MITOCHONDRIAL DNA PART B
2021, VOL. 6, NO. 2, 295-296
https://doi.org/10.1080/23802359.2020.1859341

Taylor & Francis
Taylor &Francis Group

MITOGENOME ANNOUNCEMENT

8 OPEN ACCESS ‘ W) Check for updates

The complete chloroplast genome of a pantropical legqume, Canavalia rosea

Ryosuke Imai®, Yui Kajita®, Takashi Yamamoto®, Koji Takayama® and Tadashi Kajita®

%Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus, Okinawa, Japan; PHijirigaoka High & Junior High School,
Tama University, Tokyo, Japan; “Department of Botany, Graduate School of Science, Kyoto University, Kyoto, Japan

ABSTRACT

We assembled a complete chloroplast genome of a pantropical legume, Canavalia rosea (Fabaceae).
The chloroplast genome was 158,059 bp in length that was composed of a 77,752 bp large single copy
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region, a 18,993 bp small single copy region, and a pair of 30,657 bp inverted repeats. We detected 135

genes that consisted of 90 protein-coding genes, 37 tRNA genes, eight rRNA genes, and three pseudo-

genes (rps16 and a pair of rpl22).

Canavalia rosea (Sw.) DC. (Fabaceae) is one of the representa-
tive species of pantropical plants with sea-drifted seeds
(Takayama et al. 2006) that have extremely wide ranges of
distribution in the tropics and sub-tropics region. Gene flow
via sea-dispersal is an intriguing question to understand the
formation of such unique distribution of a single plant spe-
cies, and chloroplast genomes will provide appropriate
markers to evaluate gene flow and genetic structure because
of their maternal nature of inheritance. Complete chloroplast
genomes would also provide useful information to under-
stand the reproductive strategy of the plants. In this study,
we constructed the complete chloroplast genome of C. rosea
using paired-end short-read data.

We collected leaf samples from a cultivated plant in the
glasshouse of Iriomote Station, Tropical Biosphere Research
Center, University of the Ryukyus. The plant was grown from
seeds collected from a wild population of C. rosea in Senegal
(at Joal-Fadiout on 3rd December 2000) collected by TK (No.
00120304). The voucher specimen is stored in the URO herb-
arium, University of the Ryukyus. We extracted total DNA
from silica-dried leaves using the CTAB method (Doyle and
Doyle 1987). Genomic DNA was sequenced with lllumina
Hiseq2000. We obtained 22 million 150 bp paired-end reads
and removed low-quality nucleotides and reads using the
Trimmomatic 0.39.0 (Bolger et al. 2014) with a palindrome
clip threshold of 30 and a simple clip threshold of 10. We
assembled a chloroplast genome using the GetOrganelles
pipeline (Camacho et al. 2009; Bankevich et al. 2012;
Langmead and Salzberg 2012; Wick et al. 2015; Jin et al.
2020) and used GeSeq in CHLOROBOX web service (Tillich
et al. 2017) for annotation of the chloroplast genome. The
chloroplast genome sequence and annotation were

KEYWORDS

Canavalia rosea; chloroplast;
Fabaceae; pantropical
plants with sea-

drifted seeds

submitted to DDBJ (DNA Data Bank of Japan) accession num-
ber LC554221.

The total length of the chloroplast genome was
158,059 bp, which is 164bp shorter than a closely related
species, Canavalia cathartica Thouars, the chloroplast genome
of which is available in GenBank (accession No. NC_047311).
The large single copy (LSC) and small single copy (SSC)
regions were 77,752bp and 18,993 bp, respectively. The
length of inverted repeats was 30,657 bp. We detected 135
genes including 90 protein-coding genes, 37 tRNA genes,
and 8 rRNA genes, and the numbers of genes were the same
as C. cathartica NC_047311. We also detected three pseudo-
genes (rps16 and a pair of rpl22). Pseudogenes of rps16 were
found in other individuals of C. rosea (unpublished data),
which suggests possible allelic gene loss in this species.
Pseudogenes of rpl22 were also reported in other legumes
(Gantt et al. 1991). We constructed a phylogenetic tree of
Millettioid/Phaseoloid clade based on the method of Zhang
et al. (2020) by using 84 coding regions of 15 chloroplast
genomes obtained from GenBank. Each gene was aligned by
MAFFT 7.4 (Katoh et al. 2002, 2005; Katoh and Toh 2007),
then all genes were concatenated by using SegKit (Shen
et al. 2016). A phylogenetic tree obtained by RAXML-NG
(Kozlov et al. 2019) with the GTR + G + | model and bootstrap
was drawn using Figtree 1.4.2 (Rambaut 2012) 500 times. The
phylogenetic tree of C. rosea chloroplast genome formed a
clade with C. cathartica, which is consistent with that of
Zhang et al. (2020) and the generic relationships of the
phylogenetic tree were consistent with that of Zhang et al.
2020 (Figure 1).
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Figure 1. The maximum-likelihood tree of Millettioid/Phaseoloid based on 84 genes in chloroplast genomes. Bootstrap values were shown under branches.
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