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Abstract: Anomaly detection is an important task in hyperspectral processing. Some previous works,
based on statistical information, focus on Reed-Xiaoli (RX), as it is one of the most classical and
commonly used methods. However, its performance tends to be affected when anomaly target size
is smaller than spatial resolution. Those sub-pixel anomaly target spectra are usually much similar
with background spectra, and may results in false alarm for traditional RX method. To address this
issue, this paper proposes a hierarchical RX (H-RX) anomaly detection framework to enhance the
performance. The proposed H-RX method consists of several different layers of original RX anomaly
detector. In each layer, the RX’s output of each pixel is restrained by a nonlinear function and then
imposed as a coefficient on its spectrum for the next iteration. Furthermore, we design a spatial
regularization layer to enhance the sub-pixel anomaly detection performance. To better illustrate the
hierarchical framework, we provide a theoretical explanation of the hierarchical background spectra
restraint and regularization process. Extensive experiments on three hyperspectral images illustrate
that the proposed anomaly detection algorithm outperforms the original RX algorithm and some
other classical methods.
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1. Introduction

Hyperspectral imagery (HSI) records detailed spectral information in hundreds of narrow
contiguous bands over the visible light spectrum to the Near Infrared (NIR) or Short-Wave Infrared
(SWIR) bands. Each HSI pixel is a vector that represents the radiance or reflectance value of each band;
therefore, HIS can be considered a 3-D cube. Such data provide deterministic spectral information
about different materials and objects in the scene. Benefitting from this unique characteristic, HSI
is becoming a valuable tool for many real-world applications, such as agriculture surveillance [1,2],
mineralogy [3], and environmental sciences [4–6]. Among these applications, hyperspectral image
anomaly detection plays an important role.

Anomaly detection in HSI can be regarded as a particular case of target detection that assumes
no prior knowledge of the target’s spectral signature [7]. The main task of anomaly detection is to
detect an object with an unusual spectral signature with respect to the background, especially small
man-made objects. Over the past two decades, several algorithms for hyperspectral anomaly detection
have been proposed, such as the RX detector (RXD) [8], robust PCA (RPCA) [9], low-rank and sparse
representation (LRASR) [10], and low-rank and sparse matrix decomposition-based Mahalanobis
distance (LSMAD) [11]. These algorithms can be classified into two classes: Statistical-based methods
and low-rank or sparse matrix decomposition-based methods.
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The most widely used statistical-based anomaly detection method is the RX anomaly detection
algorithm, which is also considered a benchmark among most classical anomaly detection
algorithms [7]. The RX anomaly detection algorithm is based on the assumption that the HSI can
be modeled as a multivariate Gaussian distribution in which the Mahalanobis distance between the
pixel under test and the pixels within the local or global background has been calculated. However,
real-world HSIs hardly follow the Gaussian assumption, since the noise and background elements in
actual scenes are complicated and pose modeling difficulties. To overcome these limitations, improved
RX-based algorithms have been proposed for better local or global background estimation, including
local RX algorithms [12,13] and kernel-based RX algorithms [14,15].

Another anomaly detection class consists of low-rank or sparse matrix decomposition-based
methods. The RPCA method separates the original data matrix into a low-rank matrix and a sparse
matrix by two simple constraints. The LSMAD method combines the RPCA and RXD, and then obtains
a low-rank background matrix and calculates the Mahalanobis distance according to the obtained
low-rank components. For the LRASR anomaly detection method [10], a background dictionary is
constructed, although it may vary in different experiments, which leads to unstable detection results.
However, these algorithms employ knowledge of both background and anomalies; thus, they can
improve the detection performance to some extent.

In this paper, instead of adding or improving sparse constraints directly as in LRASR and RPCA,
we build a new hierarchical architecture to restrain the background spectra while preserving the
anomaly target spectra. A simple and effective method, i.e., the hierarchical-RX (H-RX) method,
is proposed for improving the performance of classical RX algorithms and achieving better anomaly
detection performance, especially for sub-pixel anomaly detection tasks.

Since the classical RX anomaly detector in certain situations cannot accurately accentuate the
anomaly targets and restrain the backgrounds, we use a hierarchical framework to solve this problem
by processing the hyperspectral data with several layers, and the RX anomaly detectors of different
layers are linked in series. After each layer’s anomaly detection, a nonlinear function is used to restrain
the background spectra based on the results of the RX detector. Then, the adjusted spectral data are
organized and sent to the next layer until the RX detector’s result meets the iteration stop condition.
Restraining the background of spectral components facilitates modeling their distribution and leads to
more significant anomaly spectra. In this approach, the RX performance is gradually enhanced layer
by layer.

The contributions of our work are summarized as follows.
(1) A novel hierarchical framework for I anomaly detection is proposed. It restrains the background

spectra and highlights the anomalies by multilevel processing.
(2) We prove the rationality of the proposed method theoretically. After several layers of

background restraints, the anomaly detection performance is gradually enhanced in theory, especially
for sub-pixel anomaly detection tasks.

(3) Experimental results on three hyperspectral images show that the proposed method
significantly enhances the traditional RX method and outperforms the other improved classical
RX-based anomaly detection algorithms.

The remainder of this paper is organized as follows. Section 2 reviews the original RX detector
method and the detection characteristics of the RX algorithm and proposes our hierarchical suppression
anomaly detection method. Section 3 provides theoretical analyses of our method. In Section 4 presents
the experimental results, and Section 5 describes the conclusions.

2. Related Work and Proposed Method

In this section, we first review the original RX anomaly detection algorithm. Then, we propose
the hierarchical-RX method.
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2.1. Brief Introduction to the RX Algorithm

The RX anomaly detection algorithm is one of the most fundamental and popular algorithms for
anomaly detection tasks, and it has been considered the benchmark of anomaly detection fIHSI [7].
The RX algorithm is a constant false alarm rate (CFAR) adaptive anomaly detector derived from the
generalized likelihood ratio test [8].

