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Introduction

Frailty describes a syndrome in a growing number of older 
adults, characterized by deteriorative function of multiple 
systems and increased vulnerability to endogenous as well 

as exogenous exposures (1). In the clinical setting, frailty 

can be defined as a reduction in physical strength and 

endurance, with or without a decline in cognitive ability. 

Individuals with frailty experience a higher risk of adverse 
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outcomes including falls, disability, and hospitalization (1,2). 
To assess this complex condition, Searle et al. introduced the 
frailty index (FI), which is based on the proportion of age-
related deficits among a list of 30 physical parameters (3).

Cardiovascular diseases (CVDs) are commonly known 
as a group of diseases including coronary artery disease 
(CAD), myocardial infarction (MI), atrial fibrillation 
(AF), and heart failure (HF). An increased prevalence of 
CVDs among the aging population has led to elevated 
morbidity and mortality worldwide (4). Identification of 
modifiable risk factors including hypertension, diabetes 
mellitus, and smoking, has facilitated the management of 
CVDs. Notably, observational studies have suggested a 
pattern of associations between frailty and CVDs. Frailty 
is more prevalent in patients with CVDs than in those 
without it (5,6). A longitudinal cohort study enrolling 4,211 
community-dwellers showed that experiencing baseline 
frailty was correlated with an increased risk of CVDs over 
an 8-year follow-up (7). Besides, a previous study has 
further revealed that the FI might have a more pivotal value 
than traditional CVD risk factors to discriminate CVD 
events (8). Regarding the casual effect of frailty on CVDs, 
true relationships may be distorted by reverse causation or 
residual confounders (9). Well-designed large-scale cohort 
studies can to some extent overcome these obstacles and 
shed light into this issue, but at a relatively high cost.

Therefore, exploring the potential causal link could 
facilitate enhanced management of CVDs. Mendelian 
randomization (MR) is an application of genetic variants to 
plausibly infer the causal associations between phenotypic 
traits (exposures) and health-related outcomes. The upside 
of this approach lies in leveraging a large sample size from 
a genome-wide association study (GWAS) and minimizing 
bias caused by reverse causation and confounding factors. 
There are 3 basic principles when performing MR analysis. 
First, the instrumental variables (IVs) should be associated 
with exposure of interest at a genome-wide significance 
level; Second, the IVs are irrelevant to any confounders that 
may affect the exposure or outcome; Third, the IVs do not 
directly lead to the outcome, except through its association 
with the exposure (10). This approach has been applied to 
the fields of genetics, epidemiology, statistics, econometrics, 
and bioinformatics (11). In the present study, we used 
instrumental variables (IVs) identified from a recent GWAS 
meta-analysis for FI, and performed a 2-sample MR to 
decipher whether genetically determined higher FI causally 
leads to increased CVDs risk. The robustness of the results 
was tested by replicating the main analyses using different 

outcome datasets. We present the following article in 
accordance with the STREGA reporting checklist (available 
at https://atm.amegroups.com/article/view/10.21037/atm-
22-4239/rc).

Methods

Study design

The potential causal effect of genetic liability to FI on 
CVDs was assessed using a 2-sample MR study based on 
summary statistics from published GWAS meta-analyses 
and the FinnGen consortium (https://www.finngen.fi/
en). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Data sources

Summary-level GWAS data related to CAD/MI, AF, and HF 
were drawn from the Coronary ARtery DIsease Genome-
wide Replication and Meta-analysis plus The Coronary 
Artery Disease Genetics (CARDIoGRAMplusC4D) 
consortium (12), a GWAS meta-analysis conducted 
by Nielsen et al. (13), and the Heart Failure Molecular 
Epidemiology for Therapeutic Targets (HERMES) 
consortium (14), respectively. Replication analyses were 
performed using data from FinnGen consortium (15). 
Detailed information for these outcome datasets (sample 
size, ethnicity, case definition, adjustment, etc.) is listed in 
the Table S1. No ethical permission or informed consent was 
necessary given that this MR study was based on publicly 
available summary statistics.

