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Abstract

Previous models of disease spread involving delay have used basic SIR (susceptible – infectious – recovery) formulae and
approaches. This paper demonstrates how time-varying SEIRS (S – exposed – I – R – S) models can be extended with delay
to produce wave propagations that simulate periodic wave fronts of disease spread in the context of population
movements. The model also takes into account the natural mortality associated with the disease spread. Understanding the
delay of an infectious disease is critical when attempting to predict where and how fast the disease will propagate. We use
cellular automata to model the delay and its effect on the spread of infectious diseases where population movement occurs.
We illustrate an approach using wavelet transform analysis to understand the impact of the delay on the spread of
infectious diseases. The results indicate that including delay provides novel ways to understand the effects of migration and
population movement on disease spread.
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Introduction

There is very little understanding of how disease spread is

affected by population migration. When modeling the propagation

of disease, it is important to model not only individual infections

but also the spread of infection from populations of infected

individuals to other populations [1]. In particular, if the disease is

fatal, what matters is the likelihood of the disease spreading to new

individuals before the currently infected individuals die. Mathe-

matical models have been developed for use in the dynamic

modeling of disease spread [2,3], such as the SIR model, which

represents the state changes among the members of the susceptible

(S), infected (I) and recovered (R) populations. The goal of such

models is to understand the disease spread patterns and to predict

the outcomes of introducing public health intervention measures

to minimize the spread of disease. Such models must take into

account the difference in time between becoming exposed (E) to

infection and becoming infected (hence, SEIR) as well as between

becoming infected and dying (‘delays’). A wide variety of such

approaches of modeling disease with delay have been formulated.

Some of these delay concepts are strongly parametric (specific

distributions), while others are nonparametric (general distribu-

tions). However, there is very little understanding of how the SEIR

models are affected by delay [4].

A delay in many population models considers that the

transmission dynamic behavior of the disease at time t can

destabilize the equilibrium [5]. There are two types of delay: a

discrete or fixed delay and continuous or distributed delay [6]. In

models with a discrete or fixed delay, the dynamic behavior of the

disease depends on the state at time t{t, where t is a fixed

constant [7]. For example, the number of newborns at time t

depends on the state of population at time t{t, where t the period

of pregnancy. In the case of a continuous or distributed delay, the

dynamic behavior of the model at time t depends on the states

during the entire period prior to time t. Both types of delays

produce outputs at the end of each time step that can be

interpreted as a signal, or function, of the model. This signal or

function can be analyzed further to extract the features, such as

frequency and amplitude, which can be mapped onto interpret-

able properties of the model. Starting a model with two different

sets of parameter values can lead to two different signals over time,

which, upon further analysis, can be mapped back to the effects

that the parameter values have on the model. Such signals can

include oscillations and waves if periodicity (a function that repeats

its values at regular intervals) emerges from the model. The

periodicity can itself be analyzed using wavelet or Fourier

transforms.

The advantage of the wavelet transform of a signal over the

Fourier transform is the ability of wavelet transforms to capture

local information (i.e., feature changes in space or time), whereas

Fourier transforms capture global features (e.g., harmonic

components of the entire signal). That is, wavelet transforms are

localized in both time and space, and can be useful for identifying

parts of the signal that are local in terms of the geographical

location. Wavelet transforms have many uses in the areas of wave

propagation, data compression, signal processing, image process-

ing and pattern recognition [8,9]. In this paper, we demonstrate

how cellular automata supplemented with wavelet transforms can

be used to implement a SEIRS model that attempts to simulate the
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spread of disease locally in both time and space, where space refers

to the delay from exposed individuals to infectious individuals.

Description of the Model
In this section, we introduce cellular automata (CA) for

modeling geographical distributions. CA has a significant role in

epidemic modeling because each individual or cell, or a small

region of space, updates itself independently, allowing for the

concurrent development of several epidemic spatial clusters. The

new state of a cell is based on its current state and the current

states of its surrounding cells as well as on some shared rules of

change.