In the RX algorithm, anomaly detection is formulated as two hypotheses, H0 and H1. The first
hypothesis, H0, models the background as a Gaussian distribution with a zero mean and an unknown
background covariance matrix that is estimated locally or globally from the data. The second
hypothesis, H1, models the target as a linear combination of a target signature and background
noise. Therefore, under H1 and H0, spectral vectors are represented by a Gaussian distribution with a
mean equal to the signature of the target and an additive noise equal to the background covariance
matrix, respectively. Consider I-D HSI cube with A rows, B lines and L spectral bands, where:

A ∗ B = N (1)

Therefore, all spectra of this hyperspectral image can be arranged in an L × N matrix as
X = [x1, x2, · · · , xn]. The two competing hypotheses that the RX algorithm must distinguish are

given as follows:
H0 : x = n (Target absent)
H1 : x = a ∗ s + n (Target present)

(2)

where a = 0 under H0 and a > 0 under H1. n is a vector that represents the background clutter noise
process, and s is the spectra signature of the signal (target) given by s =

[
s1, s2, · · · , sj

]
. Therefore,

the RX algorithm anomaly detection can be defined as follows:

RX(r) = (r− µb)
T
(

M
M + 1

Cb +
1

M + 1
(r− µb)(r− µb)

T
)−1

(r− µb)

{
≥ λ Target

< λ Background
. (3)

In addition, this formula can be simply defined as:

δrx(rij) = (rij − µb)
TC−1

b (rij − µb), (4)

where µb represents the estimated mean spectral signature and

Cb =
1
Q

Q

∑
i=1

(x(i)− µb)(x(i)− µb)
T . (5)

Here, Cb is the estimated covariance matrix of the N pixels belonging to the background. The RX
algorithm is based on exploiting the difference between the spectral signatures of an input pixel with
its surrounding neighbors. This distance comparison is very similar to the Mahalanobis distance
measure [7].

Due to the equivalence mentioned above, influence factors on the RX performance can be
identified from the perspective of Mahalanobis metrics. The larger Mahalanobis distance indicates
the spectra belongs to anomaly category with a higher probability. That is, it greatly depends on the
dissimilarity between the anomaly spectra and the average one. Considering the facts that anomaly
spectra are sparse among background, and background spectra are not always same, since of the same
object with different spectra phenomenon, we can thus infer that the metric is affected by two aspects:
(1) Difference between anomaly and average spectra; (2) variation of background spectra.

Such kind of factors would have more impact on the sub-pixel anomaly detection with small ratio.
In general, it is intractable to discriminate legitimate anomalies from detections that are not of interest,
since of the deficiency of prior knowledge on the anomaly type [7]. Specifically, when the ratio of
sub-pixel is small so that anomaly spectra is much similar to the background one, the Mahalanobis
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distance of false anomaly may be larger than one of legitimate anomalies, and thus degrade the
robustness of RX detector.

Given aforementioned analysis, one of feasible strategies to improve the original RX is enhancing
discriminability between anomaly spectra and background ones. This is also the motivation of the
proposed hierarchical anomaly detection framework. But unlike the iterative methods [16,17], which
consist of the many layers with same affects and functions, we built the framework by using different
layers with different purposes. Moreover, they use iterative method to remove the spectra once it
determined as anomalies. Different from them, we design the hierarchical framework, where we just
restrain the background spectra by a nonlinear suppression function so as to better estimate the mean
background vector and enhance background-anomalies contrast.

2.2. Hierarchical-RX Algorithm

In this paper, we propose that a restraint on the background spectra is helpful for anomaly
detection problems. In addition, regularization on the anomaly detection result is helpful for
pixel/sub-pixel anomaly detection tasks. The major characteristics of the proposed hierarchical
framework can be summarized as follows.

(1) The original RX detector can be considered a single-layer detector, whereas the proposed H-RX
detector consists of several layers of traditional RX detectors, and each layer is linked in series.

(2) After each layer of detection, the background spectra are restrained based on the current layer’s
anomaly score. In this approach, anomaly spectra become more distinguished from the background
spectra, which implies that the H-RX method can achieve a better performance in the same situations
to which the original RX detector is applied.

(3) To enhance the result for pixel/sub-pixel anomaly detection, a regularization method based
on point spread characteristics is designed to eliminate the effects between the anomaly spectra and
background spectra around anomaly pixels.

The flowchart of the proposed hierarchical-RX anomaly detection method is shown in Figure 1.
Compared with the original RX detection method, the H-RX anomaly detection architecture is
structurally divided into two phases: (1) Hierarchical anomaly detection, and (2) anomaly detection
result regularization in spatial domain.
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For the former phase, a background suppression layer is developed to restrain the background
spectra of the input hyperspectral data and a stop criterion layer is designed to determine whether
the data need further detection processing. For the anomaly detection result regularization phase,
the result regularization layer is tactically designed based on the point spread characteristics, and it is
designed to enhance the anomaly detection result.

Consider HSI with N pixels and L spectral bands, which are arranged in an L× N matrix as
X = [x1, x2, · · · , xn]. For the kth layer, the H-RX detector’s output of this layer can be represented
as follows:

yk = (x(i)k − µk)
T
(Ck)

−1
(x(i)k − µk), (6)

where x(i)k and µk represent the spectral matrix and the mean spectra of the kth layer, respectively;
Ck represents the correlation matrix of the kth layer; and yk is the output of the kth layer and represents
the possibility of that an anomaly target corresponds to the spectra, and it has a value within [0, 1].
Then, each spectral vector xk

i is transformed by multiplying a nonnegative number q
(

yk
i

)
based on its

output score as follows:
xk+1

i = q(yk
i )xk

i . (7)

In the formulation, the nonlinear function q(t) is imposed on the spectral vector xk
i . We consider

this function a “soft-threshold” operation that retains the spectrum xi, whose output score is large,
while suppressing the spectrum xi, whose output score is small. In this way, the undesired background
spectra are gradually suppressed after each layer’s detection, whereas the target spectra will remain
unchanged. In this paper, the nonlinear suppression function is defined as follows:

q(t) =

{
q(t) = tλ, 0 ≤ t ≤ 1
0, t<0

, (8)

where λ is a positive parameter to adjust the shape of the function (8). Figure 2 shows the shape of the
function (8) under different choices of λ.
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Figure 2. Shape of the nonlinear suppression function with different choices of λ in the background
suppression process.

