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Heart failure (HF) describes a group of manifestations caused by the failure of heart

function as a pump that supports blood flow through the body. MicroRNAs (miRNAs),

as one type of non-coding RNA molecule, have crucial roles in the etiology of HF.

Accordingly, miRNAs related to HF may represent potential novel therapeutic targets. In

this review, we first discuss the different roles of miRNAs in the development and diseases

of the heart. We then outline commonly used miRNA chemical modifications and delivery

systems. Further, we summarize the opportunities and challenges for HF-related miRNA

therapeutics targets, and discuss the first clinical trial of an antisense drug (CDR132L)

in patients with HF. Finally, we outline current and future challenges and potential new

directions for miRNA-based therapeutics for HF.
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INTRODUCTION

Heart failure (HF) is a complex clinical syndrome with varied pathophysiology that occurs because
cardiac output is insufficient to meet the metabolic needs of organs and tissues in the body (1).
HF is very common, with an estimated prevalence of 1–3% in the adult population worldwide, and
its incidence rises with advancing age (2). Despite substantial therapeutic advances over the past
decades, HF remains a major cause of morbidity and mortality worldwide (1). HF survival rates
are no better than they were a decade ago, with an ∼53% 5-year survival rate from diagnosis (3).
Hence, HF is a global public health problem that requires urgent attention to open a window of
opportunity for early diagnosis/prognosis, prevention, and treatment (4).

MicroRNAs (miRNAs) are natural, endogenous non-coding single-stranded RNA molecules of
around 22 nucleotides that regulate the expression levels of various genes through Watson-Crick
base pairing with target messenger RNAs (mRNAs) at the posttranscriptional level, via binding to
the 3′ untranslated regions (UTRs) of target mRNAs (5). The role of miRNAs was first described in
Caenorhabditis elegans, where silencing of the lin-14 mRNA at various time points during growth
resulted in the normal development of a worm from an embryo (6). During the last few decades,
increasing numbers of investigations have indicated the regulatory functions of miRNAs in a
diverse range of cellular biological processes (7). According to the latest release of miRBase, more
than 2500 miRNAs have been reported to exist in the human genome to date (8). Furthermore,
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bioinformatic analyses have indicated that the expression levels
of 30% of human protein-coding genes are regulated by miRNAs
through a series of complex signaling pathways (9).

Encyclopedia of DNA Elements (ENCODE) is an
international cooperative project that aims to establish a
comprehensive database for human genome data research
by integrating DNA, RNA, protein, epigenetic modification,
and other levels of data (10–12). The ENCODE project
is another tremendous achievement of the international
scientific community in the field of genomics, following the
Human Genome Project, and is an approach that facilitates
improved understanding of miRNAs and their effects in disease
pathogenesis (13, 14).

In this review, we give an overview of different types of
chemical modifications and viral-vector-based delivery systems
used for miRNA modulation in HF, as well as summarizing the
opportunities and challenges for miRNAs as therapeutic targets
for the treatment of HF. Furthermore, we discuss CDR132L, the
first miRNA drug used to treat HF, and future prospects for
such therapies.

MiRNA BIOGENESIS AND FUNCTIONS

The synthesis of miRNA begins with the transcription of miRNA
genes by RNA polymerase II. This transcriptional process,
which involves transcription factors in a similar way to protein-
coding transcripts, leads to the generation of A-tail-capped long
transcripts, referred to as primary microRNA or pri-microRNA
(15, 16). In the nucleus, a microprocess complex containing two
important constituents, the double-stranded RNase III enzyme,
DROSHA, and the cofactor, DiGeorge syndrome critical region
8 (DGCR8), processes pri-miRNA to generate precursor miRNA
or pre-miRNA (17, 18). In the cytoplasm, pre-microRNAs
are further cleaved by the cytoplasmic nuclease, DICER, to
produce double-stranded RNA molecules of 18–22 nucleotides,
cut from the stem of the hairpin, similar to the double-stranded
structure of small interfering RNA (siRNA) (19). The duplex
comprises a guide strand (mature miRNA) and a passenger
strand (miRNA∗) (20). While loading on RISC, only the mature
miRNA will become active in the silencing procedure, while
the miRNA∗ is usually non-functional and is degraded (21). A
multi-protein RNA-silencing complex composed of RISC and
miRNA (22) recognizes target RNA molecules by Watson-Crick
base pairing to partially complementary sites, mainly located
in the 3′ UTR of target mRNAs, and can inhibit the function
of corresponding genes in several ways, as follows: blocking
initiation and elongation, forcing premature termination of
translation, deadenylation of mRNAs to prevent their reuse, and
(most importantly) mRNA degradation (23–27) (Figure 1).