The SEIRS model used here is specified as follows. Let Sij be

the number of susceptible individuals i in the population at some

patch j at time t. Let Eij represent the number of susceptible

individuals who become exposed (infected but not infectious) [10]

at that patch. An individual remains in the exposed class or the

exposed state for a certain latent period before becoming infected

[11]. Let Iij denote the number infected at that patch and Rij

denote the number recovered at that patch. If bij§0 is the

effective contact rate per individual per unit of time at a patch, we

can use the Law of Mass Action assumption that the rate of change

from being susceptible to being exposed and finally to natural

death is proportional to the population number in each state, with

a rate constant m. The assumption is that t is the delay time (days),

which is a constant. Adopting the approach of Yan and Liu [12],

the probability that an individual survives the latent period to

become infected at t{t,t½ � is e{m t. Additionally, the number of

susceptible individuals who becomes exposed at time t{t is

bijSij(t{t)Iij(t{t)
�

Nij(t{t). The difference between

bijSij(t)Iij(t) and bijSij(t{t)Iij(t{t) is that former is the exposed

state and the latter is the infected state, which leads to a

deterministic model of bij

Sij(t{t)Iij(t{t)

Nij(t{t)
e{mt.

The task for the wavelet transform is to identify, from the

composite signal formed from the outputs of the model at each

time step (to be described in more detail below), any local temporal

and spatial periodicities that emerge.

Rules for Disease Spread
The rules described below [13] determine the state transitions of

individual cells in the CA for the SEIRS model at each time step

and will incorporate other probabilistic parameters.

N A cell changes its state from susceptible to exposed (S?E) when it

comes in contact with an infected cell within its defined

neighborhood.

N A cell changes its state from exposed to infectious (E?I) after

being in the state E for a given e, which is the transition time.

N The state of the cell changes from infectious to recovery (I?R)
after being in the state I for a given time a. In our model, we

assume that for every cell, the amount of time a elapsed from

the infectious cell state to the recovery cell state. In state I , the cells

are capable of passing on the infection to neighboring cells.

N The cell remains in state (R?S), signifying complete recovery

for some time d, which is the transition time between the

recovery state and the susceptible state, as shown in Fig. 1.

These CA rules can be described by a concrete expression using

the classic SEIRS models based on differential equations. The set

of ordinary differential equations corresponding to the CA model

is described in the following.

dSij

dt
~b{bij

Sij(t)Iij(t)

Nij(t)
zdRij(t){mSij ð1Þ

dEij

dt
~bij

Sij(t)Iij(t)

Nij(t)
{bijk

Sij(t{t)Iij(t{t)

Nij(t{t)
{(mze)Eij(t) ð2Þ

dIij

dt
~bijk

Sij(t{t)Iij(t{t)

Nij(t{t)
{(mza)Iij(t)zeEij(t) ð3Þ

dRij

dt
~aIij(t){(mzd)Rij(t) ð4Þ

where k~e{mt

Nij(t)~Sij(t)zEij(t)zIij(t)zRij(t)

It is assumed that the population sizes of each patch are

identical and remain constant. This corresponds to assuming that

the population birth and death rates, denoted by b and m
respectively. Individuals are born susceptible and can acquire

infection from infective individuals, at which point they enter the

exposed state. After a latent period, lasting an average of 1=e time

units, individuals are infectious for an average of 1=a time units.

Since the population is subject to a disease-independent mortality

rate, m, the mortality-corrected average duration of infectiousness

is 1=(mza), and the exposed individuals who will become

infectives is e=(mze). This formulation of the model assumes that

there is migration rate, m into exposed class to ascertain the period

at which all exposed class migrate to infected class.

As mentioned above, the infection is modeled as the contact

between an infected individual and susceptible individuals in the

neighborhood, either as a deterministic or as a probabilistic

process, depending on how the conditions on the arcs of the model

in Figure 1 are realized. For our experiments below, we use

probabilistic conditions.

Simulation Scenario
In this paper, r is the radius used for the neighborhood around

the cardinality point within which the nearest cell is infected. The

1st order Moore neighborhood was defined as the 8 nearest

neighbors, i.e., r~1. The degree of infectiousness was used to

Figure 1. Movement with all exposed class in SEIRS Model.
Depicts the flow chart of the SEIRS model.
doi:10.1371/journal.pone.0098288.g001
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assess the probabilistic distribution that the current cell is infected

in the next time step. The disease will propagate through the

landscape based on a set of probabilities of state transitions [14].