The potential anomaly spectra and the transformed background spectra will be used to construct
the new input data for the anomaly detector in the (k + 1)th layer. The aforementioned steps will be
repeated until the output yk meets the stop criterion. In this paper, we calculate δk, which is the error of
the average output energy of the current layer and the previous layer, and it can be defined as follows:

δk =
1
N
‖yk−1‖2

2 −
1
N
‖yk‖2

2

{
> ε, Continue
≤ ε, Stop

. (9)

In the Equation (9), ε refers to a small positive number. Therefore, if δk ≤ ε, then the iteration will
be stopped; whereas if δk > ε, then the operation proceeds directly to the next iteration. After a range
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of anomaly detection, we incorporated a point spread function (PSF) [18,19]-based regularization into
our HSI anomaly detection framework to promote the detection results under small anomaly targets.

The spectral mixing model for a sub-pixel target is a difficult and complicated modeling task.
We consider spectral mixing to have an effect on the detection result; therefore, we design the
regularization method in the spatial domain to enhance the anomaly detection performance. In this
regularization method, we modeled the radiation character of the anomaly target by using the PSF
as follows:

I(x, y) = I0 exp

(
−1

2

[
(x− x0)

2

σ2
x

+
(y− y0)

2

σ2
y

])
. (10)

In the Equation (10), I0 is a pixel of the H-RX detection result; (x0, y0) represent the location of
this pixel; σx and σy are the horizontal and vertical extent parameters, respectively; and I(x, y) denotes
the value of the surrounding location (x, y). Then, for the center pixel, we have the point spread
indicator p:

p =
ln I0 − ln IM
ln I0 − ln IN

, (11)

where IM and IN represent the average value of the direct neighbor domain and the diagonal neighbor
domain, respectively. The point spread indicator p of all pixels in anomaly detection result is calculated.
Then, the pixel is a potential anomaly target if the p value is in the protection interval.

At this point, the H-RX is complete. Briefly, the outline of the proposed H-RX algorithm for
hyperspectral anomaly detection is given as follows.

Algorithm 1 Hierarchical-RX Algorithm

Input and Initialization:
1. Spectral matrix X = [x1, x2, · · · , xn], target spectrum d ∈ RL×1, set tolerance ε > 0, k = 1, X1 = X

Hierarchical Background Spectral Restraint:

2. yk = (x(i)k − µk)
T
(Ck)

−1
(x(i)k − µk)

3. xk+1
i = q(yk

i )xk
i

4. Rebuild data Xk

5. k⇐ k + 1
Stop Criterion:

6. δk = (1/N)‖yk‖2
2 − (1/N)‖yk−1‖2

2; if δk > ε, go back to step 2; else, go to step 7
Anomaly Regularization:

7. p = (ln I0 − ln IM)/(ln I0 − ln IN)

Output:
8. Final outputs: yk =

[
yk

1, yk
2, . . . , yk

N

]
∈ R1×N .

3. Theoretical Analysis

Here, we provide theoretical analyses of the proposed H-RX algorithm. Firstly, a detailed
description of our designed background spectral suppression layer is provided. Secondly, the stop
criteria layer is analyzed. Finally, the motivation and function of the spatial regularization layer
is clarified.

3.1. Background Spectral Suppression Layer

Here, we provide a detailed description and theoretical analysis of the background spectral
suppression layer. For the (k + 1)th layer and the prior kth layer, according to formula (7) and (8),
we have

xk+1
i =

{
(yk

i )
λxk

i , 0 ≤ yk
i ≤ 1

0, yk
i > 1

(12)
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Because yk
i ∈ [0, 1], the detection result between the (k + 1)th layer and kth layer has the

following relationship:

yk+1
i =

{
yk+1

i < yk
i , 0 ≤ yk

i < 1

yk+1
i = yk

i , yk
i = 1

. (13)

Based on this relationship, the spectral result between the (k + 1)th layer and kth layer has the
following relationship:

xk+1
i − xk

i =

{
< 0, 0 ≤ yk

i < 1
0, yk

i = 1
. (14)

For the background spectral results, each spectral vector xk
i is multiplied by a number smaller

than 1 and every element of this spectral vector is changed to a much smaller value. However, for the
anomaly target spectral result, the original value is maintained for every band. Then, the difference
between the background spectral result and anomaly target spectral result will be enlarged, and the
background spectral result is restrained so that the vector has only a small value (close to a zero vector).

As a result, the output of the background spectrum will be restrained to a small value, but the
output will be much larger for the anomaly spectrum. In the ideal situation,

yk
i =

{
0, background
1, anomaly target

. (15)

After performing background spectral suppression layer processing, we have the following:

xk+1
i =

{
xk

i , yk
i = 1(xi is anomaly target spectral)

0, yk
i = 0(xi is background spectral)

. (16)

After several layers of restraint operations, the background spectral suppression results in
the vector containing only the value 0 and only the anomaly target spectrum retaining its original
vector value.

The background spectral suppression layer has the following characteristics.

(1) The output of the H-RX algorithm will be restrained to a small constant for the background
spectrum, whereas this constant will generally retain the original value for the anomaly
target spectrum.

(2) This layer can increase the difference between the target spectrum and background spectrum.
(3) Because the background spectrum is restrained to a zero vector, the sparsity of the rebuilt data

will be significantly increased.
(4) Although the H-RX algorithm contains several RX detectors, as the data sparsity increases,

the calculation speed of each layer with the exception of the first layer will increase.

The abovementioned analysis indicates that the performance of the H-RX detector of the kth layer
is equal to or better than that of the (k + 1)th layer. By using the background constraint operation,
the magnitude of certain background spectra will be suppressed to zero, which leads to an increase of
the difference between the background and the target spectra and makes the target easier to detect.
The simulation of this situation is shown in Section 4.