Abbreviations: AAVs, adeno-associated viruses; AMOs, anti-miRNA

oligonucleotides; Ang II, angiotensin II; HF, Heart failure; hiPSC-CMs,

human induced-pluripotent stem cells; iCMs, induced cardiomyocytes; LNA,

locked nucleic acid; MI, myocardial infarction; miRNAs, microRNAs; mRNAs,

messenger RNAs; mTOR, mammalian target of rapamycin; ODNs, oligodeoxyn

ucleotides; PS, phosphorothioate; PI3K, phosphatidylinositol-3-kinase; UTR,

untranslated region.

MiRNA FUNCTIONS IN CARDIOVASCULAR
SYSTEM DEVELOPMENT

The heart is the first organ to form and function during
embryonic development. For normal morphogenesis and
function, the development process must be uninterrupted
(28). MiRNAs can manipulate cardiac gene expression at the
posttranscriptional level (29). The requirement for miRNAs in
cardiovascular development and function was initially proven by
the deletion of the tissue-specific gene, Dicer1, in mice; Dicer1
encodes an enzyme essential for miRNA processing (30), and
its deletion in vascular lineages and myocardial tissue results in
embryonic lethality and defective heart morphogenesis (30, 31).
Subsequently, numerous miRNAs that contribute to heart
morphogenesis have been identified; for example, miR-1 and
miR-133 contribute to cardiomyocyte proliferation, as well as
the miR-15 family, thereby regulating congenital heart disease
development or regeneration (32–35).

Several myomirs, includingmiR-1,miR-133a,miR-208a,miR-
208b, andmiR-499, play important roles in normal embryological
development of the heart and precise regulation of thesemyomirs
is crucial for normal cardiac development (36). The field
of cellular reprogramming and trans-differentiation is rapidly
evolving, and cardiac fibroblasts have been demonstrated to
directly differentiate into induced cardiomyocytes (iCMs) under
the combined influence of the transcription factors GATA4,
MEF2C, and TBX5 (GMT) (37). Subsequently, Jayawardena
et al. (38) demonstrated that the combination of miR-1,
miR-133, miR-208, and miR-499 also function to directly
convert fibroblasts to a cardiomyocyte-like phenotype in vitro.
Among these miRNAs, miR-133 is considered to mediate
the further maturation of transdifferentiated iCMs (39). The
importance of miRNA-mediated post-transcriptional regulation
in cardiovascular homeostasis, as well as its impact on the
pathogenesis, diagnosis, and prognosis of heart disease, is
established in the scientific community. Understanding the
mechanisms underlying heart development may provide new
perspectives relevant to cardiac reprogramming technology,
which could, in turn, pave the way for development of miRNA-
based approaches for heart disease therapy in the future.

CHEMICAL MODIFICATIONS OF MiRNAs

MiRNAs are vulnerable to degradation by nucleases; therefore,
chemical modifications to protect miRNAs from nucleases are
major solutions that can enhance RNA stability and improve their
efficacy (40). Optimal anti-miRNA oligonucleotides (AMOs, or
anti-miRs) are designed to be completely complementary with
specific mature miRNAs and are chemically modified. Lennox
et al. (41) found that chemical modifications of anti-miRs
could accelerate their invasion of RISC. At present, the main
chemical modification methods used in preclinical studies are
phosphorothioate (PS), locked nucleic acid (LNA), and ribose-
2’-OH modification (Figure 2).

PS modification, also referred to as oligonucleotide backbone
modification, involves replacement of a non-bridging oxygen
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FIGURE 1 | Illustration of the process of microRNA (miRNA) biogenesis and function, described in miRNA biogenesis and functions (DGCR8, DiGeorge syndrome

critical region gene 8; RISC, RNA-induced silencing complex; pri-miRNA, primary miRNA; pre-miRNA, precursor microRNA).

FIGURE 2 | Chemical modifications applied in the AMOs design (PS, phosphorothioate; 2′-OMe, 2′-O-methyl; 2′-F, 2′-fluoro-RNA; 2′-MOE, 2′-O-methoxyethyl; LNA,

Locked Nucleic Acid. In red is highlighted the site and the type of modification).

atom in the phosphodiester bond with a sulfur atom (42). PS
can reduce exonuclease- and endonuclease-mediated miRNA
degradation; therefore, PS bonds usually are designed near the
5′ and 3′ ends of anti-miRs, to enhance their stability (43).
As well as resistance to nucleases, PS-modification can reduce
plasma clearance of anti-miRs, increase their stability in serum,
and lengthen their half-life, to improve their pharmacokinetic
properties, by giving them high affinity with serum albumin (44).
Every PS-antimiR substitution reduces the melting temperature
of the heteroduplex by 0.5◦C (45); however, although the thermal
stability of PS-antimiRs is reduced, their increased hybridization
specificity and greater nuclease resistance can compensate for
this shortcoming. Partial PS oligodeoxynucleotides (ODNs)
targeted against the AT1 receptor mRNA are more effective
than full PS ODNs in decreasing blood pressure, as well as
having lower cost and improved specificity (46). Compared with
other modification strategies, PS modification of anti-miRs is
more effective in vitro. Two PS modifications of 2’-O-methyl

RNA/LNA (2’OMe/LNA) mixtures were reported to be the most
efficient of all chemical compounds tested in vitro (43).