Before an infected cell disperses (migrates), it updates indepen-

dently, based on the variable location of the neighboring cells, with

probability p.

p~
2 � (infected parameter )

(2rz1)2{1
, ð5Þ

where (2rz1)2{1 is the cardinality of the neighboring cell.

Each infected individual can enter the cell from the cardinality

of the neighboring cell with the same probability p, whereas there

are a number of new infected that arrive in the cell from the

neighboring cells. Finally, the state of the cell after a complete

transition at time t is updated by the iteration number (time), that

is, t is increased by 1 to become time (tz1).

Stability Analysis
An important equilibrium point for any disease model is the

disease-free equilibrium (DFE). The stability of the DFE is

especially important because it determines whether a disease is

capable of attacking an entire population beyond the prior

expectation (epidemic or pandemic) [15]. The reproduction

number R0 is a threshold value or number that determines the

stability of the DFE [16]. The reproduction number is the

expected number of secondary cases produced by a typical

infection in a completely susceptible population [17]. If R0w1, an

epidemic occurs; if R0v1, an epidemic does not occur; and if

R0~1, a change of stability occurs. R0 can be calculated as

R0~r(FV{1), the spectral radius (r) of the next generation

matrix FV{1. The (i, j) is the number of entries of matrix FV{1,

which represents the number of new infections in compartment i

due to an infected individual being introduced into compartment j

[17,18].

Let Fi(x) be the rate at which newly infected individuals

(transmitted rate) enter compartment i, and let Vi~V{
i {Vz

i

denote the transfer of individuals out of (V{
i ) and into (Vz

i ) the

ith compartment. With this interpretation, we write a matrix F

that defines the rate of new infections in different compartments,

differentiated with respect to E and I , and then evaluated at the

disease-free equilibrium. An equilibrium solution with

Table 1. Simulation Protocol.

Events Model Prediction CA model

Environment Spatial (landscape) Spatial (landscape)

Susceptible 9980 people 9980 people

Exposed Nil From model prediction

Infected 20 people 20 people

Recovery Nil From model prediction

Natural death rate 0.0005 yr21 0.0005 yr21

Incubation period, t 7 days 7 days

No. of simulation 365 iterations 365 iterations

Infected Factor, b 0.025 0.25

doi:10.1371/journal.pone.0098288.t001

Figure 2. A dynamic spread process. Depict the geographical
distribution of the propagation of disease spread clusters for 40.
doi:10.1371/journal.pone.0098288.g002

Figure 3. A dynamic spread process. Depict the geographical
distribution of the propagation of disease spread clusters for 65
simulations.
doi:10.1371/journal.pone.0098288.g003
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E~I~R~0 and S~S0, where S0 is any positive solution of

b~mS0. Therefore, this will be locally stable and hence a disease

free equilibrium, S0~b=m. We assume that, this to be the case,

evaluating the derivatives of F and V at S~S0, E~I~R~0, we

get the following expressions for F , V and the spectral radius

respectively.

F~
0 bij{bijk

0 bijk

 !
ð6Þ

Now, we also write V that defines the rate of transfer of infected

from one compartment to another (Vi~V{
i {Vz

i ).

V~
mze 0

{e mza

� �
ð7Þ

FV{1~

(bij{bij k)e

(mze)(mza)

bij{bijk

mza

ebijk

(mze)(mza)

bijk

(mza)

0
@

1
A ð8Þ

The reproduction number R0 is given by the dominant eigenvalue

(or spectral radius) of FV{1.