3.2. Stop Criteria Layer

Based on the analysis of the background spectral suppression layer, we know that after several
layer restraint operations, the spectra in the hyperspectral image contains the following characteristics:

(1) The background spectral magnitude is reduced while its direction in the spectral space is
maintained, and after several ranges of suppression operations, it will be transformed close
to a zero vector.
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(2) Concurrently, the target spectra remain unchanged.

Then, after a range of suppression and detection, the spectral vector in the transformed
hyperspectral image is almost restrained to a zero vector and only the anomaly target spectra contain
the original spectral vector. As a result, the detection results will contain a small value (close to zero)
that corresponds to the background spectra, whereas a much larger value is observed for the anomaly
target spectra.

In the hierarchical framework, if there is only one anomaly target, the output energy of the current
layer can be formulated as follows:

yk
Energy = ‖yk‖2

2 = 1 + γk, (17)

where 1 is the energy of the anomaly and γk represents the energy sum of the background. For the
next layer, the output energy can be formulated as follows:

yk−1
Energy = ‖yk‖2

2 = 1 + γk−1. (18)

Based on these equations, we can calculate δk, the error of the average output energy of the current
layer and the previous layer, which is defined as follows:

δk =
1
N
‖yk−1‖2

2 −
1
N
‖yk‖2

2. (19)

Thus, we have:

δk =
1
N
(γk − γk−1). (20)

Based on the above analysis, γk and γk−1 are small values and are close to zero; then, δk will also
converge to zero. Therefore,

δk =

{
go back to background suppression layer, δk > ε

out put the result, δk ≤ ε
(21)

where ε refers to a small positive value (we set this value equal to 10−4). By comparing the value
between δk and ε, the algorithm makes the decision to go directly to the next iteration or stop the
iteration detection.

Then, the stop criteria layer can be described as a low-pass filter like Figure 3 shown us.
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out put the result,                                           
k

k

k  
(21) 

where 𝜀 refers to a small positive value (we set this value equal to 10−4). By comparing the value 

between 𝛿𝑘 and 𝜀, the algorithm makes the decision to go directly to the next iteration or stop the 

iteration detection. 

Then, the stop criteria layer can be described as a low-pass filter like Figure 3 shown us. 
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Figure 3. Stop criteria layer model. Figure 3. Stop criteria layer model.

In the whole H-RX algorithm process, the stop criteria later plays the important roles of
determining when to stop the detection and identifying whether a potential advantage still exists to
improve the anomaly detection performance.
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3.3. Spatial Regularization Layer Analysis

Before the final detection result is output, we design a regularization layer to enhance the detection
performance in the spatial domain. In HSI, the background spectra around the target may be influenced
by the target spectra, which prompts consideration of the similarity of the background spectra with
the target spectra. As a result, these background pixels have a similar or larger value than the target in
the detection result, which leads to false detection.

In this paper, we focus on achieving a better anomaly detection performance for pixel/sub-pixel
anomaly targets. To achieve this goal, the noise caused by pixel-mixing phenomena should first be
smoothed. Therefore, the key issue of the filtering module is determining how to distinguish the
target and noise. Here, we introduce a key technique in infrared target detection systems reported
in the literature [20], and then we design an efficient pixel/sub-pixel regularization filter for the
regularization layer.

Based on the assumption that the model of pixel-mixing phenomena influences the detection
result, we define the following formula:

fD(x, y) = fT(x, y) + fB(x, y) + fN(x, y), (22)

where (x, y) represents the pixel location and fD, fT , fB and fN are the detection result, target,
background and noise, respectively. In the method, the radiation character in the detection result
caused by pixel mixing has been modeled using the PSF as follows:

I(x, y) = I0 exp

(
−1

2

[
(x− x0)

2

σ2
x

+
(y− y0)

2

σ2
y

])
, (23)

where I0 is the value of the anomaly detection result, (x0, y0) denotes the center location of the
candidate target, δx and δy are the horizontal and vertical extent parameters, respectively, and I(x, y)
represents the value of the surrounding location (x, y).

Considering the task of single pixel target detection and the above radiation character of the
target, a point spread indicator is proposed to protect the potential target and combined with a median
filter to smooth the noise. As shown in Figure 4, suppose there is a center pixel C that is surrounded by
the direct neighbor domain Fm (m = 2, 4, 6, 8) and the diagonal neighbor domain FN (n = 1, 3, 5, 7).

Sensors 2018, 18, x FOR PEER REVIEW  9 of 20 

 

In the whole H-RX algorithm process, the stop criteria later plays the important roles of 

determining when to stop the detection and identifying whether a potential advantage still exists to 

improve the anomaly detection performance. 

3.3. Spatial Regularization Layer Analysis 

Before the final detection result is output, we design a regularization layer to enhance the 

detection performance in the spatial domain. In HSI, the background spectra around the target may 

be influenced by the target spectra, which prompts consideration of the similarity of the background 

spectra with the target spectra. As a result, these background pixels have a similar or larger value 

than the target in the detection result, which leads to false detection.  

In this paper, we focus on achieving a better anomaly detection performance for pixel/sub-pixel 

anomaly targets. To achieve this goal, the noise caused by pixel-mixing phenomena should first be 

smoothed. Therefore, the key issue of the filtering module is determining how to distinguish the 

target and noise. Here, we introduce a key technique in infrared target detection systems reported in 

the literature [20], and then we design an efficient pixel/sub-pixel regularization filter for the 

regularization layer. 

