndrome 
as confirmed by >95% mutation load. Four out of five collected oo‐
cytes were fertilized with ICSI after ST developed to blastocyst, and 
then, only one euploid blastocyst was transferred resulting in the 
birth of a healthy baby. The level of transmitted mtDNA in several 
neonatal tissues was <1.60% ± 0.92%.

4  | DISCUSSION POINTS

4.1 | Effect of coexistence of multiple wild‐type 
mitochondrial genomes

It is still unknown whether oocyte heteroplasmy with two differ‐
ent wild‐type mtDNA has a detrimental effect to the offspring or 
not. Sequence differences between native and “foreign” mtDNA 
can produce proteins with altered amino acid sequences. This 
has been proved in both cattle20 and pigs,21 and there might be 
unexpected interaction between the different mtDNA originated 
from different cytoplasm. This would reduce capacity of energy 
production, show symptoms similar to mitochondrial disease, and 
then influence embryonic fetal development. However, the issue 
argued is not the case of cloning using somatic cell but the mixture 
of two wild types of M‐II mitochondria. Tachibana et al demon‐
strated that the mtDNA can be efficiently exchanged in mature 

Macaca mulatta and human oocytes that were reconstructed by 
ST. Genetic results showed that the cells of the three offspring 
born contained spindle donor nuclear DNA and the cytoplast 
donor mtDNA. Donor mtDNA was undetectable in offspring. 
These results might lead to the speculation that the mixture of 
two different wild types of mtDNA does not affect the embryonic 
potentiality. This study indicated that the mitochondrial exchange 
by nuclear transfer was capable of producing normal embryonic 
development resulted in healthy offspring.

4.2 | Interaction between nuclear genomes and 
mitochondrial ones

The importance of intergenomic communication for efficient cellular 
function seems to be explained by the interaction that occurs be‐
tween proteins encoded by nuclear genomes and those encoded by 
the mtDNA genome.115 The electron transfer chain (ETC) requires 
nuclear‐encoded proteins to be transported to the mitochondria.116 
Failure of mitochondrial transcription factor A (TFAM) and mito‐
chondrial transcription factor B (TFBM) to co‐ordinate transcription 
would also have serious effects for the activity of ETC.117

However, other experimental results suggest that there is con‐
siderable flexibility in nuclear/mitochondrial interaction. A recent 
study showed that mitochondrial function in cell hybrids between 
mtDNA‐less Mus musculus domesticus cells and Mus spretus cells 
was normal.118 A similar study indicated more flexibility in primates, 
chimpanzee, and gorilla mitochondria could functionally replace 
human mitochondria.119 In conclusion, the embryological and cell 
hybrid experiments would argue that there is potentially consider‐
able flexibility in mitochondrial/nuclear interaction. Tachibana et al 
completed a 5‐year follow‐up study on monkey spindle transfer off‐
spring born in 200986 and reported that no significant differences 
in body weight could be found between ST juvenile monkeys and 
age‐matched controls. They also confirmed that ATP levels in skin 
fibroblasts were similar to those of controls. During those 5 years, 
there were no significant changes in mtDNA carryover and hetero‐
plasmy in blood and skin samples with age. We may speculate that 
nuclear‐mtDNA interactions keep harmony and co‐ordinate well, 
judging from that follow‐up study.

5  | CONCLUDING SUMMARY AND FUTURE 
PROSPEC TS

With the world’s trends of late marriage, more females joining the 
workforce to get better jobs, longevity, and low birth rates, how to 
rescue the aged oocytes has become a worldwide urgent issue to 
help the childless advanced‐age couples who prefer not to opt for 
oocyte donation.

Oocyte quality, controlled by nucleus and cytoplasm, decreases 
mostly due to aging. A great number of trials in ART for rescuing 
aged oocytes continue development of ovarian stimulation for de‐
creased ovarian reserve, preimplantation genetic aneuploidy test 
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(PGA‐T), and cryopreservation before aging. However, the results 
are still far from being satisfactory.

The advent of new technology of cytoplasmic transfer (CT), ger‐
minal vesicle transfer (GVT), pronuclear transfer (PNT), and spindle 
chromosome transfer (ST) might have the potential to partly resolve 
those difficult tasks. The biggest advantage is a supply of abundant 
and healthy mitochondria, mRNA, microRNA, and epigenetic factors 
(DNA methyl transferase, histone deacetylase). With these supple‐
mentations, some aneuploidy caused by nondisjunction at meiosis 
II, premature splitting chromosome, mitochondrial malfunction, de‐
creased mRNA, and microRNA could be corrected to euploid.

Not all causes of miscarriages are chromosomally abnormalities; 
40%‐50% of all aged embryos are euploid but have cytoplasmic 
dysfunction.32 So, all aged oocytes could be rescued by ST to some 
extent.

Judging from the fact that all oocytes have completed oogen‐
esis by the prophase of metaphase I, GVT might be superior to ST 
theoretically from the point of higher capability of rescuing the  
nondisjunction at meiosis I which cannot be helped by ST. GVT 
seems to be more effective to correct cohesin and mitochondrial 
dysfunction and epigenetic disorders than other methods. However, 
actually, IVM of oocyte after GVT has not yet been totally com‐
pleted. Compared to GV transfer and zygote pronuclear transfer, 
ST has several advantages. First, MII oocytes do not require in vitro 
maturation, compared to GV oocytes, which have not reached ma‐
ture MII oocyte in vitro.91 Second, compared to PNT, MII oocytes 
do not require destruction of human pronucleus embryos, which is 
controversial from an ethical point of view .101 Lastly, the volume of 
mtDNA carried over into ST oocyte is much less than that of GVT 
or PNT.120

On the other hand, opinions critical of cytoplasmic donation re‐
main. They insist that nuclear DNA in old oocytes is already affected 
through the long wait until ovulation. So, CT cannot return the nu‐
clear DNA to a young status even after the donation of healthy cyto‐
plasm that contains factors which help epigenetic activity.

The full implications of mixing nuclear DNA and mtDNA from 
two different sources remain unknown. We, clinicians, should have 
a thorough discussion about merits and risks involved in ST with pa‐
tients. Furthermore, we have to, as much as possible, collect recent 
information concerning ST before entering clinical applications while 
at the same time continue the basic study further to establish the 
clinical application of cytoplasmic donation to rescue aged oocyte.
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