Figure 4. A dynamic spread process without exposed state.
Depicts how the propagation of the disease spread clusters proceeds in
geographical distribution using 365 simulations. The model indicates
that there is increasing volatility in the susceptible population after 240
days due to outgoing moves from the susceptible to the exposed
population (Figure 5A).
doi:10.1371/journal.pone.0098288.g004

Figure 5. Snapshot of the susceptible population. The model indicates that there is increasing volatility in the susceptible population after 240
days due to outgoing moves from the susceptible to the exposed population (Figure 5A). The spread of the disease in the discrete transform
exhibited peaks at 230 days and 360 days (Figure 5B), as indicated by the arrows. Slower and faster frequencies were found at the initial stages as well
as the final stages at 10 days and 360 days, as indicated by the arrows. The blue regions denote the probability densities. For example, at 330 days,
there was an indication of a slower frequency that resulted in a faster spread of the disease (Figure 5C) due to the large coefficients in the continuous
wavelet transform.
doi:10.1371/journal.pone.0098288.g005
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Figure 6. Snapshot of the exposed population. The model indicates that there is an increased volatility in the exposed population after 200
days, due to the outgoing moves from the exposed population to the infectious population (Figure 6A), and an increased volatility in the infectious
population after 240 days, due to the outgoing moves from the infectious population to the recovery population (Figure 7A). The spread of the
disease in the discrete transform reached a peak at 70 days due to the large coefficients (Figure 6B). In the continuous wavelet transform at 72 days,
there were no exposed individuals (Figure 6C) because they moved to the infectious stage.
doi:10.1371/journal.pone.0098288.g006

Figure 7. Snapshot of the exposed population. The spread of the disease in the discrete transform peaked at 240 days (Figure 7B), and at 240
days and 280 days (Figure 7C) due to large coefficients. The range of frequencies used in averaging is indicated by the arrow at 240 days, which
corresponds to the peak of the disease spread (Figure 7C).
doi:10.1371/journal.pone.0098288.g007
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Figure 8. Snapshot of the infected population. The model indicates that there is increasing volatility in the recovery population after 240 days
due to the outgoing moves from the recovery population to the natural death population (Figure 8A). The spread of the disease in the discrete
transform peaked at 240 days (Figure 8B) and at 230, 250 and 340 days due to large coefficients (Figure 8C). The range of frequencies used in
averaging is indicated by the arrow at 250 and 362 days, which correspond to the peaks of the disease spread (Figure 8C).
doi:10.1371/journal.pone.0098288.g008

Figure 9. Snapshot of the recovery population. An increase in natural deaths was observed after 50 days due to the outgoing moves from the
infectious and recovery populations to the natural death population (Figure 9A). The range of frequencies used in averaging is indicated by the arrow
at 362 days, which corresponds to the peak of the disease spread (Figure 9C).
doi:10.1371/journal.pone.0098288.g009
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Then,

R0~
bij(m e{mtze)

(mza)(mze)
ð9Þ

R0~r(FV{1), where r denotes the spectral radius.

If R0v1, then the DFE is globally asymptotically stable; if

R0§1, then the DFE is unstable [16].

Why Use Wavelet Analysis?
The wavelet transform is a function that is an improved

technique of implementing the Fourier transformation. In the

time-frequency analysis of a set of data, the classical Fourier

transform analysis is inadequate due to a lack of any local

information contained in the data. The use of wavelet analysis

describes the pattern, trends, and the structures that might be

overlooked in the raw data. The usefulness of wavelets in data

analysis is very clear, particularly in the field of statistics, where

large and cumbersome data sets are prevalent. Wavelet analysis is

used here to accomplish the following tasks:

a) to analyze the frequency of the spread of the disease; and

b) to understand the impact of the delay in the spread of an

infectious disease.

These two tasks will be accomplished by analyzing the

frequency and interpreting the exposed as a function of the delay.

Let a be certain class of functions and f0,f1,f2,:::,fn be the

frequencies of a simple function such that each f (x)~
P?

n~0

anfn(x)

for some coefficients an. We will consider a function in the Laplace

transform L2(R), i.e.,

L2(R)~ f : R?C=

ð
R

Df (x)D2v?

8<
:
2
4

3
5 ð10Þ

In that case, we consider a wavelet function y, such that

f (x)~
X
j[Z

X
k[Z

dj,kyj,k(x) ð11Þ

where dj,k are the wavelet coefficients and yj,k(x)~2
j=2y(2jx{k)

are the translated and scaled version of the wavelet y.