Based on the assumption that the model of pixel-mixing phenomena influences the detection 

result, we define the following formula: 

( , ) ( , ) ( , ) ( , )
D T B N

f x y f x y f x y f x y
, (22) 

where (𝑥, 𝑦) represents the pixel location and 𝑓𝐷 , 𝑓𝑇 , 𝑓𝐵  and 𝑓𝑁  are the detection result, target, 

background and noise, respectively. In the method, the radiation character in the detection result 

caused by pixel mixing has been modeled using the PSF as follows: 

2 2

0 0
0 2 2

( ) ( )1
( , ) exp

2
x y

x x y y
I x y I

, 

(23) 

where 𝐼0 is the value of the anomaly detection result, (𝑥0, 𝑦0) denotes the center location of the 

candidate target, 𝛿𝑥  and 𝛿𝑦  are the horizontal and vertical extent parameters, respectively, and 

𝐼(𝑥, 𝑦) represents the value of the surrounding location (𝑥, 𝑦). 

Considering the task of single pixel target detection and the above radiation character of the 

target, a point spread indicator is proposed to protect the potential target and combined with a 

median filter to smooth the noise. As shown in Figure 4, suppose there is a center pixel C that is 

surrounded by the direct neighbor domain 𝐹𝑚 (𝑚 = 2, 4, 6, 8) and the diagonal neighbor domain 𝐹𝑁 

(𝑛 = 1, 3, 5, 7). 

F1 F2 F3

F8 C F4

F7 F6 F5
 

Figure 3. Surrounding structure of the pixel C. 

In the formulation, 𝐼𝑀 and 𝐼𝑁 represent the average value of the direct neighbor domain and 

the diagonal neighbor domain, respectively. As Equation (23) indicates, the relationship among 𝐼𝑀, 

𝐼𝑁 and 𝐼0 can be obtained approximately as follows: 

0

1
exp

2M

x y

I I

. 

(24) 

Figure 4. Surrounding structure of the pixel C.

In the formulation, IM and IN represent the average value of the direct neighbor domain and the
diagonal neighbor domain, respectively. As Equation (23) indicates, the relationship among IM, IN
and I0 can be obtained approximately as follows:

IM = I0 exp
(
− 1

2σxσy

)
. (24)

IN = I0 exp
(
− 1

σxσy

)
. (25)
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Thus, we have the following: {
ln I0

IM
= 1

2σxσy

ln I0
IN

= 1
σxσy

. (26)

If the center pixel is an anomaly target, the value of this pixel and the surroundings will be
obtained from Equation (26), whereas a misleading target will not be obtained. To distinguish the
target and misleading target effectively, the point spread indicator p is defined as follows:

p =
ln I0 − ln IM
ln I0 − ln IN

. (27)

The indicator p of the pixel/sub-pixel target is equal to 0.5 only under ideal conditions. Hence,
the protection interval of the p value is set as [0.2, 0.8]. By calculating the point spread indicator p of all
pixels in the original image, the following condition holds: The pixel is a potential target only if the p
value is in the protection interval. The target protection filter strategy combines the anomaly detection
result of potential target pixels with the result of a (3× 3) or (5× 5) median filter of the other pixels.

4. Experimental Results and Analysis

In this section, we evaluate the proposed method on three hyperspectral images. In the
experiments, we compare our H-RX algorithm with commonly used anomaly detection algorithms:
Original RX, Kernel RX, RPCA and low-rank and sparse representation (LRASR). The former algorithm
is a classical anomaly detection algorithm, which is also considered a benchmark among the most
classical anomaly detection algorithms. Kernel RX is one of the most famous of the improved
algorithms for RX. Another two algorithms are recently proposed low-rank-based anomaly detection
algorithm. It may be a stretch to try and draw too much from a comparison of four algorithms
and only three images, however, we believe our experiments point to the clear potential of the
proposed framework.

To compare the performance of different algorithms, we demonstrate the algorithms based on
receiver operating characteristic (ROC) curves, which describe the varying relationship of the detection
probability and the false alarm rate and are used to provide performance comparisons of different
detectors [21,22]. Based on a ground truth image, the ROC curve expresses the relationship between
the false alarm rate (Fa) and the probability of detection (Pd) at different thresholds for the anomaly
detector’s output. Fa and Pd are defined as follows:

Fa =
N f

Nb
, Pd =

Nc

Nt
, (28)

where, N f represents the number of false alarm pixels, Nb is the total number of background pixels,
Nc indicates the number of correct detection target pixels, and Nt is the number of total true target
pixels. For further comparison of the performance of anomaly detectors, the area under the curve
(AUC) [23,24], which is one of the most frequently used performance measures extracted from the
ex-ROC, has been used.

4.1. Dataset Description

In this paper, we evaluate the performance of the proposed H-RX method on three hyperspectral
images. Moreover, for the purpose of verifying the method more objectively and comprehensively,
we select datasets that were obtained from different hyperspectral imaging cameras.

The first two datasets are collected by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) over ocean regions [25,26]. The main difference between those datasets is the amount of
clouds, which influences background complexity. Those data can be downloaded from NASA’s website
(AVIRIS Dataset download website: http://aviris.jpl.nasa.gov/data/get_aviris_data.html.), where
the index of these two datasets are f100830t01p00r19 and f131117t01p00r05, respectively. Due to the

http://aviris.jpl.nasa.gov/data/get_aviris_data.html
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large size of the original data, we select two images for the experiments. The upper-left corner of each
image is (294, 1665) and (330, 7280), respectively.

The third dataset is the most commonly used one for hyperspectral anomaly target detection.
It is collected by the Hyperspectral Digital Imagery Collection Experiment (HYDICE) from a land
cover region [27], which is mainly composed of buildings, vegetation, road, and vehicles. More details
can be found from the website of US Army Corps of Engineers (HYDICE Dataset download website:
https://www.erdc.usace.army.mil/Media/Fact-Sheets/.). Here, 162 bands remained after removing
the water absorption bands.

The descriptions of each dataset are shown in Table 1, and corresponding false color images are
displayed in Figure 5. For further experiments, we divide the first and second image into twelve
patches, which are indexed by the serial number. One can see that there exists, some ship targets
which can be selected to generate the sub-pixel anomalies targets in the number 7 patch of Dataset-1,
and number 3 patch of Dataset-2.

Table 1. Dataset information.