IVs selection

A total of 14 FI-related single nucleotide polymorphisms 
(SNPs) were provided by a large GWAS meta-analysis 
compromising European participants from UK Biobank 
(n=164,610) and TwinGene (n=10,616) (16). The FI was 
defined based on the accumulation of deficits as described 
previously (3) .  All these SNPs reached a genome-
wide association (P<5×10-8) upon adjustment for age, 
gender, and 10 principal components, and were not in 
linkage disequilibrium with each other (r2<0.001 across a  
10,000 kb window) according to the European 1000 
genomes panel (17). The details of the associations of 
genetic variants with the exposure and outcomes are 
displayed in Table S2. The phenotypic variance explained by 
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these SNPs (R2) was calculated using the method described 
by Shim et al. (18). To attain the first assumption of MR 
design, SNPs with F statistics [F = R2(n − k − 1)/k (1 − R2)] 
higher than 10 were considered valid IVs. The rs9275160 
was not available in the CARDIoGRAMplusC4D dataset; 
no suitable proxy was found by searching an online website 
tool (https://snipa.helmholtz-muenchen.de/snipa3/).

Statistical analysis

Effect estimates of each SNP on outcomes were pooled 
using multiplicative random-effects inverse-variance 
weighted (IVW) as the primary statistical method (19). The 
IVW method confers convincing results when all 3 MR 
assumptions are satisfied. However, it was susceptible to 
horizontal pleiotropy. Therefore, a set of complementary 
analyses were used, including the simple median, the 
weighted median (20), MR-Egger regression (21), and MR 
pleiotropy residual sum and outlier (MR-PRESSO) (22) 
methods. These approaches make distinct assumptions on 
the presence of invalid IVs, and were applied to test the 
robustness of the results. Heterogeneity was evaluated using 
Cochrane’s Q test and I2 index. Significant heterogeneity 
was considered when PCochrane’s Q<0.05 and I2>50% for IVW 
estimates (23). The MR-Egger regression can evaluate 
horizontal pleiotropy bias by employing its intercept as 
an indicator (Pintercept<0.05 suggests pleiotropy) (24). In 
addition, potential pleiotropic outlying IVs were detected 
by MR-PRESSO approach (22). 

The effect size for each SNP was scaled to genetically 
determined 1 total point increase in FI. The IVW results 
based on GWAS datasets and the FinnGen consortium were 
combined using meta-analysis in a fixed-effect model if no 
heterogeneity was found, otherwise, a random-effect model 
was applied. Post hoc statistical power was calculated using 
sample size and proportion of cases of outcome datasets, 
Type-I error rate (0.05), odds ratio (OR), and percentage 
of variation explained by IVs (Table S3) (25). Considering 
the multiple tests, associations with a Bonferroni-corrected 
P value of <0.0125 were considered significant. All analyses 
were performed using R packages TwoSampleMR (26) and 
MR-PRESSO (22) within software R (version 4.1.0; The R 
Foundation for Statistical Computing, Vienna, Austria).

Results

For all IVs considered, the F statistics ranged from 28.5 to 
113.6, suggesting that these IVs exhibited sufficient strength 

for the present MR. All together they explained ~0.3% of 
phenotypic variation of FI (Table S2).

The IVW analyses showed that a genetically determined 
1 point increment in FI conferred an OR of 1.47 [95% 
confidence interval (CI): 1.10 to 1.96; P=0.009] for CAD, 
1.62 (95% CI: 1.15 to 2.29, P=0.006) for MI, 1.15 (95% CI: 
0.92 to 1.44; P=0.222) for AF, and 1.42 (95% CI: 1.19 to 
1.71; P=1.34×10-4) for HF in the GWAS datasets (Figure 1).  
The causal associations remained broadly consistent in 
the analyses based on the FinnGen consortium (Figure 1). 
The meta-analysis combining different data sources was in 
further support of the causal effect of FI on CAD (OR, 1.46; 
95% CI: 1.13 to 1.87; P=0.003), MI (OR, 1.62; 95% CI: 
1.21 to 2.17; P=0.001), and HF (OR, 1.46; 95% CI: 1.24 to 
1.72; P=4.89×10-6) (Figure 1). However, the results showed 
that the association for AF may not be causal (OR, 1.43; 
95% CI: 0.93 to 1.66; P=0.107) (Figure 1). 