Let s represent each compartment and y be the wavelet. Then,

the wavelet coefficient of s at scale a and position b is defined by:

Ca,b~

ð
R

s(t)
1ffiffiffi
a
p y

t{b

a

� �
dt ð12Þ

Because s(t) is discrete, we will use a piecewise constant

interpolation of the s(k) values, where k~1 to length(s).

Simulation Setup
Cellular automata are found to have received extensive

academic study as one of the mathematical tools for successfully

modeling the spread of diseases. Because there are a number of

cellular automata used in the Matlab programming environment

[19], Matlab was chosen as the implementation tool here.

Experiment and Results

We constructed cellular automata in Matlab to implement the

model described by equations (1)–(4) stated in the previous section.

The experiments were performed on a 1006100 cell spaces. We

assumed that twenty infected individuals were introduced into the

population of 1006100 cells, which corresponds to ten-thousand

individuals. Table 1 summarizes the parameter values used. Blue,

light green, red and light blue squares correspond to the values of

0, 0.5, 1 and 0.1, respectively, with the values of 0, 0.5, 1 and 0.1,

denoting susceptible, exposed, and infected and recovery, respec-

tively. A total of 365 iterations were simulated, with one iteration

representing one day. The variables and parameters are shown in

Table 1.

Figure 10. Sinusoidal response of the exposed population in 3
dimensions. The CWT coefficients are large at scales near the
frequencies of the exposed waves and clearly depict the sinusoidal
pattern in the CWT coefficients at these scales for the exposed
population.
doi:10.1371/journal.pone.0098288.g010

Figure 11. Sinusoidal response of the exposed population. Plots
the same transform from Figure 10 but with different angle for better
visualization, depicts the time period at which all the individuals who
were exposed to disease moved to infectious population.
doi:10.1371/journal.pone.0098288.g011
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Figure 2 and 3 depict the geographical distribution of the

propagation of disease spread clusters for 40 and 65 simulations,

respectively.

The colors dark blue, green, red and light blue represent healthy

individuals (susceptible), infected individuals (exposed), infectious

individuals and recovery individuals, respectively. We can see the

breakdown of an initially homogenous spread-of-disease pattern.

As the phase separation progresses, a persistent compact spread of

disease is formed, as shown in Figure 2. Figure 3 shows the further

progression of the phase separation, in which a persistent compact

spread of disease is formed (infectious), surrounded by exposed

individual populations.

Figure 4 depicts how the propagation of the disease spread

clusters proceeds in geographical distribution using 365 simula-

tions. The model indicates that there is increasing volatility in the

susceptible population after 240 days due to outgoing moves from

the susceptible to the exposed population (Figure 5A).

The colors of dark blue, red and light blue represent healthy

individuals (susceptible), infectious individuals and recovery

individuals, respectively. As the phase separation proceeds, a

persistent compact spread of disease is formed (infectious and

recovery) within the population. The spread of the disease in the

discrete transform exhibited peaks at 230 days and 360 days

(Figure 5B), as indicated by the arrows. Slower and faster

frequencies were found at the initial stages as well as the final

stages at 10 days and 360 days, as indicated by the arrows. The

blue regions denote the probability densities. For example, at 330

days, there was an indication of a slower frequency that resulted in

a faster spread of the disease (Figure 5C) due to the large

coefficients in the continuous wavelet transform.

The model indicates that there is an increased volatility in the

exposed population after 200 days, due to the outgoing moves

from the exposed population to the infectious population

(Figure 6A), and an increased volatility in the infectious population

after 240 days, due to the outgoing moves from the infectious

population to the recovery population (Figure 7A).

The spread of the disease in the discrete transform reached a

peak at 70 days due to the large coefficients (Figure 6B). In the

continuous wavelet transform at 72 days, there were no exposed

individuals (Figure 6C) because they moved to the infectious stage.

The spread of the disease in the discrete transform peaked at 240

days (Figure 7B), and at 240 days and 280 days (Figure 7C) due to

large coefficients. The range of frequencies used in averaging is

indicated by the arrow at 240 days, which corresponds to the peak

of the disease spread (Figure 7C).