Dataset Size Bands Resolution Sub-Pixel Targets Background

AVIRIS Dataset-1 (300× 400) 224 15.5 m Synthetic Real-World
AVIRIS Dataset-2 (800× 600) 224 15.5 m Synthetic Real-World

HYDICE Dataset-3 (80× 100) 162 1 m Real Real-World
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Figure 5. False color image of each dataset.

4.2. Performance Analysis of Background Suppression Layer

The proposed hierarchical anomaly detection algorithm is composed of several layers with
different purposes. The most important and novel one is the background suppression layer, which
significantly enhances the original RX detection performance. Then, to prove the theory and real effect
of this layer, we use a part of the data region in Dataset-1 for a detailed analysis.

In this experiment, the ship spectra have been used as the target spectra. We select the seventh
patch from the first dataset as the background region (upper-left corner is (201, 101)), the size of the
selected background region is (20× 20). As shown in Figure 6, we generated the sub-pixel target
(abundance ratio equal to 0.1) at the location (10, 10), and then added Gaussian white noise with
30-dB SNR.

Here, we focus on two important and urgent problems that must be resolved to validate the
proposed method: (1) Regards the performance of the proposed background suppression layer,
(2) considers whether rebuilding the hyperspectral information is useful for enhancing the anomaly
detection performance.

https://www.erdc.usace.army.mil/Media/Fact-Sheets/
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Figure 6. (a,b) False color image of the total dataset and the selected experimental region data,
respectively; (c) first band image of the simulated data with the sub-pixel anomaly target; (d) target,
with the background in location (10, 10) and mixed sub-pixel target spectra.

For the first question, the difference between the anomaly target and background according
to the previously mentioned theoretical analysis will remarkably increase after several background
suppression layer processing steps. Then, to verify this phenomenon, the detection results of the
original RX with the restraint process applied once and twice were compared directly.

As illustrated in Figure 7, we can see that after one background restraint, the anomaly target
is notably different than the original result. Moreover, by suppressing the background once again,
the background is restrained to a smaller value and the anomaly target is much more remarkable than
the background.
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Figure 7. (a) 3-D visualization of the original RX detection result; (b) 3-D visualization of the result
after one background restraint process; and (c) 3-D visualization of the result after two background
restraint processes. The sub-pixel anomaly target has been gradually increased.

Moreover, to quantitatively analyze the background suppression performance, the distance
between the value of the anomaly target and the background with different process steps was also
calculated with following formula, and the results are illustrated in Table 2. Note that our method will
hold for the situation whether the magnitudes of anomaly target spectra are larger than average ones
of background or not.

Distance =

∣∣∣∣ target− average(background)
average(background)

∣∣∣∣ (29)

Table 2. Distance between target and background by using the nonlinear suppression function.

Algorithm Original RX Suppression-Once Suppression-Twice

Distance 1.9 6.8 125.58

As shown in Table 2, the background suppression process assuredly enlarges the difference
between the sub-pixel anomaly target and the background. The distance between the anomaly target
and the background in the original RX detection result was nearly 3 times greater after performing
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one background suppression process, and this gap increased to more than 60 times by performing the
background suppression process twice in this experiment.

For the second problem, as mentioned in Section 3.1, we rebuilt the spectral data based on each
layer’s detection result. In theory, this process can suppress the spectral data whose result is small,
but retain the spectral data whose result is large. Then, in the new rebuilt hyperspectral data cube,
the anomaly target spectral data should be considerably different than the background spectral data.
We analyze this theory from both an objective and subjective perspective.

Subjectively, the spectra of the original data and the rebuilt data are compared directly in Figure 8.
The original sub-pixel anomaly target spectra are similar to the background spectra; however, by using
the restraint process, these spectra show greater differences in the rebuilt data. After two applications
of the background suppression process, the target spectra remain unchanged and the background
spectra have been further restrained. Then, after the background suppression, the target spectra remain
unchanged and the background spectra are progressively suppressed.
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Figure 8. Sub-pixel anomaly target compared with background spectra. (a) Original sub-pixel target
and background spectra; (b) these spectra after applying the background restrain process one time,
and (c) these spectra after performing background suppression twice. Vertical axis stands for value of
spectra vector, wheres horizontal axis stands for band numbers.

To compare the difference between the sub-pixel anomaly target and the background spectra
objectively, we introduce two spectral distance metrics to measure the distance among these spectra.
The first distance metric we used is the spectral angle mapper (SAM) [28], which defines the shape
difference between the spectra and is one of the most widely used spectral similarity metrics in
hyperspectral classification and target detection tasks [29,30]. The second distance we used is the
Euclidean distance [31], which provides a quantitative measure of the distance between two spectra
vectors and is the one of the most widely used distance metrics in many feature matching applications.

The spectral difference between two spectra x1 and x2 with L bands can be analyzed as the
calculated spectral dot product based on the Equation (30). The Euclidean distance metric between
two spectra can be expressed the Equation (31).

θ= cos−1

[∫
x1x2dl/

[∫
x1(l)

2dl
]1/2[∫

x2(l)
2dl
]1/2

]
, (30)

D(x1, x2) = ‖x1 − x2‖ =

√√√√ L

∑
l=1

(x1(l)− x2(l))
2. (31)

We use the distance mentioned earlier to calculate the distance between the anomaly target and
the average background spectra. In the ideal situation, the average background spectra may suppress
the spectral vector close to the zero vector. To avoid this situation, we add a small positive value
to each band value in the average background spectra. We set ε equal to 1, and then the average
background spectra x2 can be rebuilt, as shown in the following formula, and demonstrated in the
results in Table 2.

x2 = x2(l) + ε (32)
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As shown in Table 3, the Euclidean distance and SAM score between the target spectra and the
average background spectra are gradually enlarged in the rebuilt hyperspectral data. The Euclidean
distance has increased by almost one order of magnitude, and the SAM score is almost 20 times greater
after applying the data rebuilding process twice compared with the original hyperspectral data.

Table 3. Euclidean distance and SAM between sub-pixel anomaly and average background spectra.