LNA, as a modified nucleotide analog, is also termed
inaccessible RNA, and uses one of its methylene bridges to fix
the ribose ring, by linking an oxygen atom at the 2′ position
to a carbon atom at the 4′ position. The methylene bridge is
usually in the C3′-endo conformation (47). LNA modifications
reduce nuclease degradation by increasing RNA stability and
avoid off-target effects through 5′ end modification, which
prevents molecules from merging into RISC (48, 49). The
high affinity of LNA allows shorter anti-miR sequences to be
designed for applications, with similar efficiency (50). Obad
et al. (50) first demonstrated that it is feasible for tiny LNAs
(including those of only 8 nucleotides) to silence miRNAs with
negligible off-target effects. Subsequently, Bernardo et al. (51)
showed that the seed-targeting 8-mer LNA-modified antimiR-
34 (LNA-antimiR-34) could silence the miR-34 family to prevent
pathological cardiac remodeling and improve cardiac function.
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Another study found that silencing of miR-34a using LNA-
antimiR-34a in mice with moderate cardiac pathology reduced
atrial dilatation and prevented failure of cardiac function (52). A
recent study also found that LNA-antimiR-34 doubled the cardiac
progenitor growth rate by inhibiting miR-34 expression (53).
The first identified miRNA, miR-1, has a critical role in cardiac
development and disease (54); it can significantly inhibit the
expression of PKCe and HSP60 to promote cardiac injury. Pan
et al. (55) verified that LNA modified antimiR-1 (LNA-antimiR-
1), at a dose of 1 mg/kg, down-regulated miR-1 expression by
83% and efficiently reduced cardiac ischemia/reperfusion injury.
Wang et al. (56) found that LNA-antimiR-1 remarkably inhibits
the production of reactive oxygen species in neonatal Wistar
rat cardiomyocytes.

Ribose-2′-OH modification describes the substitution of
alternative chemical groups in the 2′ position, primarily 2′-O-
methyl (2′-O-Me), 2′-meth-oxyethyl (2′-O-MOE), and 2′-fluoro
(2′-F) (57). Ribose-2′-OH modification can enhance nuclease
resistance and reduce immunoreactivity (58); however, in most
cases, modification is conducted together with LNA or PS
modification, or occasionally even both together. Intravenous
administration of 2′-O-Me-anti-miRs targetingmiR-16,miR-122,
miR-192, andmiR-194 could decrease the corresponding miRNA
levels in mice (59). Similarly, inhibition of miR-133 using an
anti-miR with 2′-O-Me modification leads to hypertrophy in
vivo (60).

All of the chemical modifications described above have the
common advantage of improving nuclease resistance, while PS
modification alone also reduces thermal stability and affinity.
LNA has become the most commonly used anti-miR chemical
modification; however, use of LNA modification alone may
decrease RNase H activity. Most anti-miRs tend to be designed
with these three chemical modifications in the first and last
five nucleotides, referred to as gapmers. These molecules have
a good affinity for their target RNAs, effectively improve RNase
H activity, and are widely used in many miRNA therapeutics
(61, 62).

Overall, AMOs are an effective means of functionalizing
miRNAs, both in vivo and in vitro. The differential effects of
chemical modifications of AMOs are summarized in Table 1.

DESIGN OF MiRNA DELIVERY VEHICLES

When miRNA therapies are applied for heart disease, it is
necessary to consider the non-polar and hydrophobic properties
of the myocardial cytomembrane, which represent an enormous
challenge to miRNA delivery, as miRNAs have a negative
charge and are hydrophilic. Therefore, crossing the myocardial
cytomembrane is a vital step in transferring miRNAs to their
targets successfully and generating effective miRNA therapies.
Effective miRNA delivery requires the molecules to exhibit
hypocytotoxicity, high transfection efficiency, and specificity.
MiRNA delivery vehicles are mainly divided into viral and
non-viral vector-based approaches. In this review, we discuss
viral-vector-based delivery systems; see refs (79–82) for detailed
information on non-viral miRNA vectors. Viral vector delivery

TABLE 1 | Advantages and disadvantages of chemical modifications applied to

the AMOs.