The model indicates that there is increasing volatility in

recovery after 240 days due to the outgoing moves from the

infectious population to the recovery population (Figure 8A). In

addition, an increase in natural deaths was observed after 50 days

due to the outgoing moves from the infectious and recovery

populations to the natural death population (Figure 9A).

The model indicates that there is increasing volatility in the

recovery population after 240 days due to the outgoing moves

from the recovery population to the natural death population

(Figure 8A). The spread of the disease in the discrete transform

peaked at 240 days (Figure 8B) and at 230, 250 and 340 days due

to large coefficients (Figure 8C). The range of frequencies used in

averaging is indicated by the arrow at 250 and 362 days, which

correspond to the peaks of the disease spread (Figure 8C). The

spread of the disease in the discrete transform were at a peak at

240 days (Figure 9B). The range of frequencies used in averaging is

indicated by the arrow at 362 days, which corresponds to the peak

of the disease spread (Figure 9C).

As shown in Figure 10, the CWT coefficients are large at scales

near the frequencies of the exposed waves and clearly depict the

sinusoidal pattern in the CWT coefficients at these scales for the

exposed population. Figure 11 plots the same transform from a

different angle for better visualization.

The sinusoidal wave amplitude is the height of the crest, and the

frequency is the number of oscillations per second. Hence, the

amplitude remains the same for any change in frequency. The

maximum and minimum are both at 225 Hz, which demonstrates

that the spread of the disease in the exposed population was at the

peak state (Figure 10). In this plot, the value of each (x, y)

coordinate represents the strength of the spread of the disease

between the coordinates. The strong interaction between the (x,y)
coordinates is 0.026 Hz (Figure 11). As seen in Fig. 6C, the arrow

at 70 days indicated the faster frequency, which resulted in a

slower spread of the disease.

Conclusion

We have developed a mathematical disease propagation model

of a susceptible-infected-recovery (SIR) type extended to a four

compartmental epidemiological model with a susceptible-exposed-

infectious-recovery-susceptible (SEIRS) with exposed class moved

as the spread of an infectious disease in a population with a delay.

The discrete and continuous transforms demonstrate where and

how the propagation of disease was dominant in the population.

The interactions between the infected and the susceptible lead to

an exposed stage of the disease, which agrees with global dynamics

behaviors for a new delay SEIR epidemic disease model proposed

by Meng and Chen et al. [4]. Wavelets are very important for

detecting abrupt changes in the distribution of disease spread [20].

These abrupt changes occur from one compartment to another

(susceptible, exposed, infectious, recovery, and susceptible). These

changes produced relatively large wavelet coefficients centered on

the discontinuity at all scales. The location of the discontinuity

based on the CWT coefficients is obtained at the smallest scales.

This selection for shorter infection period was also reported in

[13]. Note that, due to the stochastic nature of the model

parameters, the introduction of the dead period is only a transient

phenomenon. As shown in Figure 7, the number of individuals

who were infectious to the disease was much higher at the

beginning of the spread of the disease. An infection will only cause

a new infection if the individual is still exposed at the time of

infection. Alimadad and Dabbaghian et al. [21] also reported that

an individual becomes exposed to an infection when a randomly

chosen neighbor individual is susceptible to it. The dominant

order of the frequencies indicates that a delay in the transition

between exposed to infectious states occurs after the peak points in

the different time intervals. The detection of these discontinuities

(delays) was associated with the speed of the spread of the disease

and is detectable in the frequency and phase of the CWT. The

disease stopped spreading in the exposed state at 72 days

(Figure 11) but continued to spread in the susceptible, infectious

and recovery populations after 240 days. The spread of the

recovery population continued to persist, as shown in Figure 4, 5,

7, 8 and 9. This behavior implies that: a) the higher the frequency,

the lower the spread of the disease, and b) the faster the spread of

the disease, the slower the frequency. The discrete and continuous

transforms demonstrate where and how the propagation of disease

was dominant in the population. Therefore, we have demonstrat-

ed how to model the delay through exposure and the effects of the

delay on a movement of exposed state to infectious population.

Finally, the proposed model will be tested against real world data

Wavelet Propagation Distribution of SEIRS Modeling with Delay
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to test its fitness and to evaluate its accuracy as well as to determine

the utility of the cellular automata model.
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