We had sufficient power (>90%) in detecting the OR 
in all cases (except for AF) by applying both GWAS 
meta-analyses and FinnGen consortium (Table S3). 
Complementary analyses including weighted median, 
simple median, and MR-PRESSO methods were in accord 
with prior results, albeit with a smaller magnitude with wide 
CIs in several analyses (Figure 2). Cochrane’s Q test and I2 
index suggested a modest heterogeneity for FI-CAD and 
FI-MI associations in the FinnGen consortium, whereby 
no evidence was found for horizontal pleiotropy based on 
the P value for MR Egger intercept (Table S4). In addition, 
MR-PRESSO detected no pleiotropic outlying SNPs for 
all results considered (except for CAD in the FinnGen 
consortium: rs4146140) (Table S4). There was no observed 
substantial difference when we recalculated MR estimates 
by excluding this SNP (Figure 2).

Discussion

The present MR study yielded strong evidence indicating 
causal relationships between genetically predicted FI and 
risk of CAD, MI, and HF, with sufficient statistical power. 
The results were broadly consistent in replication analyses 
and several complementary analyses. In consideration of 
heterogeneous results from the different data sources and 
insufficient power, having a higher FI may not put a person 
at a higher risk of AF.

The genetic determinants of FI include gene loci 
associated with traits such as BMI, CVDs, smoking, 
HLA proteins, depression and neuroticism (16). Higher 
educational attainment and lower BMI are associated with 
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decreased FI. Besides, mental health plays a pivotal role in 
the biological mechanisms of frailty (16). The degree of 
frailty is expected to increase along with aging, and FI has 
been considered an indicator of biological age that could 
even outperform DNA methylation age (27). However, 
frailty acts as a modifiable variable that could be adjusted by 
controlling the risk factors (1). Investigators in recent years 
have successfully decoded the underlying the associations 
between frailty and other diseases and health-related 
outcomes. The causal association between FI and risk of 
CAD, MI, and HF found in this MR study was in line with 
observations from several traditional epidemiology studies 
(7,28,29). Notably, the clinical data also showed that frailty 
was an essential independent predictor of prognosis for 
patients with acute coronary syndrome (30,31). Despite 
adjusting for some clinical and biochemical variables, 
current conclusions from observational studies also call for 
further validation due to limited sample size and biases such 
as residual confounders and reverse causality. In the present 
MR study, we managed to provide genetic evidence for the 
causal relationships between FI and CVDs outcomes. Our 
conclusion strengthens the conceptual framework that FI 
increases the risk of CAD, MI, and HF, and that effort to 
prevent FI may have substantial cardiovascular benefits. 

Life style changes, such as regular exercise and appropriate 
food intake have been considered to curb the progression 
of frailty (1). Importantly, identification of frailty using FI 
could aid clinicians in providing better primary, secondary, 
and tertiary prevention of these CVDs. Besides, frailty index 
performs better than traditional cardiovascular risk factors 
in predicting the risk of CVD events (8). Frailty index, 
together with traditional cardiovascular risk factors, will 
provide greater prognostic value when clinicians identify 
those with higher CVDs risks.

Previous studies have suggested some molecular and 
cellular pathways through which frailty leads to CVDs. 
First, frail patients often present with higher levels of 
oxidative stress (32), resulting in an accumulation of 
cellular damage that impairs endothelium function and 
further triggers the onset of atherosclerotic CVD (33). 
Second, the Cardiovascular Health Study reported that 
frailty status was characterized by elevated inflammatory 
marker (C-reactive protein) and blood clotting markers 
(factor VIII and D dimer) (34). High inflammation levels 
and a hypercoagulable state perpetuate CVDs (35,36). 
Furthermore, cross-sectional studies have demonstrated 
that frail people are placed at a higher risk of IGF-1 and 
sex hormone deficiency (37), which are positively related 