Type of

modification

Advantages Disadvantages References

PS • High nuclease

resistance

• Promoted protein

binding

• Delaying

plasma clearance

• Poor affinity to

target RNA

• Poor

thermal stability

(63–67)

2′-OMe • Improved affinity to

target RNA

• Increased thermal

stability

• No liver toxicity

• Poor stability:

compared with

2′-MOE and 2′-F

(63, 65–69)

2′-MOE • Improved affinity to

target RNA

• Increased thermal

stability

• No liver toxicity

• Lower potency:

compared with

2′-OMe and 2′-F

(43, 63, 65–

67, 70)

2′-F • Improved affinity to

target RNA

• Increased thermal

stability

• No liver toxicity

• No resistance

to exonucleases

(63, 65, 66,

71)

LNA • Improved affinity to

target RNA

• Increased thermal

stability

• High potency and

specificity

• Increased

nuclease resistance

• Might present low

toxicity (in vivo)

• Might

lowering potency

(41, 50, 63,

65, 72–78)

aims to reach the target cell using the genome of the virus itself,
and has been used extensively for delivery of miRNA therapies.
The main viruses used for this purpose are adenoviruses, adeno-
associated viruses (AAVs), and lentiviruses.

Adenoviruses, are double-stranded DNA viruses commonly
used as viral vectors. As early as 1992, Stratford-Perricaudet et al.
(83) found that injecting adenovirus LacZ vectors into neonatal
mice resulted in extensive gene transfer in cardiomyocytes.
Subsequent studies have shown that adenovirus-mediated
miRNA-24 upregulation can enhance myocardial angiogenesis
and blood perfusion in myocardial infarction (MI) tissue. While
this approach can induce cardiomyocyte and fibroblast apoptosis,
overall, it produced a good MI treatment effect (84). Another
study using miRNA therapy for heart failure demonstrated that
adenovirus vector contributed to up-regulation of AMPKα2,
the direct target of miR-195a-3p, helping to relieve cardiac
hypertrophy and avoid heart failure (85). Nevertheless, serious
flaws have emerged on wide application of adenovirus delivery
in clinical studies; for example, use of adenovirus vectors for
treatment of malignant intracranial tumors resulted in serious
side effects, including headache, change of mental status, and
relapsing seizures (86) and such side effects limit the use of
adenoviruses for delivery of miRNA therapies.

AAVs are single-stranded, non-enveloped DNA viruses
belonging to the “Parvoviridae” family, and are among the most
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FIGURE 3 | Reviewed miRNAs in cardiac hypertrophic pathways (Red color miRNA, pro-hypertrophic function; Blue color miRNA, anti-hypertrophic function).

promising vector delivery systems. Unlike other viruses, AAVs
are not pathogenic to humans, have minimal immunogenicity,
and are low molecular weight (83). AAV2, AAV6, and AAV9 are
the most cardiogenic AAVs among AAV1 to AAV9, with AAV6
vector exhibiting the most efficient transduction (87). Bian et al.
(88) found that AAV6-mediated over-expression of miR-199a
promoted the proliferation of human induced-pluripotent stem
cells (hiPSC-CMs), which could improve cardiac function and
fibrosis. Further, a recent study demonstrated that myocardial
tissue in aorta-constricted mice transfected with miR-124 via
AAV9 inhibited the influence of shikonin on sympathetic
remodeling, revealing the mechanism underlying the use of
shikonin for treatment of chronic heart failure (89). AAV6 and
AAV9 have become the main AAVs serotypes used for heart
disease therapy. In addition, Gao et al. found that delivery of
miR-19a/19b using AAV vectors may reduce the cardiac trauma
induced bymyocardial infarction and protect heart function (90).

A number of studies have reported the use of AAV vectors for
miRNA therapy in heart disease. The latest research showed that
varying levels of cardiac miRNA-122 have a crucial effect on the
treatment efficiency of AAV vectors regulated by miRNAs (91);
however, another report noted severe cardiotoxicity in AAV6
vector-mediated shRNA cardiac gene transfer (92). Notably, AAV

antibodies are present in most people, which may influence the
effectiveness of vector entry and transgenic expression.

Lentiviruses are a subgroup of retroviruses, and lentivirus

vectors are often used for miRNA delivery into myocardial cells.
Yang et al. (93) demonstrated that downregulation of miR-322

via lentiviral transduction could further prevent cardiomyocyte

apoptosis induced by hypoxia. Similarly, Wang et al. (94)
showed that reduction of miR-137 levels, mediated by lentivirus

vectors, decreased cardiomyocyte apoptosis. Although lentivirus-
mediated miRNA therapy has been applied for the treatment of
heart disease, the disadvantages of insertional mutagenesis may
limit its use (95, 96).