Test Data Euclidean Distance SAM

Original data 3.032× 103 0.0595
Rebuilt data after first layer 1.124× 104 0.2073

Rebuilt data after second layer 1.635× 104 0.9619

4.3. Sub-Pixel Anomaly Detection Experiments

We evaluate the proposed method using three hyperspectral datasets, including two pure ocean
surface and one relatively complicated land cover scene. For the first two datasets, we use Target
Implantation Method mentioned in [32] to generated sub-pixel anomaly targets by mixing clean ship
target spectra and ocean background spectra with different abundance ratios, and then replaced
them in the corresponding background pixels. This approach is somewhat different than the target
implantation method mentioned in [33], which directly replaces the target and background spectra,
whereas we mix them in varying proportions. To evaluate the detector’s performance more objectively,
we add Gaussian white noise with 30-dB SNR in each of the mixed anomaly pixels. While this may
not be the best method of generating the sub-pixel anomaly target, it is certainly better than replacing
them directly.

For the third dataset, there already exists 21 pixels marked as anomaly targets, and thus we do not
add any other synthetic targets in this scene. As we calculated with the linear unmixing method [34],
the ratios of those targets ranges from 0.7 to 1, so, there are almost 8 sub-pixel anomalies (abundance
ratios range from 0.7 to 0.9) and 13 full pixel anomalies (abundance ratios equals 1). Compared with
the experiment on this dataset, the anomaly targets consist of different types of materials and different
sizes. For example, the type in this dataset consists of embedded cars and roofs, where the size of
the anomaly targets is one or two pixels. Furthermore, the observation area is more complex, with
at least four types of objects constituting the background, which increases the difficulty to detect the
anomaly targets.

For space and brevity, only the patches involving the target are illustrated in the first two datasets
(i.e., patch 7 in Dataset-1, patch 3 in Dataset-2). As shown in Figure 9, we generated sub-pixel
anomalies with different abundance ratios (ranging from 0.6 to 1 in Dataset-1 patch 7 and 0.05 to 1 in
Dataset-2 patch 3). For more details, the size of selected region is (35× 100) and (100× 200) and their
upper-left locations are (66, 1) and (101, 1) respectively. In addition, the selected target locations are
(57, 35) and (9, 32) in each dataset. For other patches, we implant the sub-pixel targets with the same
process. Figure 10 illustrates the location of each target in Dataset-3. We draw corresponding spectra
in Figure 10b.
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Figure 10. Targets spectra in Dataset-3. (a) Ground truth and target pixels’ numbers; (b) spectra of each
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In the proposed method, two hyper parameters, including iteration numbers and the size of
spatial regulation windows are illustrated in Table 4. The results of different anomaly target detection
algorithms are listed in the Figure 11. For highlighting the anomalies, we use the 3-D figures to show
the final results, because the 2-D figures use the grey index to show the score for each pixel and the
differences of the backgrounds and anomalies are unclear in the view of 2-D figure.

Table 4. Iterations and window size.

Dataset Number of Iterations Spatial Smooth Window

Dataset-1 2 3× 3
Dataset-2 2 3× 3
Dataset-3 1 5× 5
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Figure 11. Experimental data on each dataset (Patch 7 in Dataset-1, Patch 3 in Dataset-2).

All the five methods have the ability to distinguish between anomalies and most background
pixels on three datasets. But the proposed hierarchical method and Kernel RX show better visual
performance than the other three algorithms. Considering the fact that the visual assessments
may be inaccurate, we employ the semilog ROC curves and AUC score to further assess the
detection performance.

Figure 12 shows the semilog ROC curves of the five methods on the selected peaches. One can see
that (1) For patch 7 of Dataset-1, the proposed method shows better performance than others. (2) For
patch 3 of Dataset-2, RPCA and the proposed method show similar performance in low false alarm rate
situation, but the latter is much better as false alarm rate growing. Moreover, with the increasing of
false alarm rate, the unsatisfactory performance of Kernel RX enhances expeditiously. (3) For Dataset-3,
the Kernel RX, LARSR and RPCA show better performance than the proposed method. But it is worth
noting that the proposed method achieves the smallest false alarm rate when all the anomaly targets
are detected.
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In order to evaluate the performance in the low false alarm situation more clearly, we calculate the
probability of detection when the false alarm rate equals 0.01. Additionally, we also calculate the false
alarm rate when probability of detection equals 1. Here, we test all the patches and calculate the mean
for the first two datasets. For the third dataset, we repeatly conduct the experiments 10 times, and then
calculate the mean and standard deviation of the results. These resulting statistics are illustrated on
Table 5.

Table 5. Anomaly detection results on three datasets. (P-D at P-FA = 0.01, P-FA at P-D = 1).

Algorithm
Dataset-1 (%) Dataset-2 (%) Dataset-3 (%)

P-D P-FA P-D P-FA P-D P-FA

Original RX 72.3 ± 12.5 16.7 ± 7.6 53.7 ± 18.2 99.1 ± 2.6 76.8 ± 0.01 26.3 ± 0.01
RPCA 85.9 ± 9.2 9.7 ± 6.2 62.3 ± 24.8 100.0 ± 0.0 76.7 ± 0.00 17.8 ± 0.01

Kernel RX 85.0 ± 14.0 61.5 ± 45.64 29.2 ± 28.7 68.4 ± 22.9 61.3 ± 0.01 84.6 ± 0.02
LARSR 54.9 ± 31.9 81.6 ± 38.6 17.9 ± 35.2 95.2 ± 12.1 82.6 ± 0.01 26.9 ± 0.01

Proposed 89.1 ± 7.8 11.5 ± 7.5 65.4 ± 21.7 94.1 ± 12.9 83.4 ± 0.00 12.6 ± 0.00

We can see that the proposed method achieves the top two probability of detection (when false
alarm rate equals 0.01) in all datasets. It proves that the proposed method has a good ability to
distinguish most of anomalies with a low false alarm rate. When the probability of detection equals
1, the proposed method gets the second lowest false alarm rate to detect all the anomalies. Overall,
our method shows better performance on detecting all the targets and getting higher probability
of detection.