Figure 1 IVW analysis estimates of genetically determined FI with CVDs risk. *, the rs9275160 was not available in the 
CARDIoGRAMplusC4D dataset; no suitable proxy was found. IVW, inverse-variance weighted; FI, frailty index; CVDs, cardiovascular 
diseases; CARDIoGRAMplusC4D, Coronary ARtery DIsease Genome-wide Replication and Meta-analysis plus The Coronary Artery 
Disease Genetics; HERMES, Heart Failure Molecular Epidemiology for Therapeutic Targets; SNPs, single-nucleotide polymorphisms; 
OR, odds ratio; CI, confidence interval.
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to higher CVDs risk (38,39). A recent cross-sectional study 
found a pattern of association between frailty and high waist 
circumference and high body fat mass, and low skeletal 
muscle mass (40). Meanwhile, these body composition 
changes have been recognized as risk factors as predictors 
of CVD outcomes (41,42). Therefore, body composition 
changes may present one of the biologic mechanisms of 
how frailty leads to higher CVDs risks.

The frailty state was more pronounced among those 
developed with AF (43). A longitudinal study from 
Ireland showed that the frailty phenotype in people with 
AF may be useful in detecting early deterioration and 
accelerated aging (44). Besides, patients with AF and FI 
had a greater tendency to experience stroke, bleeding, and  
mortality (45). However, prevalent frailty status may 
not significantly affect AF incidence as reported by the 

Figure 2 Complementary analyses of genetically determined FI with CVDs risk. *, MR-PRESSO instrumental variable outlier detected: 
rs4146140. FI, frailty index; CVDs, cardiovascular diseases; CARDIoGRAMplusC4D, Coronary ARtery DIsease Genome-wide Replication 
and Meta-analysis plus The Coronary Artery Disease Genetics; HERMES, Heart Failure Molecular Epidemiology for Therapeutic Targets; 
MR-PRESSO, MR-pleiotropy residual sum and outlier; OR, odds ratio; CI, confidence interval. 
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Framingham Heart Study Offspring cohort study (hazard 
ratio, 1.22; 95% CI: 0.95 to 1.55) (46), which corroborated 
the results from the present MR study. This may be due 
to the fact that the mechanism of AF is to some extent 
different from that of atherosclerotic CVDs. Nonetheless, it 
is still plausible that frailty may increase the risk of AF given 
the limited sample size and insufficient statistical power 
of this MR study. Further well-designed clinical trials are 
needed to shed light on this important issue.

GWAS is an observational study which is sought to find 
genetic variants associated with a trait at genome-wide 
scale. GWASs provide genome-wide significant variants 
that can be utilized as instrumental variables in the MR  
studies (11). The biggest advantage of GWAS is its increased 
scale and scope in the past decades. Thereby, investigators 
are enabled to perform MR studies more efficiently (11). 
The MR framework, by applying hitherto largest GWAS 
meta-analyses, is one of the major strengths of this study. 
Using genetic variants randomly assorted and constant 
after conception, MR analysis minimized the influence of 
the reverse causation and confounding factors. We had 
sufficient statistical power to assess the causal association of 
FI with CAD, MI, and HF. Importantly, the MR estimates 
were broadly in accordance with across replication analyses 
using the FinnGen dataset and complementary analyses 
by other MR methods with no overt horizontal pleiotropy. 
Taken together, the MR estimates by multiple means 
reinforced the causal effect of FI on CVDs.

There were several limitations to our study. Firstly, 
study samples were confined to European cohorts, which 
may limit the generalizability of conclusions to different 
populations. Secondly, we had limited statistical power 
for the FI-AF association in both Nielsen et al. GWAS 
dataset and the FinnGen dataset. This may be ascribed 
to the small sample size as well as the low percentage 
of phenotypic variance explained by IVs. Therefore, we 
should take prudent steps when properly interpreting the 
corresponding results. Third, moderate heterogeneity was 
detected in several analyses. However, here we used IVW 
in multiplicative random effects, which are known to be 
applicable in the case of heterogeneity (47).

Conclusions

This MR study ascertained a contribution to the causal 
associations between genetically predicted FI and the risk 
of CAD, MI, and HF. However, FI may not be causative in 
AF incidence. Programs aimed at curbing frailty may be of 

benefit in the prevention of atherosclerotic CVDs and HF.
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