MiRNA-related therapy based on viral vectors has certain
advantages. For example, it is easy to generate vectors and they
exhibit high transduction efficiency.Moreover, the long-term and
stable gene expression mediated by these vectors makes them
potentially ideal in this context; however, safety issues represent
a huge obstacle that requires further research.

THE ROLE OF MiRNAs IN HEART FAILURE

Cardiac remodeling, a basic mechanism underlying HF, is
the process of generating changes in the size, shape, and
function of the heart, and responds to internal and external
cardiovascular injury or risk factors (97). Pathological ventricular
remodeling has three main characteristics: extensive fibrosis,
pathological cardiomyocyte hypertrophy, and myocardial cell
apoptosis (98). In this review, we summarize the regulatory
effects of newly-discovered miRNAs in cardiac remodeling,
particularly cardiac hypertrophy (Figure 3), fibrosis (Figure 4),
and apoptosis (Figure 5).

MiRNAs in Cardiac Hypertrophy
MiR-17-5p

Xu et al. (99) identifiedmiR-17-5p as a critical miR that regulates
the expression and function of the mitochondrial fusion protein,
mitofusin 2 (MFN2). They found that miR-17-5p expression
in cardiomyocytes was upregulated in rat hearts at 4 weeks
after transverse aortic constriction and in an angiotensin II
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FIGURE 4 | Reviewed miRNAs in cardiac fibrosis pathways (Red color miRNA, pro- fibrosis function; Blue color miRNA, anti- fibrosis function; Dash lines indicate

translocation of molecules from cytoplasm to nucleus).

FIGURE 5 | Reviewed miRNAs in cardiomyocyte apoptosis pathways (Red color miRNA, pro-apoptosis function; Blue color miRNA, anti-apoptosis function).

(Ang II)-induced cell hypertrophy model. Mechanistic in vivo
and in vitro studies demonstrated that miR-17-5p suppresses
autophagy to promote cardiac hypertrophy by inhibiting Mfn2
expression, and activating the phosphatidylinositol-3-kinase
(PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway.
Furthermore, Ang II-induced cell hypertrophy in neonatal rat
left ventricle myocytes was significantly reversed by anmiR-17-5p
inhibitor. These findings suggest an essential role for miR-17-5p

in cardiovascular disease and present potential new therapeutic
targets in patients with pathological cardiac hypertrophy (99).

MiR-29a

MiR-29a is significantly associated with cardiac hypertrophy
and a potent therapeutic target for the treatment of cardiac
hypertrophy (100). Upregulation of miR-29a in vivo can
attenuate the cardiac hypertrophy response induced by
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isoproterenol hydrochloride via targeting the nuclear receptor
peroxisome proliferator-activated receptor δ (PPARD) and
downregulating atrial natriuretic factor, suggesting that miR-29a
can protect the myocardium in cardiac hypertrophy (100).

MiR-30e-5p

Upregulation of miR-30e-5p has anti-hypertrophic effects in
hypertrophic cardiomyocytes induced by Ang II, via targeting
a disintegrin and metallopeptidase domain 9 (meltrin gamma)
(101). Overexpression of miR-30e-5p also attenuates hypoxia-
induced apoptosis in an hiPSC-CM injury model by targeting
the 3’-UTR of BCL2L11, which is an apoptosis activator and
autophagy suppressor (102).

MiR-92b-3p

According to Yu et al. (103), miR-92b-3p is up-regulated in
mouse cardiomyocytes under Ang II-induced conditions. MiR-
92b-3p, is downstream of heart and neural crest derivatives-
expressed 2 (HAND2), and is involved in cardiac hypertrophy
through targeting ACTA1 and MYH7, which are both genes
involved in hypertrophy. In Ang II-induced cardiomyocyte
hypertrophy, therapeutic studies using miR-92b-3p mimics
reduced cardiomyocyte cell size and inhibited the expression
levels of ACTA1 and MYH7.

MiR-132

Another anti-hypertrophic miR, miR-132, controls cardiac
hypertrophy in a novel porcine model of pressure-overload-
induced heart failure via PPARGC1A/NFE2 signaling by
targeting SIRT1 (104). Furthermore, Li et al. (105) proved that
NFE2 protects the murine heart against pathological cardiac
hypertrophy and heart failure. Furthermore, NFE2 is increased
in myocardium of anti-miR-132-treated porcine hearts with
percutaneous transverse aortic constriction compared with the
control group at the 8-week time point, indicating that this could
be an effective therapeutic strategy for patients with heart failure
(104). Therefore, antimiR-132 may be pivotal in mediation of
pathologic heart hypertrophy.