To further evaluate the efficiency of the proposed method, the AUC score and time consumption
are listed from Tables 6–9. Here, as all the methods show unsatisfactory performance on Dataset-2,
we choose this dataset for detailed illustration in Tables 6 and 7. Statistical (average and standard
deviation) AUC score and time consumption from all the patches of the first two datasets and retest of
the third dataset are illustrated in Tables 8 and 9, respectively.

Table 6. Area under the curve (AUC) score for each patches in Dataset-2.

Algorithm
Dataset-2 (%)

1 2 3 4 5 6 7 8 9 10 11 12

Original RX 79.9 87.9 80.7 90.9 80.6 77.4 87.1 78.7 49.6 85.8 85.6 30.8
RPCA 54.0 77.7 74.9 74.9 74.4 19.6 79.8 70.0 0.0 74.7 78.8 0.0

Kernel RX 70.0 84.6 83.5 90.4 81.5 67.1 88.4 87.9 61.2 86.3 84.3 50.8
LARSR 50.8 65.9 46.9 56.3 55.8 54.8 73.5 57.9 63.0 99.4 56.6 47.0

Proposed 94.7 94.9 88.0 89.8 94.9 89.6 89.5 90.0 84.4 95.0 95.0 54.5

Table 7. Time consumption performances each patches in Dataset-2.

Algorithm
Dataset-2 (s)

1 2 3 4 5 6 7 8 9 10 11 12

Original RX 4.8 4.8 4.3 4.7 4.8 4.6 4.7 4.2 4.8 4.3 4.8 4.6
RPCA 70.7 57.7 56.6 121.2 59.0 48.4 73.7 62.1 100.4 56.9 58.8 157.9

Kernel RX 755.35 818.68 1087.3 2962.91 811.7 876.6 1521.7 919.2 768.4 1478.9 683.5 801.1
LARSR 9.1 9.9 9.9 11.6 9.7 7.9 10.6 8.7 7.9 6.3 10.3 6.8

Proposed 5.7 5.3 4.8 5.4 5.3 5.4 5.2 4.7 5.3 4.7 5.2 5.2
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Table 8. AUC score (For Dataset-1 and Dataset-2, we calculate the average AUC and standard deviation
of each patch).

Algorithm
AUC Score (%)

Dataset-1 Dataset-2 Dataset-3

Original RX 92.70 ± 2.2 76.25 ± 17.79 96.98 ± 0.01
RPCA 96.58 ± 1.8 56.57 ± 31.27 97.42 ± 0.01

Kernel RX 92.81 ± 6.6 78.01 ± 12.69 94.21 ± 0.01
LARSR 46.29 ± 30.6 60.66 ± 14.37 96.62 ± 0.00

Proposed 97.71 ± 1.7 88.36 ± 11.22 98.39 ± 0.00

Table 9. Time consumption performances (For Dataset-1 and Dataset-2, we calculate the average and
standard deviation of each patch.).

Algorithm
Average Time Consumption (s)

Dataset-1 Dataset-2 Dataset-3

Original RX 0.79 ± 0.02 4.61 ± 0.23 0.88 ± 0.04
RPCA 51.08 ± 5.90 76.96 ± 33.01 139.11 ± 1.61

Kernel RX 13.34 ± 5.81 1123.26 ± 641.14 83.96 ± 1.17
LARSR 1.61 ± 0.37 9.06 ± 1.59 3.08 ± 0.29

Proposed 1.29 ± 0.11 6.17 ± 0.31 1.25 ± 0.13

We test all the discussed methods on an Z820 Workstation with Intel Xeon E5-2630 and 128
GB RAM. The programming environment is MATLAB 2015a. Compared with the Original RX,
the proposed hierarchical framework consists of different layers, which increases computational
complexity to some extent. As illustrated in [35], the computational complexity of original RX is O(N),
and thus, the computational complexity of the proposed method can be briefly calculated as:

Complexity = O(i ∗ N), (33)

where, i is the times of RX method employed in the proposed method.
It can be seen that the proposed method achieves the highest average AUC score on all datasets

as expected. Even though our method shows a little more time-consuming than the Original RX, it is
still meaningful for some applications that need high detection accuracy and efficiency simultaneously.
Further, our method not only get better detection results, but also much faster than other algorithms
(i.e., RPCA, Kernel RX and LARSR).

It is worth noting that the performance of H-RX is close to other methods on Dataset-3 (i.e., similar
AUC scores shown in Table 6). This results from the fact that the anomaly target could consist of more
than one pixel (e.g., sub-pixel 2~5 in the Dataset-3). In this case, co-occurrences of multiple anomaly
pixels within the spatial regularization window would perplex the judgement of true center anomaly
one, and thus all of the sub-pixels may be restrained.

Finally, it is necessary to discuss unsatisfactory AUC scores of all the methods on the Dataset-2,
which is caused by the low abundance ratios. For instance, when the abundance ratio is smaller than
0.25, the sub-pixel anomaly would be submerged in the background. Then, the H-RX fails to detect it
with a low false alarm. Moreover, background is much more complex, especially for the background
in the twelfth patch, which involves clouds, stripe noise and land cover regions. However, in such
an extreme situation, the proposed method still outperforms the others in the detection results. Thus,
the H-RX is a promising method for sub-pixel anomaly detection.

5. Conclusions

In this paper, we propose a hierarchical hyperspectral anomaly target detection method (H-RX)
that consists of several layers with different functions. The main contributions of the proposed method



Sensors 2018, 18, 3662 19 of 20

are: (1) A novel hierarchical framework is proposed to restrain background spectra and enlarge the
difference between the background and anomaly target spectra; (2) we prove the rationality of the
proposed method theoretically and the ability to construct more discriminative spectra than that in
previous layers; and (3) experimental results on three datasets show that the proposed hierarchical
method has a significant improvement over the classical RX method and other recent sub-pixel anomaly
detection methods.
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