MiR-199a

Yan et al. (106) demonstrated that miR-199a is increased
in pressure-induced cardiac hypertrophy, while inhibition of
miR-199a mitigates cardiac hypertrophy in vitro. Furthermore,
anti-miR-199a attenuates cardiac hypertrophy and restores
cardiac function in vivo through the PPARGC1A (PGC-
1α)/ESRRA (ERRα) axis. The mechanism underlying restoration
of mitochondrial structure and function in anti-miR-199a-
treatedmice involves the downstream pathways of mitochondrial
fatty acid oxidation and oxidative phosphorylation (107).

MiR-214

MiR-214 levels are dramatically raised in Ang II-infused
mice (108). Hypertrophic stimuli cause increased expression
of miR-214 in cardiomyocytes, resulting in miR-214-mediated
hypertrophic growth. In contrast, inhibition of miR-214 confers
protection from Ang II-mediated hypertrophy in vivo. These
effects are attributable to increased expression of SIRT3,
which participates in cardiomyopathy pathogenesis by inducing

mitochondrial injury and energy metabolism disorder. Using a
dual-luciferase reporter assay Ding et al. (108) demonstrated
that SIRT3 was a direct target of miR-214. These results
provide information about the biological functions of miR-214
and indicate that it may be a promising target for cardiac
hypertrophy therapy.

MiR-302/367

An initial study of the role ofmiR-302/367 focused on its function
in H9c2 cells treated with Ang II. The expression ofmiR-302/367
is up-regulated and leads to autophagy in an in vitro hypertrophic
model (109). In addition, loss- and gain-of-function assays
demonstrated that miR302/367 aggravates cardiac hypertrophy
by inhibiting autophagy. Jin et al. (109) demonstrated that
upregulation of miR302/367 expression acts as an endogenous
inhibitor of autophagy in hypertrophic H9c2 cells through
PTEN/PI3K/AKT/mTORC1 signaling. Anti-hypertrophic effects
were observed in Ang II-induced hypertrophic H9c2 cells via the
inhibition of miR302/367. These findings reveal the critical role
of miR302/367 in mediating hypertrophy of the heart through
PTEN/PI3K/ AKT/mTORC1 signaling (109).

MiRNAs in Cardiac Fibrosis
MiR-25-3p

Zeng et al. (110) proved that miR-25-3p expression is mediated
by NF-κB signaling in cardiac fibrosis, and the regulation of
fibrosis-related gene expression by miR-25-3p is observed both
in vitro and in vivo. Mechanistically, DKK3 expression is reduced
in cardiac fibrosis under modulation bymiR-25-3p via inhibition
of SMAD7 and promotion of SMAD3 and fibrosis-related gene
expression (110). Hence, miR-25-3p represents a potentially
promising drug target in cardiac fibrosis.

MiR-26a

MiR-26a is downregulated in the plasma and myocardium
of spontaneously hypertensive rats (111). Zhang et al. (111)
demonstrated that miR-26a-deficient mice exhibit increased
myocardial fibrosis, whereas overexpression of miR-26a
significantly inhibited myocardial fibrosis in vivo and Ang II-
induced fibrogenesis in cardiac fibroblasts by directly targeting
connective tissue growth factor and SMAD4 (111). In addition,
cardiac fibroblast proliferation is inhibited by miR-26a via the
EZH2/P21 pathway. These results reveal a novel role formiR-26a
in hypertensive myocardial fibrosis and provide a possible
treatment strategy for this condition.

MiR-144

Li et al. (112) demonstrated thatmiR-144was dramatically down-
regulated in response to pathological stimuli. Upregulation
of miR-144 significantly decreased the proliferation and
migration ability of cardiac fibroblasts, and also reduced the
transformation from fibroblasts to myofibroblasts, whereas
downregulation of miR-144 could reverse these effects (113). In
that study, bioinformatics analysis and luciferase reporter assays
demonstrated that miR-144 directly targets and downregulates
CREB expression in cardiac fibroblasts treated with Ang II (113).

Frontiers in Cardiovascular Medicine | www.frontiersin.org 7 November 2021 | Volume 8 | Article 773083

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Zhou et al. MicroRNA-Related Strategies in Heart Failure

MiR-221

Zhou et al. (114) proved that miR-221 inhibits the activation
of L-TGF-β1 by directly targeting THBS1, thus mitigating
cardiac fibrosis and improving cardiac function. Similarly, miR-
221 mimics transfected into rat cardiac fibroblasts induced by
kidney failure resulted in reduction of cardiac fibrosis. Therefore,
miR-221 mimics are a promising therapeutic target in cardiac
fibrosis (114).

MiRNAs in Cardiomyocyte Apoptosis
MiR-122

MiR-122 is one of several miRNAs elevated in patients with
HF, and plays a pivotal role in cardiac insufficiency by inducing
cardiomyocyte apoptosis (115). Shi et al. (116) found that DRP1
levels were increased in response to upregulation of miR-122,
indicating that apoptosis (and cardiac dysfunction) increase
through DRP1-mediated up-regulation of mitochondrial fission.
Furthermore, miR-122 interacts directly with a transcription
factor regulating its own expression, and the effect of miR-122 on
DRP1 is mediated by HAND2 (116). These findings demonstrate
thatmiR-122 exerts a regulatory role in cardiomyocyte apoptosis
via suppressingHAND2, which results in increased expression of
DRP1, and ultimately leads to apoptosis (116).

MiR-138-5p

Recent research showed that SIRT1 is a potential candidate target
gene of miR-138-5p and that miR-138-5p levels were negatively
correlated with those of SIRT1 in cardiomyocytes (117).
SIRT1 alleviates HF by enhancing P53 deacetylation, thereby
inhibiting cardiomyocyte apoptosis. MiR-138-5p can decrease
SIRT1 expression in H2O2-induced AC-16 and HCM cells by
activating P53 signaling. By contrast, in vitro knockdown ofmiR-
138-5p has a clear protective effect on cardiomyocytes in HF
models (118). In summary, miR-138-5p inhibits SIRT1 enzyme
activity by activating P53 signaling, resulting in deterioration of
HF (118).

MiR-182

Rapid ventricular pacing downregulates miR-182 levels and
induces cardiomyocyte apoptosis and HF in rats (119). An in
vitro study illustrated that PDCD4 can promote tumor cell
apoptosis by affecting the translation of eukaryotic initiation
factor-4A (eIF4A) and eIF4G (120). PACS2 is an initiator
of apoptosis, which accelerates displacement of mitochondrial
death pathway agonists (121, 122). Expression levels of both
PDCD4 and PACS2 were inhibited following upregulation of
miRNA-182, while the apoptotic rate of cardiomyocytes in
HF rats decreased. These results suggest that miR-182 inhibits
cardiomyocyte apoptosis induced by non-ischemic HF via
downregulating PDCD4 and PACS2 (119).

MiR-379

Chen et al. (123) discovered that the KLOTHO gene is a
suppressor of aging whose deficiency can damage heart function
and lead to heart failure. In addition, an antimir for miR-
379 can prevent H9c2 cell apoptosis induced by KLOTHO
deficiency, while miR-379 mimics can induce apoptosis of H9c2
cells (123). These authors also proved that the inhibition of

SMURF1 may be related to H9c2 cell apoptosis induced by miR-
379. In summary, miR-379 promotes cardiomyocyte apoptosis
via targeting SMURF1, which is essential for mir-379-induced
apoptosis. Anti-mir-379 represents a potential therapeutic target
for cardiomyocyte apoptosis (123).

Mir-423-5p

A recent study confirmed that downregulation of miR-423-5p
reduced hypoxia/reoxygenation-mediated cardiomyocyte injury
by targeting MYBL2 in cardiomyocytes through the WNT/β-
catenin signaling pathway, and that this process can be reversed
by treatment with anmiR-423-5p inhibitor (124).

Overall, various miRNAs modulate different mechanisms and
signaling pathways that promote or protect against heart failure
and those miRNAs are potential therapeutic targets in patients
with heart failure.

However, a number of obstacles limit the clinical applicability
of anti-miRNA agents as cardiovascular disease therapeutics.
In particular, their potential off-target effects, which will result
in unwanted toxicity, remain major challenges to be overcome
(125). For example, Hinkel et al. (126) demonstrated that the
administration of antimiR-21 in a pig model of HF caused
considerable downregulation of miR-21 in the lung and kidney,
which may cause unwanted side effects in these organs. This
finding had also been reported in other investigations and was
not unexpected (57). For the treatment of HF, it is necessary to
develop a non-invasive and efficient tissue-specific drug delivery
method. Moreover, it should be noted that many microRNA’s
systems effect is complicated by the fact that some microRNAs
are protective in cancer but detrimental in cardiovascular
setting. For example miR-34 (127, 128). Cardiotoxicity of a
microRNA therapeutic is definitely something that limited
the full potential of a specific microRNA therapeutics. The

TABLE 2 | All miRNAs summarized in this review and their predicted target genes

in human cardiovascular diseases (TargetScanHuman Release 7.2).

MiRNA Predicted target genes

MiR-17-5p BVES MKL2 HEG1

MiR-29a HAND2 HSPB7 CASQ2 ATP2A2 ANKRD1 MYOCD

MKL2 MEF2A

MiR-30e-5p ACTC1 CLCF1 ATP2A2 MKL2 MEF2D

MiR-92b-3p ACTC1 ATP2A2 HAND1 HAND2 HEG1 MEF2D

MiR-132 MEF2A

MiR-199a MEF2C MKL2 MEF2D

MiR-214 MEF2A MKL2 MEF2C MEF2D

MiR-302/367 LBH HEG1 MKL2 ANKRD1 BVES ATP5A1 ACTC1

MEF2A

MEF2C MEF2D HAND2 MYZAP MYOCD ATP2A2

MiR-25-3p HAND1 HAND2 HEG1 MEF2D ACTC1

MiR-26a MKL2 ACTC1 MEF2A MEF2C MYOC

MiR-144 HEG1 MKL2 MEF2A MEF2C MEF2D

MiR-221 HEG1 MYZAP MYOCD

MiR-122 MEF2C MEF2D ATP5A1

MiR-138-5p BVES

MiR-182 MKL2 MEF2A MEF2C MEF2D MYOCD

MiR-379 MEF2D MGST1

Mir-423-5p MYBL2
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underlying mechanisms of a microRNA’s effect or just with its
seed sequence still need to be elucidated.

Identification of the specific target of an miRNA is one
approach for determining the role of an miRNA in biological or
pathological processes (129); however, a single miRNA can have
thousands of targets. Further, experimentally determinedmiRNA
genes and targets are far removed from clinical and translational
demands. At present, machine learning-based computational
targets and gene predictions have become an intense focus in this
field (130), and have the potential to initiate a new era in miRNA
research in various diseases (131). A summary of all miRNAs
known to be involved in human cardiovascular diseases and their
predicted target genes is presented in Table 2.

A MILESTONE BREAKTHROUGH IN THE
TREATMENT OF HEART FAILURE:
FIRST-IN-HUMAN EVIDENCE (CDR132L)

Progress over the past three decades has significantly improved
the development of nucleic acid therapeutics. The first-in-human
study of an miRNA-based therapy wasMRX34, a liposome-based
miR-34a mimic, for the treatment of advanced solid tumors in
April 2013 (132, 133). This provided valuable insights into the
potential for application of new oligonucleotide-based drugs in
oncology (134). To date, several RNA-targeted drugs have been
approved for commercial use, while others are in the final phases
of clinical trials (135–137).

MiRNA-132-3p (miR-132) is a non-coding RNAwhose cardiac
expression is up-regulated in patients under cardiomyocyte
stress. High expression of miR-132 in heart tissue leads
to progressive cardiac remodeling, and thereby HF events.
In addition, preclinical animal experiments show that miR-
132 can affect signaling pathways related to cardiomyocyte
growth, autophagy, calcium handling and contraction and, more
significantly, can down-regulate FOXO3 levels and inhibit the
expression of genes related to intracellular calcium handling and
contraction, which can lead to cardiac remodeling (138). Hence,
miR-132 has attracted the attention of clinicians as a promising
molecular target for HF treatment.

CDR132L, a synthetic lead-optimized oligonucleotide
targeting miR-132, was the first miRNA-132 inhibitor. In related
preclinical studies, the application of CDR132L significantly
improved cardiac function, and can attenuate, or even reverse,
HF (139).

Based on these findings, Täubel et al. published the first
in-human clinical trial of CDR132L in patients with HF. The
study was a randomized, double-blind, placebo-controlled, dose-
escalation clinical trial. This Phase 1b clinical trial confirmed

for the first time that CDR132L is safe and well-tolerated in
humans, with no obvious toxicity. Simultaneously, CDR132L
can significantly reduce the level of NT-proBNP, a biomarker
of heart failure and narrow QRS complex, and lead to positive
trends in myocardial fibrosis markers (140). This represents a
huge transformation in treatment for patients with heart disease,
from symptomatic and supportive therapies, to etiological
treatments (141). As clinical researchers and medical workers,
while maintaining a cautious attitude toward data generated
from small sample sizes, we should also actively recognize
the “encouraging” pharmacodynamic performance of CDR132L.
Larger-scale clinical studies are needed in the future to further
confirm the positive role of CDR132L in the treatment of heart
failure. More broadly, this research can inspire more studies
investigating RNA-based therapeutics for cardiovascular disease.

CONCLUSION

As miRNAs can target a wide range of genes (mRNAs), and
an individual gene can be regulated by multiple miRNAs, the
complex communication networks between these two molecule
types indicate that miRNAs can regulate numerous different
biological phenomena, ranging from hypertrophy and fibrosis
to angiogenesis, among other processes. Therefore, miRNAs
have significant potential for preventing, alleviating, and even
restoring cardiac dysfunction, such as adverse ventricular
remodeling. Further, therapeutic cocktails including miRNA
inhibitors and treatment strategies targeting multiple genes
involved in disease development may produce remarkable
results; however, the broad clinical application of miRNA-
related therapy must first overcome several obstacles, including
targeted delivery, off-target effects, and hepatic/renal toxicity.
Thus, further attempts to promote clinical application ofmiRNA-
related therapeutics are urgently required.
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